Β-Carotene Absorption and Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Β-Carotene Absorption and Metabolism β-Carotene Absorption and Metabolism Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By: Matthew K. Fleshman The Ohio State University Nutrition Graduate Program The Ohio State University 2011 Dissertation Committee: Earl H. Harrison, Ph.D., Advisor Mark Failla, Ph.D. Steven J. Schwartz, Ph.D. Ouliana Ziouzenkova, Ph.D. Copyright by Matthew K. Fleshman 2011 Abstract β-Carotene is the most potent provitamin A carotenoid and has potential antioxidant properties. Vitamin A is an essential nutrient that plays a critical role in many biological systems. In many parts of the world provitamin A carotenoids such as β-carotene are the primary source of vitamin A. A better understanding of the bioaccessibility, absorption, and metabolism of β-carotene may help alleviate symptoms and diseases related to vitamin A deficiency. To better understand β-carotene absorption, we have studied β-carotene in fruits and vegetables, its bioaccessibility from food sources through in vitro digestion, and absorption by humans in a controlled feeding study. We also studied the metabolism of β-carotene by measuring the presence of β-apocarotenoids in foods, mice, and humans, as well as the conversion of newly absorbed β-carotene to its retinoid metabolites. The first study was conducted to determine the β-carotene content and its bioaccessibility/bioavailability in orange-fleshed melons. Orangedew melons have less consumer risk for food borne illness and have significantly more β-carotene than cantaloupes grown under the same conditions. Micellerization of β-carotene during simulated digestion of orange-fleshed melons was approximately 3.2%. We also detected and quantified β-apocarotenoids in the melons. ii The second study was conducted to investigate in humans the variability in β- carotene absorption and its conversion to vitamin A and to compare the efficiency of absorption of β-carotene with that of cholesterol. Ten men consumed a 5 mg dose of deuterium labeled β-carotene (d8-βC), with 6 subjects repeating the dose 2 months later. For this study, we developed a method that provides easier sample preparation than previous β-carotene feeding studies, and allows us to detect and quantify newly absorbed d8-β-carotene, as well as its d4-retinyl ester metabolites, using high performance liquid chromatography-mass spectrometry (HPLC-MS). We employed a simple sample extraction for both retinoids and β-carotene that included minimal sample handling. D8-β-carotene and its d4-retinyl ester metabolites were analyzed using the same liquid chromatography system and solvents for separation of the compounds. The method allowed us to accurately measure d8-β-carotene absorption, and its extent of conversion to d4-retinyl esters. There was marked inter-individual variability in β- carotene absorption and conversion to retinyl-esters. In contrast, intra-individual variability in β-carotene absorption and its conversion to retinyl esters was low. β- Carotene and cholesterol may share specific intestinal transporters, but there was no correlation between an individual’s efficiency of absorption of β-carotene and his efficiency of absorption of cholesterol (r=-0.09; p=0.81). The third study was conducted to determine the β-apocarotenoid levels in commonly consumed products containing β-carotene, such as fruits and vegetables, as well as in murine serum and liver, and human plasma. β-Apocarotenoids are present in our diets but their absorption, metabolism, and biological roles are largely unknown. iii Using HPLC-MS, we were able to detect and quantify β-apo-13-carotenone, β-apo-14’- carotenal, β-apo-12’-carotenal, β-apo-10’-carotenal, β-apo-8’-carotenal and β-carotene in several fruits and vegetables. In vitro digestion studies have shown that β- apocarotenoids are micellerized to a greater extent than β-carotene. We have shown here that they are present in considerable amounts in the diet and that they may be absorbed in addition to being generated in vivo. We have also shown that these β- apocarotenoids are present in the liver and serum of β-carotene fed mice and in human plasma. β-Carotene utilization involves many complex processes both at the level of absorption and metabolism. We have uncovered new aspects of β-carotene absorption and metabolism that should be considered in future β-carotene studies, such as conversion of β-carotene to specific retinyl esters, low intra-individual variability of β- carotene absorption, and the presence of β-apocarotenoids in all β-carotene containing samples. iv Acknowledgements This research could not have been accomplished without the generous help and support of many people. First and foremost, I would like to express my sincerest appreciation