Hyperflow: a Processor Architecture for Timing-Safe Information-Flow Security

Total Page:16

File Type:pdf, Size:1020Kb

Hyperflow: a Processor Architecture for Timing-Safe Information-Flow Security HyperFlow: A Processor Architecture for Timing-Safe Information-Flow Security Andrew Ferraiuolo, Mark Zhao, Andrew C. Myers, G. Edward Suh Cornell University Ithaca, NY 14850, USA [email protected], [email protected], [email protected], [email protected] Abstract—This paper presents HyperFlow, a processor that it is important for security to ensure that hardware implemen- enforces secure information flow, including control over timing tations are free of timing channels. channels. The design and implementation of HyperFlow offer se- Prior work has shown that hardware constructed with a curity assurance because it is implemented using a security-typed hardware description language that enforces secure information security-typed hardware description language (HDL) [20], [43] flow. Unlike prior information-flow secured processors that aim can provide strong security assurance. Security-typed HDLs to strictly enforce noninterference, HyperFlow supports complex can statically prove that the hardware prevents insecure infor- information flow policies that can be configured at run time, and mation flows: untrusted signals cannot affect trusted signals, provides support for secure interprocess communication (IPC) and secret signals cannot affect public ones. Because HDLs and system calls. The architecture also offers a new model for process isolation in which memory protection is provided via produce cycle-level descriptions of the hardware, security- information flow control with strong security assurance while typed HDLs can also prove that the hardware is free of timing allowing IPC and shared memory. HyperFlow is designed to sup- channels. Prior work has also shown that security-typed HDLs port practical applications and system architectures. It therefore catch real-world security vulnerabilities [14]. supports decentralized information flow mechanisms that allow This paper presents HyperFlow, a processor architecture and controlled communication among mutually distrusting processes, mediated by dynamic, fine-grained labels. Static information- implementation designed for information-flow security that is flow verification of such a complex processor architecture poses verified with a security-typed HDL at design time, providing significant challenges, which require contributions in both the strong security assurance about its design and implementation. hardware architecture and the security type system. The paper The HyperFlow architecture is carefully designed to remove discusses the architecture decisions that make the processor all disallowed information flows between security levels, in- secure and describes a new secure HDL, named ChiselFlow, that allows these decisions to be verified in a lightweight way. The cluding timing channels, and the information flows within the HyperFlow architecture is also prototyped on a fully-featured design are statically verified using a security type system. processor that offers a complete RISC-V instruction set, and is HyperFlow is also implemented as an extension of a fully shown to have moderate overhead on area and performance. featured processor with a complete (RISC-V) instruction set. HyperFlow security policies. Beyond being a practical, I. INTRODUCTION realistic processor, HyperFlow also innovates in the security In modern computer systems, hardware plays a central policies it enforces. Unlike prior processors with verified role in providing isolation for software modules. Protection information flow, which only supported simple, fixed 2-point rings are widely used to isolate supervisor processes from or 4-point policy lattices, HyperFlow can enforce complex user processes. Recent hardware security architectures such application-defined security policies directly in hardware, in as ARM TrustZone [23] and Intel SGX [8] aim to protect line with work on information-flow security in operating critical software even when the operating system is malicious systems and programming languages which suggests that real or compromised. However, the security of these processors applications need rich lattice policies that can capture complex relies on the assumption that the underlying hardware properly trust relationships among mutually distrusting principals [5], enforces necessary security properties. [12], [26], [41]. Unfortunately, microprocessors often contain vulnerabili- We show how to encode complex and dynamic security ties that allow security-critical software to be compromised policies involving both confidentiality and integrity even for by untrusted software. Software-exploitable vulnerabilities in applications built from communicating processes serving mu- SGX have already been found [24]. Previous studies found tually distrusting principals. By enforcing security policies in vulnerabilities in implementations of Intel VT-d [38] and hardware, the software component of the trusted computing system management mode (SMM) [37]. Moreover, the recent base is minimized, and strong security assurance is obtained. Spectre [19] and Meltdown [22] vulnerabilities show that even While practical tagged architectures have previously been built if the hardware is correct in a conventional sense—that it with the ability to encode information flow policies [11], [42], implements a specification—is not sufficient to ensure security. they do not handle timing channels, and their implementations Exploiting subtle timing channels in Intel microprocessors, have not been secured with an information