Eclipse Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Dwarf Planet Class Object in the 21:5 Resonance with Neptune
A dwarf planet class object in the 21:5 resonance with Neptune Holman, M. J., Payne, M. J., Fraser, W., Lacerda, P., Bannister, M. T., Lackner, M., Chen, Y. T., Lin, H. W., Smith, K. W., Kokotanekova, R., Young, D., Chambers, K., Chastel, S., Denneau, L., Fitzsimmons, A., Flewelling, H., Grav, T., Huber, M., Induni, N., ... Weryk, R. (2018). A dwarf planet class object in the 21:5 resonance with Neptune. Astrophysical Journal Letters, 855(1), [L6]. https://doi.org/10.3847/2041-8213/aaadb3 Published in: Astrophysical Journal Letters Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2018 American Astronomical Society. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. -
PDF Version for Printing
Fermilab Today Thursday, October 27, 2005 Calendar Fermilab Sets Another World Thursday, October 27 Record for Luminosity! Shining a Direct Light on Particle Interactions 11:00 a.m. Theoretical Physics Seminar - The Tevatron had a vast improvement in Curia II peak luminosity. Operators set a new Speaker: G. Paz, Cornell University record this morning at 2:54. The new Title: An Inclusive Look at Charmless record of 158E30 cm-2sec-1 is almost 10 Inclusive B Decays percent larger than the last record of width="220" 3:30 p.m. Director's Coffee Break - 2nd 145E30 cm-2sec-1. Flr X-Over 4:00 p.m. Accelerator Physics and Fermilab Scientists Get Technology Seminar - 1 West Closer To Crystal Collimation In events in which two jets are created, complex physical processes that occur after the violent collision make it difficult to Speaker: D. McGinnis, Fermilab completely interpret all facets of the interaction. (Click on image for larger version.) Title: A 2 Megawatt Multi-Stage Proton Accumulator 5:30 p.m. UTeV Lecture - 1 West Speaker: A. Weinstein, California Institute of Technology jets Title: The Search for Gravitational Waves: Their Nature and Astrophysical Sources Friday, October 28 These are the results of 1 TeV channeled The fact that a photon does not interact after the hard scatter gives unique insight into the underlying (and interesting) high- 1:00 p.m. UTeV Lecture - Curia II energy collision. (Click on image for larger version.) protons with good channeling efficiencies. Speaker: A. Weinstein, California Institute (Click image for larger version.) At the heart of Fermilab's two collider detectors, literally millions of particle collisions occur each second. -
Tali Khain 734-709-8048 • [email protected] University of Chicago, Department of Physics
Tali Khain 734-709-8048 • [email protected] University of Chicago, Department of Physics Education University of Chicago Chicago, IL pursuing PhD in Physics October 2019 - present University of Michigan Ann Arbor, MI B.S. in Honors Physics, Honors Mathematics September 2015 - May 2019 Research Experience University of Michigan Trans-Neptunian Object (TNO) Group June 2015 - July 2019 Advisors: Prof. David Gerdes, Prof. Fred Adams, Dr. Juliette Becker Using numerical N-body simulations, studied orbital dynamics of outer solar system objects discov- ered by the Dark Energy Survey. University of Minnesota Applied Math REU Summer 2018 Advisors: Prof. Arnd Scheel Investigated the effect of pinning in front propagation in a bistable lattice differential equation, in a variety of media (periodic, quasi-periodic, chaotic). WAVE Fellow, California Institute of Technology Summer 2017 Advisors: Prof. Konstantin Batygin, Prof. Mike Brown Using numerical simulations and analytical methods, analyzed the effect of the hypothesized Planet Nine on the dynamics of the distant Kuiper belt. University of Chicago Mathematics REU Apprentice Program Summer 2016 Advisors: Prof. L´aszl´oBabai Took an intensive course on Linear Algebra and its applications to Graph Theory, wrote an expository paper \Fractals and Dimension". Peer Reviewed Publications 10. Khain, T., Becker, J. C., Lin, H.W., et al. \Dynamical Classification of Trans-Neptunian Objects Detected by the Dark Energy Survey", 2019, submitted to Astronomical Journal. 9. Ankney, N., Avery, M., Khain, T., & Scheel, A. \Pinning and Depinning: from periodic to chaotic and random media", 2019, Chaos, 29. 8. Lin, H.W., Gerdes, D. W., et al. including Khain, T., \Evidence for Color Dichotomy in the Primordial Neptunian Trojan Population", 2019, Icarus, 321, 426. -
