Cartographic Perspectives Number 9, Spring 1991

Total Page:16

File Type:pdf, Size:1020Kb

Cartographic Perspectives Number 9, Spring 1991 24 cartographic perspectives Number 9, Spring 1991 Taylor, D.R.F. (editor) (1991). reenchantment with formalism global positioning systems, Geographic Information Systems: and positivism - a result of the photogrammetry, remote sensing, Tlte Microcomputer and Modern current technological focus in the digitizing, and the various digital Cartograplty (Modern Cartogra­ field - and sees such an approach data storage media. While pro­ phy, Volume One). Pergamon as 'sterile and limiting.' This viding a valuable review of the Press, 251 pp. ISBN 0-08-040277-1 technological focus does not, aforementioned topics, the chapter (Softcover $39) ISB 0-08-040278-X Taylor argues, hold much promise is marred by its strict focus on (Hardcover $100) as a future for cartography. physical geographical data; Reviewed by john B. Krygier, Instead, Taylor suggests, we need cartography and GIS are not only Penn State to concoct anew a 'cartographic tools for physical geographers. theory.' Citing the work of Brian Chapter three, by David Coll, The preface of Geographic Informa­ Harley, who has urged sensitivity Developments in equipment and tion Systems: The Microcomputer and to the social context within which techniques: Microcomputer Modern Cartography succinctly maps and cartography and cartog­ graphics environments reviews explains the book's intent: to raphers are inextricably nestled, general microcomputer graphics consider the impact of the micro­ and Theodore Roszak, who has principles and the current status of computer and Geographical forcefully argued against the "cult graphics hardware and software. Information Systems on cartogra­ of information" and for a focus on While comprehensive for what it phy. In a surficial way the empha­ "relevance, coherence, and in­ does cover, the chapter is limited sis of this volume is GIS. The title sight," Taylor urges a new focus by its focus on DOS-based graphic proclaims it in brash letters; the on three concepts: cognition, environments. The chapter could Library of Congress subject communication, and visualization. have been improved by the classification is under 'Geographic We do not know enough, Taylor thinning out of some of the DOS Information Systems' (no mention argues, about the cognition of details and the addition of infor­ is made of cartography); and 'GIS' maps. The glut of data which is mation on alternative graphics is referred to countless times in the piling up all around us is useless environments. The following twelve chapters in the book. Yet unless we can find ways to expand chapter by Bengt Rystedt, The this is not a book about GIS. Or is understanding with it. Under­ cartographic workstation adds to it? This quandary is touched on in standing does not just "emerge" Coll's discussion by briefly ex­ the introductory essay by D. R. from heaps of data. A renewed panding upon the notion of the Fraser Taylor, the editor of the focus on how to communicate the microcomputer workstation in book. Is GIS part of cartography, information we have is also cartography. or is cartography part of GIS, or important. New products, new Chapter five, by Donna Peuquet, are they somehow separate? The displays, and new forms of geo­ Methods for structuring digital quandary is left unresolved, and graphic information presentation cartographic data in a personal the book, while providing some must be established and we must computer environment is an excellent reviews of the current seek to understand how people adaptation of an article published status of various areas of cartogra­ communicate with and work with in Cartographica (21:4, pp. 66-113). phy, is a reflection of a discipline such media. Visualization, which Basic concepts and definitions, that is itself a bit confused about involves high technology linked to cartographic data models, the exactly what it is and where it is issues of communication and nature of cartographic data, and going. cognition, is, argues Taylor, a basic cartographic data models are Taylor, in the volume's engaging fertile meeting ground for all discussed. introductory essay, makes the case aspects of cartography. In the Chapter six, by C. Peter Keller for re-examining and redefining end, Taylor concludes, cartogra­ and Nigel Waters, Mapping the nature of the discipline of phy will be judged by the value software for microcomputers cartography. In the process he society attaches to the products it provides a relatively comprehen­ manages to touch on many of the produces. These products must be sive review of software of interest current questions which have been intriguing, imaginative, useful, to cartographers. Software is raised regarding the impact of the and interesting - these, Taylor grouped into nine categories: microcomputer and GIS, as well as argues, are human and not techno­ paint, CAD, thematic mapping, some broader foundational logical problems. GIS, image analysis, locational debates. Taylor's opinion about Chapter two, by Y.C. Lee, analysis/ electronic atlases, projec­ GIS and cartography is clear: GIS Cartographic data capture and tion packages, application soft­ is a technique, cartography is a storage provides a review of the ware, and digital charting. Each discipline. Taylor laments the current status of total stations, category of software is described Number 9, Spring 1991 cartographic perspectives 25 and examples noted; an eleven provides an interesting discussion experiment with Hypercard, page table summarizes several of the myriad of technical, politi­ details two projects the authors hundred software packages, cal, and human problems sur­ undertook using the HyperCard available reviews, cost, and rounding the