flow HDL. Meltdown can be used to leak arbitrary kernel data. Therefore, HyperFlow represents rich lattice policies in hardware at the bit level by introducing hypercube labels, in which software- provides label inference that reduces programmer effort. The level labels are mapped to points in a hypercube. Hypercube hardware designer provides security labels for the inputs and labels enable efficient comparisons between security levels outputs of hardware modules, but labels of internal signals can directly in hardware, and they are amenable to static checking be omitted. ChiselFlow also supports multiple mechanisms for in the security-typed HDL. describing heterogeneously labeled data structures, which are Controlled downgrading. To be practical, systems based crucial for practical designs. Finally, ChiselFlow separates the on information-flow security must allow exceptions to non- confidentiality and integrity components of labels supporting interference [16]. For example, applications must be able controlled downgrading. to release the results of computing on secrets. This can be Prototype implementation. We implement HyperFlow as accomplished by downgrading, a mechanism for relaxing an extension to the RISC-V Rocket processor, and HyperFlow information-flow policies. Uncontrolled downgrading is dan- supports a complete RISC-V ISA. Our implementation allows gerous, so the HyperFlow ISA provides instructions for con- conventional virtual-memory protection to interoperate with trolled downgrading. Downgrading of confidentiality policies HyperFlow’s information flow protection. HyperFlow imple- (declassification) is permitted only when it is robust [39]— ments performance-critical features that were absent in prior secrets can be released only if the downgrade can be influenced processors secured with an IFC HDL. The prototype imple- only by the owners of these secrets. Dually, downgrading of mentation shows that the new security features in HyperFlow integrity policies (endorsement) is permitted only it when it add moderate area overhead, largely due to the additional stor- is transparent [4]: that is, if the party providing the endorsed age for security tags, and moderate performance overhead due data could have read it. Together, these conditions ensure that to timing-channel protection. The HyperFlow implementation information flow is nonmalleable. Nonmalleable information is also more fully-featured than prior information-flow secured flow is enforced not only at the ISA level but also at the processors. The timing-safe implementations of these features HDL level, providing similarly strong assurance about the also type-checks with ChiselFlow, providing strong assurance implementation. that the implementation is secure. Secure interprocess communication. Another novel and challenging feature of HyperFlow is its support for secure II. HDL-LEVEL INFORMATION FLOW CONTROL communication across trust domains. HyperFlow allows but Implementing hardware with security-typed hardware de- constrains interprocess communication (IPC) via shared mem- scription languages (HDLs) is a promising approach to en- ory. It also supports the secure communication via registers suring the hardware is secure. HDL-level information flow of arguments and return values of system calls. System calls control applies techniques from language-based security [29] and shared function libraries present another challenge that to hardware design [13], [20], [21], [43]. Variables in the code HyperFlow addresses—both scenarios require a mechanism that describe the hardware design are annotated with security by which untrusted code can invoke trusted code. HyperFlow labels, L, which are types describing restrictions on where introduces an information-flow secure call gate [31], [36] information contained in that signal can flow. The type system mechanism to make cross-domain control transfers secure. then enforces these restrictions. Memory protection. Conventional systems use virtual Type systems for information flow security can enforce memory to isolate pages that belong
Recommended publications
  • 45-Year CPU Evolution: One Law and Two Equations
    45-year CPU evolution: one law and two equations Daniel Etiemble LRI-CNRS University Paris Sud Orsay, France [email protected] Abstract— Moore’s law and two equations allow to explain the a) IC is the instruction count. main trends of CPU evolution since MOS technologies have been b) CPI is the clock cycles per instruction and IPC = 1/CPI is the used to implement microprocessors. Instruction count per clock cycle. c) Tc is the clock cycle time and F=1/Tc is the clock frequency. Keywords—Moore’s law, execution time, CM0S power dissipation. The Power dissipation of CMOS circuits is the second I. INTRODUCTION equation (2). CMOS power dissipation is decomposed into static and dynamic powers. For dynamic power, Vdd is the power A new era started when MOS technologies were used to supply, F is the clock frequency, ΣCi is the sum of gate and build microprocessors. After pMOS (Intel 4004 in 1971) and interconnection capacitances and α is the average percentage of nMOS (Intel 8080 in 1974), CMOS became quickly the leading switching capacitances: α is the activity factor of the overall technology, used by Intel since 1985 with 80386 CPU. circuit MOS technologies obey an empirical law, stated in 1965 and 2 Pd = Pdstatic + α x ΣCi x Vdd x F (2) known as Moore’s law: the number of transistors integrated on a chip doubles every N months. Fig. 1 presents the evolution for II. CONSEQUENCES OF MOORE LAW DRAM memories, processors (MPU) and three types of read- only memories [1]. The growth rate decreases with years, from A.