to my mentor, Dr. Earl H. Harrison, for his support and guidance, and for sharing his vast knowledge of my dissertation topic over the past five years. I would like to thank Dr. Steven J. Schwartz for allowing me to collaborate with his laboratory on the majority of my studies, for his expertise and for serving on my committee. I would like to thank Dr. Mark Failla for challenging my scientific mind, his expertise, and for serving on my committee. I would also like to thank Dr. Ouliana Ziouzenkova for her valuable expertise and for serving on my committee. I am grateful to my colleagues and friends Dr. Rebekah S. Marsh, Dr. Ken Riedl, Dr. Sagar Thakar, Dr. Julie Chitchumroonchockchai, Vanessa Reed, Rachel E. Kopec, and Abdulkerim Eroglu. I feel very fortunate to have worked with, and learned from, each of you. I also thank other Harrison laboratory members, GSNS members and the multitude of other graduate students that have helped me throughout the years. I am especially grateful to my parents, Jude and Naomi Fleshman for whom none of this would be possible, and my siblings; Gene, Dan, Jimmy, David, Theresa, Stephen, Nancy, Mark, Andrew, Joann, Michele, Sharon, and their spouses. v Vita 2003 ......................................................... B.S. (Nutrition), The Ohio State University 2006-2007 ........................... Graduate Teaching Associate, The Ohio State University 2007-2011 ........................... Graduate Research Associate, The Ohio State University Publications Igor Shmarakov, Matthew K. Fleshman, Diana N. D’Ambrosio, Roseann Piantedosi, Ken M. Riedl, Steve J. Schwartz, Robert W. Curley, Jr., Johannes von Lintig, Lewis P. Rubin, Earl H. Harrison, and William S. Blaner. Hepatic Stellate Cells are and Important Cellular Site for β-Carotene Conversion to Retinoid. Arch. Biochem. Biophys. (2010), doi:10.1016/j.abb.2010.05.010. Matthew K. Fleshman, Gene E. Lester, Ken M. Riedl, Rachel E. Kopec, Sureshbabu Narayansamy, Robert W. Curley, Jr., Steven J. Schwartz, and Earl H. Harrison. (2011) Carotene and Novel Apocarotenoid Concentrations in Orange-fleshed Cucumis melo Melons: Determinations of β-Carotene Bioaccessibility and Bioavailability. J Agric. Food Chem. (2011), doi: 10.1021/jf200416a. Field of Study Major Field: The Ohio State University Nutrition Graduate Program vi Table of Contents Contents Page Abstract ..................................................................................................................... ii Acknowledgement ..................................................................................................... v Vita .......................................................................................................................... vi List of Tables............................................................................................................ ix List of Figures ........................................................................................................... x List of Abbreviations ............................................................................................... xii Chapter 1 Literature Review 1.1 Introduction ......................................................................................................... 1 1.2 Carotenoids.......................................................................................................... 3 1.3 Health Benefits of Carotenoids ............................................................................ 4 1.4 Health Benefits of Vitamin A ............................................................................... 4 1.5 Sources of β-Carotene .......................................................................................... 9 1.6 Absorption of β-Carotene..................................................................................... 9 1.7 Bioavailability of β-Carotene ............................................................................. 12 1.8 Human Studies................................................................................................... 13 1.9 β-Apocarotenoids .............................................................................................. 16 1.10 Aims ................................................................................................................ 17 Chapter 2 Carotene and Novel Apocarotenoid Concentrations in Orange-fleshed Cucumis melo Melons: Determinations of β-Carotene Bioaccessibility and Bioavailability 2.1 Abstract ............................................................................................................. 21 2.2 Introduction ....................................................................................................... 22 2.3 Materials
Recommended publications
  • International Standard Iso 23443:2020(E)