Trans-Neptunian Space and the Post-Pluto Paradigm
Trans-Neptunian Space and the Post-Pluto Paradigm Alex H. Parker Department of Space Studies Southwest Research Institute Boulder, CO 80302 The Pluto system is an archetype for the multitude of icy dwarf planets and accompanying satellite systems that populate the vast volume of the solar system beyond Neptune. New Horizons’ exploration of Pluto and its five moons gave us a glimpse into the range of properties that their kin may host. Furthermore, the surfaces of Pluto and Charon record eons of bombardment by small trans-Neptunian objects, and by treating them as witness plates we can infer a few key properties of the trans-Neptunian population at sizes far below current direct-detection limits. This chapter summarizes what we have learned from the Pluto system about the origins and properties of the trans-Neptunian populations, the processes that have acted upon those members over the age of the solar system, and the processes likely to remain active today. Included in this summary is an inference of the properties of the size distribution of small trans-Neptunian objects and estimates on the fraction of binary systems present at small sizes. Further, this chapter compares the extant properties of the satellites of trans-Neptunian dwarf planets and their implications for the processes of satellite formation and the early evolution of planetesimals in the outer solar system. Finally, this chapter concludes with a discussion of near-term theoretical, observational, and laboratory efforts that can further ground our understanding of the Pluto system and how its properties can guide future exploration of trans-Neptunian space. -
ALMA Investigates 'Deedee,' a Distant, Dim Member of Our Solar System 12 April 2017
ALMA investigates 'DeeDee,' a distant, dim member of our solar system 12 April 2017 spherical, the criteria necessary for astronomers to consider it a dwarf planet, though it has yet to receive that official designation. "Far beyond Pluto is a region surprisingly rich with planetary bodies. Some are quite small but others have sizes to rival Pluto, and could possibly be much larger," said David Gerdes, a scientist with the University of Michigan and lead author on a paper appearing in the Astrophysical Journal Letters. "Because these objects are so distant and dim, it's incredibly difficult to even detect them, let Artist concept of the planetary body 2014 UZ224, more alone study them in any detail. ALMA, however, informally known as DeeDee. ALMA was able to observe has unique capabilities that enabled us to learn the faint millimeter-wavelength "glow" emitted by the exciting details about these distant worlds." object, confirming it is roughly 635 kilometers across. At this size, DeeDee should have enough mass to be Currently, DeeDee is about 92 astronomical units spherical, the criteria necessary for astronomers to (AU) from the Sun. An astronomical unit is the consider it a dwarf planet, though it has yet to receive average distance from the Earth to the Sun, or that official designation. Credit: Alexandra Angelich (NRAO/AUI/NSF) about 150 million kilometers. At this tremendous distance, it takes DeeDee more than 1,100 years to complete one orbit. Light from DeeDee takes nearly 13 hours to reach Earth. Using the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have revealed Gerdes and his team announced the discovery of extraordinary details about a recently discovered DeeDee in the fall of 2016. -
Nanoscience Research Center Opens
SPECTRUM Nanoscience Research Center Opens FOR the aL umni anD frienDs of the Department of physics & astronomy no. 26 | sprin G 2014 | university of nebraska —LincoLn| anthony f. starace, eDitor from the chair ............ 4 we hear D that ............. 26 Department news ......... 6 acknowLedgments ........ 30 RESEARCH HIGhLiGHTS ... 16 obituaries ................... 32 aLumni news ............... 22 the recorD .................. 