    [Show full text]
  • Cuda C Best Practices Guide
    CUDA C BEST PRACTICES GUIDE DG-05603-001_v9.0 | June 2018 Design Guide TABLE OF CONTENTS Preface............................................................................................................ vii What Is This Document?..................................................................................... vii Who Should Read This Guide?...............................................................................vii Assess, Parallelize, Optimize, Deploy.....................................................................viii Assess........................................................................................................ viii Parallelize.................................................................................................... ix Optimize...................................................................................................... ix Deploy.........................................................................................................ix Recommendations and Best Practices.......................................................................x Chapter 1. Assessing Your Application.......................................................................1 Chapter 2. Heterogeneous Computing.......................................................................2 2.1. Differences between Host and Device................................................................ 2 2.2. What Runs on a CUDA-Enabled Device?...............................................................3 Chapter 3. Application Profiling.............................................................................
    [Show full text]
  • Multi-Cycle Datapathoperation
    Book's Definition of Performance • For some program running on machine X, PerformanceX = 1 / Execution timeX • "X is n times faster than Y" PerformanceX / PerformanceY = n • Problem: – machine A runs a program in 20 seconds – machine B runs the same program in 25 seconds 1 Example • Our favorite program runs in 10 seconds on computer A, which hasa 400 Mhz. clock. We are trying to help a computer designer build a new machine B, that will run this program in 6 seconds. The designer can use new (or perhaps more expensive) technology to substantially increase the clock rate, but has informed us that this increase will affect the rest of the CPU design, causing machine B to require 1.2 times as many clockcycles as machine A for the same program. What clock rate should we tellthe designer to target?" • Don't Panic, can easily work this out from basic principles 2 Now that we understand cycles • A given program will require – some number of instructions (machine instructions) – some number of cycles – some number of seconds • We have a vocabulary that relates these quantities: – cycle time (seconds per cycle) – clock rate (cycles per second) – CPI (cycles per instruction) a floating point intensive application might have a higher CPI – MIPS (millions of instructions per second) this would be higher for a program using simple instructions 3 Performance • Performance is determined by execution time • Do any of the other variables equal performance? – # of cycles to execute program? – # of instructions in program? – # of cycles per second? – average # of cycles per instruction? – average # of instructions per second? • Common pitfall: thinking one of the variables is indicative of performance when it really isn’t.
    [Show full text]
  • CS2504: Computer Organization
    CS2504, Spring'2007 ©Dimitris Nikolopoulos CS2504: Computer Organization Lecture 4: Evaluating Performance Instructor: Dimitris Nikolopoulos Guest Lecturer: Matthew Curtis-Maury CS2504, Spring'2007 ©Dimitris Nikolopoulos Understanding Performance Why do we study performance? Evaluate during design Evaluate before purchasing Key to understanding underlying organizational motivation How can we (meaningfully) compare two machines? Performance, Cost, Value, etc Main issue: Need to understand what factors in the architecture contribute to overall system performance and the relative importance of these factors Effects of ISA on performance 2 How will hardware change affect performance CS2504, Spring'2007 ©Dimitris Nikolopoulos Airplane Performance Analogy Airplane Passengers Range Speed Boeing 777 375 4630 610 Boeing 747 470 4150 610 Concorde 132 4000 1250 Douglas DC-8-50 146 8720 544 Fighter Jet 4 2000 1500 What metric do we use? Concorde is 2.05 times faster than the 747 747 has 1.74 times higher throughput What about cost? And the winner is: It Depends! 3 CS2504, Spring'2007 ©Dimitris Nikolopoulos Throughput vs. Response Time Response Time: Execution time (e.g. seconds or clock ticks) How long does the program take to execute? How long do I have to wait for a result? Throughput: Rate of completion (e.g. results per second/tick) What is the average execution time of the program? Measure of total work done Upgrading to a newer processor will improve: response time Adding processors to the system will improve: throughput 4 CS2504, Spring'2007 ©Dimitris Nikolopoulos Example: Throughput vs. Response Time Suppose we know that an application that uses both a desktop client and a remote server is limited by network performance.