    This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-80022923 INTERNATIONAL ISO STANDARD 23443 First edition 2020-07 Infant formula and adult nutritionals — Determination of β-carotene, lycopene and lutein by reversed-phase ultra-high performance liquid chromatography (RP-UHPLC) Formules infantiles et produits nutritionnels pour adultes — Détermination du bêta-carotène, du lycopène et de la lutéine par chromatographie liquide ultra haute performance à phase inversée Reference number ISO 23443:2020(E) © ISO 2020 This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-80022923 ISO 23443:2020(E) COPYRIGHT PROTECTED DOCUMENT © ISO 2020 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone:Website: +41 www.iso.org 22 749 01 11 Email: [email protected] iiPublished in Switzerland © ISO 2020 – All rights reserved This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-80022923 ISO 23443:2020(E) Contents Page Foreword ........................................................................................................................................................................................................................................iv
    [Show full text]
  • Synthetic Conversion of Leaf Chloroplasts Into Carotenoid-Rich Plastids Reveals Mechanistic Basis of Natural Chromoplast Development
    Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development Briardo Llorentea,b,c,1, Salvador Torres-Montillaa, Luca Morellia, Igor Florez-Sarasaa, José Tomás Matusa,d, Miguel Ezquerroa, Lucio D’Andreaa,e, Fakhreddine Houhouf, Eszter Majerf, Belén Picóg, Jaime Cebollag, Adrian Troncosoh, Alisdair R. Ferniee, José-Antonio Daròsf, and Manuel Rodriguez-Concepciona,f,1 aCentre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; bARC Center of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney NSW 2109, Australia; cCSIRO Synthetic Biology Future Science Platform, Sydney NSW 2109, Australia; dInstitute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46908 Paterna, Valencia, Spain; eMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; fInstituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; gInstituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, 46022 Valencia, Spain; and hSorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire, UMR-CNRS 7025, CS 60319, 60203 Compiègne Cedex, France Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 29, 2020 (received for review March 9, 2020) Plastids, the defining organelles of plant cells, undergo physiological chromoplasts but into a completely different type of plastids and morphological changes to fulfill distinct biological functions. In named gerontoplasts (1, 2). particular, the differentiation of chloroplasts into chromoplasts The most prominent changes during chloroplast-to-chromo- results in an enhanced storage capacity for carotenoids with indus- plast differentiation are the reorganization of the internal plastid trial and nutritional value such as beta-carotene (provitamin A).
    [Show full text]
  • Meet Lycopene Prostate Cancer Is One of the Leading Causes of Cancer Death Among Men in the United States
    UCLA Nutrition Noteworthy Title Lycopene and Mr. Prostate: Best Friends Forever Permalink https://escholarship.org/uc/item/5ks510rw Journal Nutrition Noteworthy, 5(1) Author Simzar, Soheil Publication Date 2002 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Meet Lycopene Prostate cancer is one of the leading causes of cancer death among men in the United States. Dietary factors are considered an important risk factor for the development of prostate cancer in addition to age, genetic predisposition, environmental factors, and other lifestyle factors such as smoking. Recent studies have indicated that there is a direct correlation between the occurrence of prostate cancer and the consumption of tomatoes and tomato-based products. Lycopene, one of over 600 carotenoids, is one of the main carotenoids found in human plasma and it is responsible for the red pigment found in tomatoes and other foods such as watermelons and red grapefruits. It has been shown to be a very potent antioxidant, with oxygen-quenching ability greater than any other carotenoid. Recent research has indicated that its antioxidant effects help lower the risk of heart disease, atherosclerosis, and different types of cancer-especially prostate cancer. Lycopene's Characteristics Lycopene is on of approximately 600 known carotenoids. Carotenoids are red, yellow, and orange pigments which are widely distributed in nature and are especially abundant in yellow- orange fruits and vegetables and dark green, leafy vegetables. They absorb light in the 400- 500nm region which gives them a red/yellow color. Only green plants and certain microorganisms such as fungi and algae can synthesize these pigments.