creation (or lack of software environment. The company. Notable exceptions creation) of digital data standards. authors argue (as Taylor and from the categorization scheme While many problems are evident, Slocum and Egbert in their respec­ include graphic design software Evangelatos is optimistic that tive chapters also argued) that and multimedia software. agreement on standards will come there must be more effort put into Chapter seven, by Barbara in the not so distant future. He devising new methods of commu­ Buttenfield and David Mark, assumes that a true "spatial nicating geographic information. Expert systems in cartographic science" is emerging and solidify­ The notion of hypertext, the 'non­ design, provides a status report on ing and that this will provide sequential disposition of informa­ what we know about expert "good standards." tion' is seen as a way to enhance systems in the production of Chapter nine, by Terry Slocum multiple associations between locational and navigational maps. and Stephen Egbert, Cartographic different pieces of information. A Other types of maps are excluded, data display, provides a review of fine line between unstructured and since the rules structuring these developments in cartographic structured information must be maps have "seldom been ad­ display hardware and software, maintained, giving the user dressed in the literature" and are, and reviews new techniques in maximum freedom of navigation well, not easy to figure out: static, interactive, and animated while not allowing them to get "where formalized descriptions of mapping. The chapter notes mired down and lost. The integra­ rules are not common, alternative several important developments tion of maps, graphs, pictures and approaches may substitute for, or including the continuing develop­ text as well as links to digital data perhaps augment the expert ment of software packages which bases and video disks is discussed. systems approach." With that out allow non-programmers to con­ While the details and subtleties of of the way, a useful review of struct complex cartographic HyperCard programming and expert systems terms and defini­ representations and the increasing project construction are not detail­ tions is provided along with a emphasis on developing new ed, the chapter provides a solid detailed description of progress on cartographic display and analysis introduction to the possibilities of and potential for expert systems in methods (as opposed to just HyperCard and related hypertext cartography. The application areas attempting to replicate traditional software for cartography. include generalization: simplifica­ cartographic techniques). Devel­ Chapter eleven, by Hinrich tion (reduction, selection, reposi­ opments in static maps (univariate Claussen, Vehicle navigation tion), classification (aggregation, and bivariate choropleth maps, systems, details progress to date partition, overlay), enhancement continuous data maps, 3D maps), on vehicle navigation, route (interpolation, smoothing, gener­ interactive mapping (interactive planning, and associated software alization), symbolization (encod­ choropleth maps, interactive and hardware. ing strategy, conceptual con­ multimedia systems, electronic The final chapter, by Jean­ straints, situational constraints), atlases), and animated mapping Philippe Grelot, Cartographers and production (plotting, layout, (3D maps, spatio-temporal repre­ and microcomputers, concludes displacement, label placement, and sentations, vehicular navigation the book with a discussion of the visual contrast). The chapter systems, and visualization) are impact of technology on cartogra­ provides a proposal of where work reviewed. The chapter concludes phy, on the shift to the "image-less needs to be done and where there with comments on the implications map," the recomposition of is potential for progress
Recommended publications
  • Visualizing Change: Using Cartographic Animation to Explore Remotely-Sensed Data
    30 cartographic perspectives Number 39, Spring 2001 Visualizing Change: Using Cartographic Animation to Explore Remotely-Sensed Data Mark Harrower This research describes a geovisualization tool that is designed to facilitate exploration of satellite time-series data. Current change-detec- Department of Geography tion techniques are insufficient for the task of representing the complex & GeoVISTA Center behaviors and motions of geographic processes because they empha- size the outcomes of change rather than depict the process of change The Pennsylvania State itself. Cartographic animation of satellite data is proposed as a means University of visually summarizing the complex behaviors of geographic entities. 302 Walker Building Animation provides a means for better understanding the complexity of geographic change because it can represent both the state of a geograph- University Park, PA 16802 ic system at a given time (i.e. its space-time structure) and the behavior [email protected] of that system over time (i.e. trends). However, a simple animation of satellite time-series data is often insufficient for this task because it overwhelms the viewer with irrelevant detail or presents data at an inappropriate temporal and spatial resolution. To solve this problem, dynamic temporal and spatial aggregation tools are implemented with the geovisualization system to allow analysts to change the resolution of their data on the fly. These tools provide (1) a means of detecting structures or trends that may be exhibited only at certain scales and (2) a method for smoothing or filtering unwanted noise from the satellite data. This research is grounded in a delineation of the nature of change, and proposes a framework of four kinds of geographic change: location, size/extent, attribute and existence.