    [Show full text]
  • Analysis of Body Bias Control Using Overhead Conditions for Real Time Systems: a Practical Approach∗
    IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018 1116 PAPER Analysis of Body Bias Control Using Overhead Conditions for Real Time Systems: A Practical Approach∗ Carlos Cesar CORTES TORRES†a), Nonmember, Hayate OKUHARA†, Student Member, Nobuyuki YAMASAKI†, Member, and Hideharu AMANO†, Fellow SUMMARY In the past decade, real-time systems (RTSs), which must in RTSs. These techniques can improve energy efficiency; maintain time constraints to avoid catastrophic consequences, have been however, they often require a large amount of power since widely introduced into various embedded systems and Internet of Things they must control the supply voltages of the systems. (IoTs). The RTSs are required to be energy efficient as they are used in embedded devices in which battery life is important. In this study, we in- Body bias (BB) control is another solution that can im- vestigated the RTS energy efficiency by analyzing the ability of body bias prove RTS energy efficiency as it can manage the tradeoff (BB) in providing a satisfying tradeoff between performance and energy. between power leakage and performance without affecting We propose a practical and realistic model that includes the BB energy and the power supply [4], [5].Itseffect is further endorsed when timing overhead in addition to idle region analysis. This study was con- ducted using accurate parameters extracted from a real chip using silicon systems are enabled with silicon on thin box (SOTB) tech- on thin box (SOTB) technology. By using the BB control based on the nology [6], which is a novel and advanced fully depleted sili- proposed model, about 34% energy reduction was achieved.
    [Show full text]
  • A Performance Analysis Tool for Intel SGX Enclaves
    sgx-perf: A Performance Analysis Tool for Intel SGX Enclaves Nico Weichbrodt Pierre-Louis Aublin Rüdiger Kapitza IBR, TU Braunschweig LSDS, Imperial College London IBR, TU Braunschweig Germany United Kingdom Germany [email protected] [email protected] [email protected] ABSTRACT the provider or need to refrain from offloading their workloads Novel trusted execution technologies such as Intel’s Software Guard to the cloud. With the advent of Intel’s Software Guard Exten- Extensions (SGX) are considered a cure to many security risks in sions (SGX)[14, 28], the situation is about to change as this novel clouds. This is achieved by offering trusted execution contexts, so trusted execution technology enables confidentiality and integrity called enclaves, that enable confidentiality and integrity protection protection of code and data – even from privileged software and of code and data even from privileged software and physical attacks. physical attacks. Accordingly, researchers from academia and in- To utilise this new abstraction, Intel offers a dedicated Software dustry alike recently published research works in rapid succession Development Kit (SDK). While it is already used to build numerous to secure applications in clouds [2, 5, 33], enable secure network- applications, understanding the performance implications of SGX ing [9, 11, 34, 39] and fortify local applications [22, 23, 35]. and the offered programming support is still in its infancy. This Core to all these works is the use of SGX provided enclaves, inevitably leads to time-consuming trial-and-error testing and poses which build small, isolated application compartments designed to the risk of poor performance.
    [Show full text]
  • ESC-470: ARM 9 Instruction Set Architecture with Performance
    ARM 9 Instruction Set Architecture Introduction with Performance Perspective Joe-Ming Cheng, Ph.D. ARM-family processors are positioned among the leaders in key embedded applications. Many presentations and short lectures have already addressed the ARM’s applications and capabilities. In this introduction, we intend to discuss the ARM’s instruction set uniqueness from the performance prospective. This introduction is also trying to follow the approaches established by two outstanding textbooks of David Patterson and John Hennessey [PetHen00] [HenPet02]. 1.0 ARM Instruction Set Architecture Processor instruction set architecture (ISA) choices have evolved from accumulator, stack, register-to- memory, to register-register (load-store) organization. ARM 9 ISA is a load-store machine. ARM 9 ISA takes advantage of its smaller set of registers (16 vs. many 32-register processors) to incorporate more direct controls and achieve high encoding density. ARM’s load or store multiple register instruction, for example , allows enlisting of all possible registers and conditional execution in one instruction. The Thumb mode instruction set is another exa mple of how ARM ISA facilitates higher encode density. Rather than compressing the code, Thumb -mode instructions are two 16-bit instructions packed in a 32-bit ARM-mode instruction space. The Thumb -mode instructions are a subset of ARM instructions. When executing in Thumb mode, a single 32-bit instruction fetch cycle effectively brings in two instructions. Thumb code reduces access bandwidth, code size, and improves instruction cache hit rate. Another way ARM achieves cycle time reduction is by using Harvard architecture. The architecture facilitates independent data and instruction buses.