    [Show full text]
  • BSI Standards Publication
    BS ISO 23443:2020 BSI Standards Publication Infant formula and adult nutritionals — Determination of β-carotene, lycopene and lutein by reversed-phase ultra-high performance liquid chromatography (RP-UHPLC) BS ISO 23443:2020 BRITISH STANDARD INTERNATIONAL ISO STANDARD 23443 National foreword This British Standard is the UK implementation of ISO 23443:2020. First edition 2020-07 The UK participation in its preparation was entrusted to Technical Committee AW/34, Food Technical Committee Chairmen. A list of organizations represented on this committee can be obtained on request to its committee manager. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2020 Published by BSI Standards Limited 2020 Infant formula and adult ISBN 978 0 539 05212 1 nutritionals — Determination of ICS 67.050 β-carotene, lycopene and lutein Compliance with a British Standard cannot confer immunity from by reversed-phase ultra-high legal obligations. performance liquid chromatography This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 July 2020. (RP-UHPLC) Formules infantiles et produits nutritionnels pour adultes — Amendments/corrigenda issued since publication Détermination du bêta-carotène, du lycopène et de la lutéine par Date Text affected chromatographie liquide ultra haute performance à phase inversée Reference number ISO 23443:2020(E) © ISO 2020 BS ISO 23443:2020 INTERNATIONAL
    [Show full text]
  • Vitamins a and E and Carotenoids
    Fat-Soluble Vitamins & Micronutrients: Vitamins A and E and Carotenoids Vitamins A (retinol) and E (tocopherol) and the carotenoids are fat-soluble micronutrients that are found in many foods, including some vegetables, fruits, meats, and animal products. Fish-liver oils, liver, egg yolks, butter, and cream are known for their higher content of vitamin A. Nuts and seeds are particularly rich sources of vitamin E (Thomas 2006). At least 700 carotenoids—fat-soluble red and yellow pigments—are found in nature (Britton 2004). Americans consume 40–50 of these carotenoids, primarily in fruits and vegetables (Khachik 1992), and smaller amounts in poultry products, including egg yolks, and in seafoods (Boylston 2007). Six major carotenoids are found in human serum: alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, trans-lycopene, and zeaxanthin. Major carotene sources are orange-colored fruits and vegetables such as carrots, pumpkins, and mangos. Lutein and zeaxanthin are also found in dark green leafy vegetables, where any orange coloring is overshadowed by chlorophyll. Trans-Lycopene is obtained primarily from tomato and tomato products. For information on the carotenoid content of U.S. foods, see the 1998 carotenoid database created by the U.S. Department of Agriculture and the Nutrition Coordinating Center at the University of Minnesota (http://www.nal.usda.gov/fnic/foodcomp/Data/car98/car98.html). Vitamin A, found in foods that come from animal sources, is called preformed vitamin A. Some carotenoids found in colorful fruits and vegetables are called provitamin A; they are metabolized in the body to vitamin A. Among the carotenoids, beta-carotene, a retinol dimer, has the most significant provitamin A activity.
    [Show full text]
  • Novel Carotenoid Cleavage Dioxygenase Catalyzes the First Dedicated Step in Saffron Crocin Biosynthesis
    Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis Sarah Frusciantea,b, Gianfranco Direttoa, Mark Brunoc, Paola Ferrantea, Marco Pietrellaa, Alfonso Prado-Cabrerod, Angela Rubio-Moragae, Peter Beyerc, Lourdes Gomez-Gomeze, Salim Al-Babilic,d, and Giovanni Giulianoa,1 aItalian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy; bSapienza, University of Rome, 00185 Rome, Italy; cFaculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; dCenter for Desert Agriculture, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; and eInstituto Botánico, Facultad de Farmacia, Universidad de Castilla–La Mancha, 02071 Albacete, Spain Edited by Rodney B. Croteau, Washington State University, Pullman, WA, and approved July 3, 2014 (received for review March 16, 2014) Crocus sativus stigmas are the source of the saffron spice and responsible for the synthesis of crocins have been characterized accumulate the apocarotenoids crocetin, crocins, picrocrocin, and in saffron and in Gardenia (5, 6). safranal, responsible for its color, taste, and aroma. Through deep Plant CCDs can be classified in five subfamilies according to transcriptome sequencing, we identified a novel dioxygenase, ca- the cleavage position and/or their substrate preference: CCD1, rotenoid cleavage dioxygenase 2 (CCD2), expressed early during CCD4, CCD7, CCD8, and nine-cis-epoxy-carotenoid dioxygen- stigma development and closely related to, but distinct from, the ases (NCEDs) (7–9). NCEDs solely cleave the 11,12 double CCD1 dioxygenase family. CCD2 is the only identified member of bond of 9-cis-epoxycarotenoids to produce the ABA precursor a novel CCD clade, presents the structural features of a bona fide xanthoxin.