    [Show full text]
  • UC Santa Barbara NCGIA Technical Reports
    UC Santa Barbara NCGIA Technical Reports Title A Cartographic Animation of Average Yearly Surface Temperatures for the 48 Contiguous United States: 1897-1986 (91-3) Permalink https://escholarship.org/uc/item/0m8154gr Author Weber, Christopher R. Publication Date 1991 eScholarship.org Powered by the California Digital Library University of California National Center for Geographic Information and Analysis A Cartographic Animation of Average Yearly Surface Temperatures for the 48 Contiguous United States: 1897-1986 By: Christopher R. Weber State University of New York at Buffalo Technical Report 91-3 January 1991 Simonett Center for Spatial Analysis State University of New York University of Maine University of California 301 Wilkeson Quad, Box 610023 348 Boardman Hall 35 10 Phelps Hall Buffalo NY 14261-0001 Orono ME 04469-5711 Santa Barbara, CA 93106-4060 Office (716) 645-2545 Office (207) 581-2149 Office (805) 893-8224 Fax (716) 645-5957 Fax (207) 581-2206 Fax (805) 893-8617 [email protected] [email protected] [email protected] ACKNOWLEDGEMENT This project represents part of Research Initiatives #7, "Visualization of the Quality of Spatial Information", and #10, "Temporal Relations in GIS ", of the National Center for Geographic Information and Analysis, supported by a grant from the National Science Foundation (SES88-10917); support by NSF is gratefully acknowledged. ABSTRACT Animation is an important method of communicating information that lends itself to cartographic display. Exploration of this medium resides at the forefront of cartographic research. The purpose of this project has been to develop a viable cartographic animation process employing hardware and software currently available in the Geographic Information and Analysis Laboratory (GIAL) at the Department of Geography, State University of New York at Buffalo.
    [Show full text]
  • Webservices for Animated Mapping: the Timemapper Prototype
    Chapter 14 Webservices for Animated Mapping: The TimeMapper Prototype Barend Kobben,€ Timothe´e Becker, and Connie Blok Abstract Within a larger aim of improving automated vector animated mapping, the main objective of this research was to look into the possibility of combining two technologies: distributed webservices and animated, interactive vector maps. TimeMapper was developed as a prototype for an OGC-compliant Web Map Service implementation that serializes spatio–temporal data from a database backend as Scalable Vector Graphics. The SVG is used in a web browser to show animated maps with a built-in advanced user-interface. This interface allows the user to interact with both the spatial and the temporal dimensions of the data. The potential and limitations of the TimeMapper prototype were explored using Antarctic iceberg movement data. The prototype can be explored on the TimeMapper website (http://geoserver.itc.nl/timemapper/). 14.1 Introduction The motivation for building the TimeMapper prototype was the improvement of automated animated vector mapping. We are interested in animation, because interactive animated mapping has been pointed out, by Andrienko et al., (2003) among others, as the only technique to be generically applicable to visually analyze the dynamic nature of real world phenomena. We want to facilitate the production of animated maps from spatio–temporal data to a format suitable for Internet dissemination, automatically and directly.To achieve that, we looked specifically into the possibilities of the loose coupling of distributed webservices with animated, interactive vector maps. B. Kobben€ (*) Faculty of Geo-Information Science and Earth Observation, ITC – University of Twente, Enschede, The Netherlands e-mail: [email protected] M.P.
    [Show full text]
  • From GIS Data Sets to Cartographic Presentation
    Geographic Information Technology Training Alliance (GITTA) presents: From GIS data sets to Cartographic Presentation Responsible persons: Boris Stern, Helmut Flitter, Lorenz Hurni, Samuel Wiesmann From GIS data sets to Cartographic Presentation Table Of Content 1. From GIS data sets to Cartographic Presentation ................................................................................... 2 1.1. Map Presentation of GIS datasets .................................................................................................... 3 1.1.1. Map Creation from GIS datasets within GIS ............................................................................ 3 1.1.2. Map Layout settings with GIS datasets within GIS .................................................................. 4 1.1.3. Map Output with GIS datasets within GIS ............................................................................... 5 1.1.4. Map Creation with GIS datasets within CAC software ............................................................ 6 1.1.5. Map Presentation with GIS datasets within CAC software ....................................................... 7 1.1.6. Map Layout settings with GIS datasets within CAC software .................................................. 8 1.1.7. Summary .................................................................................................................................... 8 1.2. Solutions for Digital Mapping .........................................................................................................