    [Show full text]
  • A Characterization of Processor Performance in the VAX-1 L/780
    A Characterization of Processor Performance in the VAX-1 l/780 Joel S. Emer Douglas W. Clark Digital Equipment Corp. Digital Equipment Corp. 77 Reed Road 295 Foster Street Hudson, MA 01749 Littleton, MA 01460 ABSTRACT effect of many architectural and implementation features. This paper reports the results of a study of VAX- llR80 processor performance using a novel hardware Prior related work includes studies of opcode monitoring technique. A micro-PC histogram frequency and other features of instruction- monitor was buiit for these measurements. It kee s a processing [lo. 11,15,161; some studies report timing count of the number of microcode cycles execute z( at Information as well [l, 4,121. each microcode location. Measurement ex eriments were performed on live timesharing wor i loads as After describing our methods and workloads in well as on synthetic workloads of several types. The Section 2, we will re ort the frequencies of various histogram counts allow the calculation of the processor events in 5 ections 3 and 4. Section 5 frequency of various architectural events, such as the resents the complete, detailed timing results, and frequency of different types of opcodes and operand !!Iection 6 concludes the paper. specifiers, as well as the frequency of some im lementation-s ecific events, such as translation bu h er misses. ?phe measurement technique also yields the amount of processing time spent, in various 2. DEFINITIONS AND METHODS activities, such as ordinary microcode computation, memory management, and processor stalls of 2.1 VAX-l l/780 Structure different kinds. This paper reports in detail the amount of time the “average’ VAX instruction The llf780 processor is composed of two major spends in these activities.
    [Show full text]
  • Autotuning GPU Kernels Via Static and Predictive Analysis
    Autotuning GPU Kernels via Static and Predictive Analysis Robert V. Lim, Boyana Norris, and Allen D. Malony Computer and Information Science University of Oregon Eugene, OR, USA froblim1, norris, [email protected] Abstract—Optimizing the performance of GPU kernels is branches occur, threads that do not satisfy branch conditions challenging for both human programmers and code generators. are masked out. If the kernel programmer is unaware of the For example, CUDA programmers must set thread and block code structure or the hardware underneath, it will be difficult parameters for a kernel, but might not have the intuition to make a good choice. Similarly, compilers can generate working for them to make an effective decision about thread and block code, but may miss tuning opportunities by not targeting GPU parameters. models or performing code transformations. Although empirical CUDA developers face two main challenges, which we autotuning addresses some of these challenges, it requires exten- aim to alleviate with the approach described in this paper. sive experimentation and search for optimal code variants. This First, developers must correctly select runtime parameters research presents an approach for tuning CUDA kernels based on static analysis that considers fine-grained code structure and as discussed above. A developer or user may not have the the specific GPU architecture features. Notably, our approach expertise to decide on parameter settings that will deliver does not require any program runs in order to discover near- high performance. In this case, one can seek guidance from optimal parameter settings. We demonstrate the applicability an optimization advisor. The advisor could consult a perfor- of our approach in enabling code autotuners such as Orio to mance model based on static analysis of the kernel properties, produce competitive code variants comparable with empirical- based methods, without the high cost of experiments.
    [Show full text]
  • The Anatomy of the ARM Cortex-M0+ Processor
    The Anatomy of the ARM Cortex-M0+ Processor Joseph Yiu Embedded Technology Specialist 1 What is the Cortex-M0+ Processor? . 2009 – ARM® Cortex™-M0 processor released . Low gate count . High performance . Easy to use . Debug features . 2012 – Cortex-M0+ processor released . Same instruction set . Supports all existing features of Cortex-M0 . New features . Higher energy efficiency . Ready for future applications 2 What’s new? . Even better power efficiency . Clean sheet design – 2 stage pipeline . Better performance at the same frequency . Unprivileged execution level . 8 region Memory Protection Unit (MPU) . Faster I/O accesses . Vector table relocation . Low cost trace solution available . Various silicon integration features (e.g.16-bit flash support) 3 Why a New Design? Energy is the Key . Embedded products need even longer battery life . Need to have lower active power . But not compromise on performance . Low power control applications . Need to have faster I/O capability . But not higher operating frequency . Smarter designs . Need more sophisticated features . But not bigger silicon 4 Overview of the Cortex-M0+ Processor . Processor . ARMv6-M architecture . Easy to use, C friendly . Cortex-M series compatibility . Nested Vectored Interrupt Controller (NVIC) . Flexible interrupt handling . WIC support . Memory Protection Unit (MPU) . Debug from just 2 pins 5 Compact Instruction Set . Only 56 Instructions . 100% compatible with existing Cortex-M0 processor . Mostly 16-bit instructions . All instructions operate on the 32-bit registers . Option for single cycle 32x32 Maximum reuse of multiply Upwardexisting compatibility tools to andthe ARM Cortexecosystem-M3/Cortex -M4 6 Interrupt Handling . Nested Vectored Interrupt Cortex-M0+ Controller (NVIC) NMI NVIC Core .