    [Show full text]
  • Natural Colour Book
    THE COLOUR BOOK Sensient Food Colors Europe INDEX NATURAL COLOURS AND COLOURING FOODS INDEX 46 Lycopene 4 We Brighten Your World 47 Antho Blends – Pink Shade 6 Naturally Different 48 Red Cabbage 8 The Colour of Innovation 49 Beetroot – with reduced bluish tone 10 Natural Colours, Colouring Foods 50 Beetroot 11 Cardea™, Pure-S™ 51 Black Carrot 12 YELLOW 52 Grape 14 Colourful Impulses 53 Enocianin 15 Carthamus 54 Red Blends 16 Curcumin 56 VIOLET & BLUE 17 Riboflavin 59 Violet Blends 18 Lutein 61 Spirulina 19 Carrot 62 GREEN 20 Natural Carotene 65 Green Blends 22 Beta-Carotene 66 Copper-Chlorophyllin 24 Annatto 67 Copper-Chlorophyll 25 Yellow/ Orange Blends 68 Chlorophyll/-in 26 ORANGE 69 Spinach 29 Natural Carotene 70 BROWN 30 Paprika Extract 73 Burnt Sugar 32 Carrot 74 Apple 33 Apocarotenal 75 Caramel 34 Carminic Acid 76 BLACK & WHITE 35 Beta-Carotene 79 Vegetable Carbon 36 RED 80 Titanium Dioxide 39 Antho Blends – Strawberry Shade 81 Natural White 40 Aronia 41 Elderberry 83 Regulatory Information 42 Black Carrot 84 Disclaimer 43 Hibiscus 85 Contact Address 44 Carmine 3 INDEX NATURAL COLOURS AND COLOURING FOODS WE BRIGHTEN YOUR WORLD Sensient is as colourful as the world around us. Whatever you are looking for, across the whole spectrum of colour use, we can deliver colouring solutions to best meet your needs in your market. Operating in the global market place for over 100 years Sensient both promises and delivers proven international experience, expertise and capabilities in product development, supply chain management, manufacture, quality management and application excellence of innovative colours for food and beverages.
    [Show full text]
  • Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Seeds from Apple Cultivars (Malus Domestica Borkh.) Grown in Norway
    foods Article Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Seeds from Apple Cultivars (Malus domestica Borkh.) Grown in Norway Milica Fotiri´cAkši´c 1, Kristina Lazarevi´c 2, Sandra Šegan 3 , Maja Nati´c 4 , Tomislav Tosti 4 , Ivanka Ciri´c´ 5 and Mekjell Meland 6,* 1 Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; [email protected] 2 Centre for Food Analysis, 11080 Belgrade, Serbia; [email protected] 3 Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; [email protected] 4 Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; [email protected] (M.N.); [email protected] (T.T.) 5 Innovation Centre of Faculty of Chemistry Ltd., 11000 Belgrade, Serbia; [email protected] 6 Norwegian Institute of Bioeconomy Research, NIBIO Ullensvang, Ullensvangvegen 1003, N-5781 Lofthus, Norway * Correspondence: [email protected] Abstract: Apple production generates large amounts of apple pomace including seeds, leading to high transportation costs, public health hazards and undesirable odor. A new reuse strategy of this kind of waste could solve environmental issues and/or create unconventional sources of health Citation: Akši´c,M.F.; Lazarevi´c,K.; beneficial products. In total, seeds from 75 apple cultivars grown in Norway (both domestic and Šegan, S.; Nati´c,M.; Tosti, T.; Ciri´c,I.;´ international) have been analyzed for the first time for oil content and fatty acid profile together with Meland, M. Assessing the Fatty Acid, tocopherols and carotenoids quantification in defatted seeds. Seeds from cultivar Håkonseple had Carotenoid, and Tocopherol the highest oil content (22.10%), with linoleic, oleic acid, and palmitic acid as the most abundant Compositions of Seeds from Apple β α Cultivars (Malus domestica Borkh.) fatty acids.