    [Show full text]
  • Cartographic Redundancy in Reducing Change Blindness in Detecting Extreme Values in Spatio-Temporal Maps
    International Journal of Geo-Information Article Cartographic Redundancy in Reducing Change Blindness in Detecting Extreme Values in Spatio-Temporal Maps Paweł Cybulski * ID and Beata Medy ´nska-Gulij Department of Cartography & Geomatics, Faculty of Geographic and Geological Sciences, Adam Mickiewicz University, Krygowskiego 10, 61-680 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-61-829-6307 Received: 23 November 2017; Accepted: 28 December 2017; Published: 1 January 2018 Abstract: The article investigates the possibility of using cartographic redundancy to reduce the change blindness effect on spatio-temporal maps. Unlike in the case of previous research, the authors take a look at various methods of cartographic presentation and modify the visual variables in order to see how those modifications affect the user’s perception of changes on spatio-temporal maps. The study described in the following article was the first attempt at minimizing the change blindness phenomenon by manipulating graphical parameters of cartographic visualization and using various quantitative mapping methods. Research shows that cartographic redundancy is not enough to completely resolve the problem of change blindness; however, it might help reduce it. Keywords: animated map; cartography; change blindness; user testing; visual perception 1. Introduction Cartographic animation makes it possible to present spatial and temporal changes simultaneously. Even though technological progress has moved animated maps into the realm of the Internet and enabled users to view them in an interactive fashion, their perception is still problematic. As aptly noticed by [1], the problem with animated map perception is not caused by the technology itself, but rather by the limited perceptual capabilities of the user.
    [Show full text]
  • Cartographic Challenges in Animated Mapping Carolyn S
    Cartographic Challenges in Animated Mapping Carolyn S. Fish Department of Geography The Pennsylvania State University University Park, PA, USA [email protected] ABSTRACT For example, if a cartographer chooses to animate traffic in Animated maps are becoming more prevalent today. They a city over the course of the day, many of the changes are found across the web on social media and traditional within the visual display will occur during a small amount media sites. With technological changes, how these maps of time, rush hour, and will probably be concentrated within are developed and viewed has changed for both the the city center and on freeways, while very little will designer and the map reader, with new tools available to the change during the middle of the night and might be limited designer and a endless amount of new devices available to to local roads. Some have mentioned adjusting the rate of the user. However, there are still many questions to be change within an animation [5], however, there are answered about how to design map animations with the potential cognitive issues associated with removing the user in mind as well as how to deal with the ever-changing congruence to the real world phenomena. state of technology. This position paper outlines a few of the challenges in cartographic research on map animation. • Are there better ways to visualize our data through animation that limits the problems caused by the Author Keywords inherent nature of spatio-temporal data? Animation, Map, Research Challenges, Cartography, Change Blindness, Cognition, Cognitive Limits CHANGING TECHNOLOGY OF ANIMATED MAPS Much research has surrounded the issues of human INTRODUCTION cognition and animated maps.
    [Show full text]
  • R • ...- /} Bulletin of the (I , -\•· ''"'\
    ,, / I I ~ ' ,f ( \ \. \ • I / \ I -.;..;,r • ...- /} bulletin of the (I , -\•· ''"'\. 8 \ ~...J.. a tographic InJOrmatioll So ~yJ "' I ~ I i. ~ ·,· Number 23, Wintet 1996 ,. ~ ' -r- , J • I '--.,t ~ ! -...) r ~....... ~·· ') '-........_ ·""--. -· . ,..,... ...... ...... .. · ~~ .._;.~ , , sk~Jets - ·, I I \ 4 4'..': 9~'-v . I 4.__J~ •• ... ' ", •; , I \ '~' , ........_ , in this issue messages MESSAGES 1 FEATURED ARTICLES MESSAGE FROM THE Edge pixels: the effect of scanning resolution 3 NACIS PRESIDENT on color reproduction Living in Wisconsin always affords P. Andrew Ray one the opportunity to experience The production of smooth scale changes in an 12 and appreciate the change in animated map project climatic seasons. The progression Martin i>o11 Wyss is natural and symbolic of the cycles that we all encounter during CARTOGRAPHY BULLETIN BOARD 21 our lifetime. An organization GIS, image processi11g, and microcomputer laboratories must also experience cycles of The cartographic section at the University of Western 011tario growth and change, and this year Are yo11 compatible with yo11r printing service bureau? NACIS members will witness several. MAP LIBRARY BULLETIN BOARD 24 First, we will bid adieu to Sona Pe1111 State U11iv. IARL GIS literacy project Andrews as our editor of Carto- graphic Perspectives. Over the last REVIEWS several years she has provided Map projections: a reference manual 25 meritorious service to our organi- reviewed by C. Peter Keller zation that will be very difficult to replace. Her imagination, tireless The AGI source book for GIS 26 devotion, and intense desire to reviewed by feff Torguso11 improve our journal will be sorely A new social atlas of Britain 28 missed by all cartographic profes- reviewed by He11ry W.