    [Show full text]
  • Microarchitecture-Level Power-Performance Simulators: Modeling, Validation, and Impact on Design
    Microarchitecture-Level Power-Performance Simulators: Modeling, Validation, and Impact on Design Zhigang Hu, David Brooks, Victor Zyuban, Pradip Bose IBM Research Harvard University Tutorial Outline 8:00-8:15 Introduction and Motivation Basics of Performance Modeling - Turandot performance simulation infrastructure Architectural Power Modeling - PowerTimer extensions to Turandot - Power-Performance Efficiency Metrics Case Studies and Examples - Optimal Power-Performance Pipeline Depth Validation and Calibration Efforts Future challenges and Discussion Bibliography Power Dissipation Trends 1000 ) 2 Intel Data SIA Projection Nuclear Reactor 100 Pentium III Hot Plate Pentium II 10 Pentium Pro Pentium Power Density (W/cm Density Power 486 1 386 1980 1990 2000 2010 The Battery Gap Diverging Gap Between Actual Battery Capacities and Energy Needs 10kbps 64kbps 384kbps 2Mbps 5000 Interactive Mobile video- 4000 Conferencing, Collaboration Video email, 3000 Voice recognition, Battery Downlink Mobile commerce capacity (mAh) dominated Fuel Cells 2000 Web browser, Energy PIM, SMS, MMS, Video clips requirement Voice (mAh) Energy (mAh) 1000 Lithium Source: Lithium Ion Polymer Anand 0 Raghunathan, NEC Labs 2000 2001 2002 2003 2004 2005 2006 2007 Power Issues Capacitive (Dynamic) Power Static (Leakage) Power Vdd VIN VOUT Vin Vout ISub CL IGate CL Temperature Di/Dt (Vdd/Gnd Bounce) 20 cycles Voltage (V) (A) Current Minimum Voltage Application Areas for Power-Aware Computing Temperature/di-dt-Constrained Energy-Constrained Computing Why architecture/system
    [Show full text]
  • Assembly Language Programming (Part 1) 2 7
    COURSE OUTLINE SECTION 1 1. Introduction to Programming languages Machine Language Low-Level Language High-Level Language 2. Data Representation & Numbering Systems Binary Numbering Systems Octal Numbering Systems Decimal Numbering Systems Hexadecimal Numbering Systems 3. Types of encoding American Standard Code for Information Interchange (ASCII) Binary Coded Decimal (BCD) Extended Binary Coded Decimal Interchange Code (EBCDIC) 4. Mode of data representation Integer Representation Floating Point Representation 5. Computer instruction set Reduced Instruction Set Computer (RISC) Complex Instruction Set Computer (CISC) SECTION TWO 6. Registers General Purpose Registers Segment Registers Special Purpose Registers ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 2 7. 80x86 instruction sets and Modes of addressing. Addressing modes with Register operands Addressing modes with constants Addressing modes with memory operands Addressing mode with stack memory 8. Instruction Sets The 80x86 instruction sets The control transfer instruction The standard input routines The standard output routines Macros 9. Assembly Language Programs An overview of Assembly Language program The linker Examples of common Assemblers A simple Hello World Program using FASM A simple Hello World Program using NASMS 10. Job Control Language Introduction Basic syntax of JCL statements ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 3 Types of JCL statements The JOB statement The EXEC statement The DD statement ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 4 CHAPTER ONE 1.0 INTRODUCTION TO PROGRAMMING LANGUAGES Programmers write instructions in various programming languages, some directly understandable by computers and others requiring intermediate translation steps. Hundreds of computer languages are in use today. These can be divided into three general types: a. Machine Language b. Low Level Language c.
    [Show full text]