    [Show full text]
  • Β-Carotene Content of Some Commonly Consumed Vegetables
    ition & F tr oo u d N f S o c Pritwani and Mathur, J Nutr Food Sci 2017, 7:5 l i e a n n r c DOI: 10.4172/2155-9600.1000625 e u s o J Journal of Nutrition & Food Sciences ISSN: 2155-9600 Research Article Open Access β-carotene Content of Some Commonly Consumed Vegetables and Fruits Available in Delhi, India Richa Pritwani* and Pulkit Mathur Department of Food and Nutrition, Lady Irwin College, University of Delhi, New Delhi, 110001, India Abstract Most of the vitamin A in the diet comes from plant food sources in developing countries. This study was designed with an objective of determining β-carotene content of a total of 26 types of green leafy vegetables, tubers, other vegetables and fruits obtained from four wholesale markets in Delhi, India using HPLC. There was a wide variation in β-carotene content of green leafy vegetables, with means ranging from 2199 µg/100 g in Basella rubra to 7753 µg/100 g in Amaranthus gangeticus. A large variation was observed in β-carotene content of fruits and the mango varieties tested, ranging from undetectable levels in strawberry and 808.60 µg/100 g in totapuri mango up to 11789 µg/100 g in alphonso mango. Approximately 65 g and 100 g of a green leafy vegetable would meet daily requirement of a preschooler and older child/adult respectively. Mango has considerable amount of β-carotene, and consuming a medium-sized bowl by preschool children would meet 99% of Recommended Dietary Allowances (RDA). The information generated is useful in identifying types of fruits and vegetables with higher concentration of the provitamin A in low income economies where fruits and vegetables are expensive.
    [Show full text]
  • Lycopene and Beta-Carotene Induce Cell-Cycle Arrest and Apoptosis in Human Breast Cancer Cell Lines
    ANTICANCER RESEARCH 34: 1377-1386 (2014) Lycopene and Beta-carotene Induce Cell-Cycle Arrest and Apoptosis in Human Breast Cancer Cell Lines NATHALIE FONSECA GLORIA1, NATHALIA SOARES2, CAMILA BRAND2, FELIPE LEITE OLIVEIRA2, RADOVAN BOROJEVIC3 and ANDERSON JUNGER TEODORO1 1Laboratory of Nutritional Biochemistry, Program of Food and Nutrition, UNIRIO, Rio de Janeiro, Brazil; 2Laboratory of Cell Proliferation and Differentiation, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; 3Excellion Biomedical Services, Petrópolis, Rio de Janeiro, Brazil Abstract. Lycopene and beta-carotene are carotenoids Breast cancer is the most frequently diagnosed type of widely distributed in fruits and vegetables, with potential cancer globally (1), and is a complex disease caused by anticancer activity. Epidemiological trials rarely provide progressive genetic mutations, associated with other factors. evidence for the mechanisms of action of these compounds, The increased incidence of breast cancer follows the and their biological effects at different times of treatment are behavioral changes of urbanization, such as a sedentary still unclear. The aim of the present study was to determine lifestyle, excess of processed food in the diet, overweight the effect of carotenoids on the cell cycle and cell viability and obesity (2, 3). in human breast cancer cell lines. Human breast cell lines Diets enriched in fruits and vegetables are associated with were treated with carotenoids (0.5-10 μM) for 48 and 96 h. reduced rates of cancer and coronary heart disease. Bioactive Cell viability was monitored using the MTT method (3-[4,5- compounds present in the diet have been reported as dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide; substances responsible for these effects.