    [Show full text]
  • Spatio-Temporal Visualisation and Data Exploration of Traditional Ecological Knowledge/Indigenous Knowledge
    [Downloaded free from http://www.conservationandsociety.org on Wednesday, February 13, 2019, IP: 138.246.2.184] Conservation and Society 15(1): 41-58, 2017 Article Spatio-temporal Visualisation and Data Exploration of Traditional Ecological Knowledge/Indigenous Knowledge Kierin Mackenziea,#, Willington Siabatob, Femke Reitsmaa, and Christophe Claramuntc aDepartment of Geography, University of Canterbury, Christchurch, New Zealand bDepartment of Geography, Universidad NACIONAL de Colombia, Bogotá D.C., Colombia cNaval Academy Research Institute, Brest, France #Corresponding author. E-mail: [email protected] Abstract Traditional Ecological Knowledge (TEK) has been at the centre of mapping efforts for decades. Indigenous knowledge (IK) is a critical subset of TEK, and Indigenous peoples utilise a wide variety of techniques for keeping track of time. Although techniques for mapping and visualising the temporal aspects of TEK/IK have been utilised, the spatio-temporal dimensions of TEK are not well explored visually outside of seasonal data and narrative approaches. Existing spatio-temporal models can add new visualisation approaches for TEK but are limited by ontological constraints regarding time, particularly the poor support for multi-cyclical data and localised timing. For TEK to be well represented, flexible systems are needed for modelling and mapping time that correspond well with traditional conceptions of time and space being supported. These approaches can take cues from previous spatio-temporal visualisation work in the Geographic(al) Information System(s)/Science(s) GIS community, and from temporal depictions extant in existing cultural traditions. Keywords: Visualisation, spatio-temporal data, traditional ecological knowledge (TEK), indigenous knowledge (IK), cyclical time, data exploration INTRODUCTION the overlap between these two bodies of literature is scant.
    [Show full text]
  • National Center for Geographic Information and Analysis A
    National Center for Geographic Information and Analysis A Cartographic Animation of Average Yearly Surface Temperatures for the 48 Contiguous United States: 1897-1986 By: Christopher R. Weber State University of New York at Buffalo Technical Report 91-3 January 1991 Simonett Center for Spatial Analysis State University of New York University of Maine University of California 301 Wilkeson Quad, Box 610023 348 Boardman Hall 35 10 Phelps Hall Buffalo NY 14261-0001 Orono ME 04469-5711 Santa Barbara, CA 93106-4060 Office (716) 645-2545 Office (207) 581-2149 Office (805) 893-8224 Fax (716) 645-5957 Fax (207) 581-2206 Fax (805) 893-8617 [email protected] [email protected] [email protected] ACKNOWLEDGEMENT This project represents part of Research Initiatives #7, "Visualization of the Quality of Spatial Information", and #10, "Temporal Relations in GIS ", of the National Center for Geographic Information and Analysis, supported by a grant from the National Science Foundation (SES88-10917); support by NSF is gratefully acknowledged. ABSTRACT Animation is an important method of communicating information that lends itself to cartographic display. Exploration of this medium resides at the forefront of cartographic research. The purpose of this project has been to develop a viable cartographic animation process employing hardware and software currently available in the Geographic Information and Analysis Laboratory (GIAL) at the Department of Geography, State University of New York at Buffalo. Successful utilization of the process has produced an animation that displays the spatial distribution of average yearly surface temperatures across the U.S. for the 90 year period, 1897 through 1986.