    [Show full text]
  • Conversion of Dietary Carotenoids and Vitamin a Into Bioactive Retinoids
    24 CONVERSION OF DIETARY CAROTENOIDS AND VITAMIN A INTO BIOACTIVE RETINOIDS Conversion of Dietary Carotenoids and Vitamin A into Bioactive Retinoids: Exploring trails blazed by Jim Olson James Allen Olson Memorial Lecture Earl H Harrison fects millions of children and women in the developing world. Ohio State University, Columbus, USA The widespread morbidity and mortality associated with the deficiency reflects the fact that the active forms of vitamin A (retinoids) are critical signaling molecules necessary in higher vertebrates for embryonic development, the regulation of gene transcription, visual transduction, immune function, and the control of metabolic processes. In spite of their importance in vertebrate development and physiology, the capability for the biosynthesis of molecules with retinoid activities is restricted to plants and microorganisms. Thus, animals, including humans, must obtain the essential vitamin A from the diet. Vitamin A ac- tivity in the diet comes from two sources: preformed vitamin A as retinyl esters in foods of animal origin, and provitamin A ca- rotenoids, such as β-carotene, α-carotene, and β-cryptoxanthin, found in plant-derived foods. Indeed, in areas of the world with vitamin A deficiency, the major source of vitamin A is dietary carotenoids. While the chemical and nutritional relationships of provita- min A carotenoids and vitamin A were appreciated by the 1930s it was in the last half of the 20th century that great advances in our understanding of metabolism, function, and public health significance of carotenoids and vitamin A led us to our current state of knowledge in these fields. While these advances were James Allen Olson the results of the efforts of many basic scientists, clinicians, and public health experts, James Allen Olson stands out as one of the giants in the fields of vitamin A and carotenoids.
    [Show full text]
  • Carotenoids Support Normal Embryonic Development During Vitamin A
    www.nature.com/scientificreports OPEN β-apo-10′-carotenoids support normal embryonic development during vitamin A defciency Received: 29 December 2017 Elizabeth Spiegler1, Youn-Kyung Kim1, Beatrice Hoyos2, Sureshbabu Narayanasamy3,4, Accepted: 24 May 2018 Hongfeng Jiang5, Nicole Savio1, Robert W. Curley Jr.3, Earl H. Harrison4, Ulrich Hammerling1,2 Published: xx xx xxxx & Loredana Quadro 1 Vitamin A defciency is still a public health concern afecting millions of pregnant women and children. Retinoic acid, the active form of vitamin A, is critical for proper mammalian embryonic development. Embryos can generate retinoic acid from maternal circulating β-carotene upon oxidation of retinaldehyde produced via the symmetric cleavage enzyme β-carotene 15,15′-oxygenase (BCO1). Another cleavage enzyme, β-carotene 9′,10′-oxygenase (BCO2), asymmetrically cleaves β-carotene in adult tissues to prevent its mitochondrial toxicity, generating β-apo-10′-carotenal, which can be converted to retinoids (vitamin A and its metabolites) by BCO1. However, the role of BCO2 during mammalian embryogenesis is unknown. We found that mice lacking BCO2 on a vitamin A defciency-susceptible genetic background (Rbp4−/−) generated severely malformed vitamin A-defcient embryos. Maternal β-carotene supplementation impaired fertility and did not restore normal embryonic development in the Bco2−/−Rbp4−/− mice, despite the expression of BCO1. These data demonstrate that BCO2 prevents β-carotene toxicity during embryogenesis under severe vitamin A defciency. In contrast, β-apo-10′-carotenal dose-dependently restored normal embryonic development in Bco2−/−Rbp4−/− but not Bco1−/−Bco2−/−Rbp4−/− mice, suggesting that β-apo-10′-carotenal facilitates embryogenesis as a substrate for BCO1-catalyzed retinoid formation.
    [Show full text]