    [Show full text]
  • From Cartographic Animation to Interactive Visualization Daniel Dorling
    Stretching Space and Splicing Time: From Cartographic Animation to Interactive Visualization Daniel Dorling ABSTRACT. Animation and cartography present very dfierent traditions to combine. This paper offers some ideas about the directions such a combination might take and presents a series of cartographic animation and visualization case studies involving several unusual representations. These examples range from the interactive exploration of high-resolution, two-dimensional images, to the use of animation in understanding temporal challge and three-dimensional strucfure. Some of the conventional wisdom about the appropriate softzuare applications and visual representations to use is questioned. Exploratory analysis, presenting facts to an interested audience and creating a dramatic image, are seen as distinct tasks, requiring distinctly di&ent animation methods. Introduction raphy" (Cornwell and Robinson 1966, 82). We have had time to reflect on such ambitious claims to see what actually "Perhaps one day high-resolution computer visualizations, which can be achieved and what has turned out to be most useful. combine slightly abstracted representations along with dynamic Now is the time to question how appropriate animation is, and animated flatland, will lighten the laborious complexity of to see how many dimensions we can cope with. encodings-and yet still capture some worthwhile part of the sub- During recent decades, experiments with animation in tlety of the human itinerary" flufte 1990, 119). cartography have moved from film (Boggs 1947) to video artographic animation is a strange concept. To ani- and then to personal computer graphics (Gersmehl 1990). mate means to create the illusion of movement. This has not been a simple progression; each change in C Throughout history, cartographers have sought to media has offered different technical possibilities and a new freeze time on paper and developed very effective static audience.
    [Show full text]
  • Teaching Map Skills To
    GEOGRAPHY FOR PRIMARY TEACHING MAP SKILLS TO Planning for pupil progress from 5- 11 years: the national curriculum and Ordnance Survey (OS) maps Dr. Paula Owens 2021 2 GEOGRAPHY FOR PRIMARY ‘A high-quality geography education should inspire in pupils a curiosity and fascination about the world and its people that will remain with them for the rest of their lives.’ National Curriculum Geography Programme of Study (England) CONTENTS 3 Contents Using Ordnance Survey maps 5 1 What are you trying to achieve? 10 The Ofsted education inspection framework 12 Pupils and maps 14 2 How will you organise learning? 18 Considerations for progression across primary 22 KS1 Planner focusing on progression in map skills 23 Pedagogical approaches to teaching 30 Enquiry and conceptual understanding 31 Some mapping ideas for early years 34 3 How well are you achieving your aims? 35 Useful pages 36 Sources 37 4 GEOGRAPHY FOR PRIMARY Geography for primary The national curriculum for geography (DfE 2013) is an essential starting point for planning effective, challenging and coherent learning opportunities for pupils. The national curriculum for geography aims to ensure that all pupils: Develop contextual knowledge of the location of globally significant places · Both terrestrial and marine · Including their defining physical and human characteristics and how these provide a geographical context for understanding the actions of processes Understand the processes that give rise to key physical and human geographical features of the world, how these are interdependent
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Geography EXPLICITLY REPRESENTING GEOGRAPHIC CHANGE IN MAP ANIMATIONS WITH BIVARIATE SYMBOLIZATION A Thesis in Geography by M. Thomas A. Auer 2009 M. Thomas A. Auer Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2009 ii The thesis of M. Thomas A. Auer was reviewed and approved* by the following: Alan M. MacEachren Professor of Geography Thesis Advisor Cynthia A. Brewer Professor of Geography Karl Zimmerer Professor of Geography Head of the Department of Geography *Signatures are on file in the Graduate School iii ABSTRACT Animated maps provide an intuitive method for representing univariate time-series data, but often fail in presenting additional relevant information saliently, making recognition of certain patterns difficult. Using a second visual variable in animations to represent the magnitude of change between time states has been suggested as an effective method for enabling users to more easily recognize patterns of change in a geographic time-series. This work seeks to answer the question: Does explicitly representing geographic change in animated maps enable users to answer questions about patterns of change easily? To address this research question, bivariate symbols (with both the value of the data and the magnitude of change between time frames represented) were created and tested. Selective attention theory (SAT) was used in selecting bivariate symbol types (separable and integral). Domain analysis with experts from the Avian Knowledge Network (AKN) was performed to determine appropriate map reading tasks for use in task-based experiments using AKN data. Combined with existing task typologies, material from the domain analysis helped form a new task typology of movement patterns found in aggregated spatiotemporal point data.
    [Show full text]