35 SPECTRUM he Nebraska Center for established in 2002 with funding from a former chair of the University of Materials and Nanoscience the National Science Foundation. Nebraska Foundation’s Board of (NCMN), directed by George Researchers previously were spread Directors and current board member. Holmes Distinguished across several buildings on campus. They donated $5 million toward the TUniversity Professor David J. Sellmyer, They will continue to maintain offices building. They cited UNL’s established SPECTRUM has been at the forefront of its field in their home departments, but now leadership in nanoscience among | | since its founding in 1988. Now UNL benefit from a shared research area factors playing into their decision, along 3 2 Transmission electron microscope scientists and engineers have state- that enhances collaboration spanning with the field’s reach into their own (TEM) in the Electron Microscopy of-the-art research facilities that will disciplines and departments. backgrounds and interests. Central Facility. enable new discoveries in one of the “This collaborative way of doing In addition to the Voelte-Keegan nation’s highest-priority research areas. research now is much, much more gift, a $7 million competitive federal The new 32,000-square-foot Voelte- powerful,” said David Sellmyer, grant from the National Institute of Keegan Nanoscience Research Center center director and an accomplished Standards and Technology (NIST), and conveniently adjoins Jorgensen Hall, nanoscientist. -
Dark Energy Survey on the OSG
Dark Energy Survey on the OSG Ken Herner OSG All-Hands Meeting 6 Mar 2017 Credit: T. Abbott and NOAO/AURA/NSF The Dark Energy Survey: Introduction • Collaboration of 400 scientists using the Dark Energy Camera (DECam) mounted on the 4m Blanco telescope at CTIO in Chile • Currently in fourth year of 5-year mission • Main program is four probes of dark energy: – Type Ia Supernovae – Baryon Acoustic Oscillations – Galaxy Clusters – Weak Lensing • A number of other projects e.g.: – Trans-Neptunian/ moving objects 2 Presenter | Presentation Title 3/6/17 Recent DES Science Highlights (not exhaustive) • Cosmology from large-scale galaxy clustering and cross- correlation with weak lensing • First DES quad-lensed quasar system • Dwarf planet discovery (second- most distant Trans-Neptunian 4 object) • Optical Follow-up of GW triggers 3 Presenter | Presentation Title 3/6/17 Figure 1. DES gri color composite discovery image (top left), SExtractor segmentation map plotted over the DES i-band coadded image (bottom left), Gemini i-band acquisition image (top right), and the spectroscopic slit layout (bottom right). The central red lensing galaxy is G1, the three blue lensed quasar images are A, B, and D, a fourth red image is G2, and the redMaGiC galaxy is G0. The 5 components (A,B,D,G1,G2) of the system are not fully separated in the DES catalog, with D+G1 and B+G2 remaining blended. lar DES Y1 blue-near-red and related searches, we also nitudes were obtained by cross-matching the DES and see other cases in galaxy group and cluster environments VHS catalogs using a 1.500 search radius. -
The Kuiper Belt: Launch Opportunities from 2025 to 2040
Return to the Kuiper Belt: launch opportunities from 2025 to 2040 Amanda M. Zangari,* Tiffany J. Finley† and S. Alan Stern‡ Southwest Research Institute 1050 Walnut St, Suite 300, Boulder, CO 80302, USA and Mark B. Tapley§ Southwest Research Institute P.O. Drawer 28510 San Antonio, Texas 78228-0510 Nomenclature AU = astronomical unit, average Earth - Sun distance B = impact parameter C3 = excess launch energy ∆V = change in velocity required to alter a spacecraft's trajectory KBO = Kuiper Belt Object PC = plane crossing rp = planet radius rq = distance from a planet at periapse � = gravitational constant * planet mass �! = arrival velocity of a spacecraft � = angle between incoming and outgoing velocity vectors during a swingby * Research Scientist, Space Science and Engineering, [email protected] † Principal Engineer, Space Science and Engineering, AIAA Member, [email protected] † Principal Engineer, Space Science and Engineering, AIAA Member, [email protected] ‡ Associate Vice President-R&D, Space Science and Engineering, AIAA Member, [email protected] § Institute Engineer, Space Science and Engineering, AIAA Senior Member, [email protected] Preliminary spacecraft trajectories for 45 Kuiper Belt Objects (KBOs) and Pluto suitable for launch between 2025 and 2040 are presented. These 46 objects comprise all objects with H magnitude < 4.0 or which have received a name from the International Astronomical Union as of May 2018. Using a custom Lambert solver, trajectories are modeled after the New Horizons mission to Pluto-Charon, which consisted of a fast launch with a Jupiter gravity assist. In addition to searching for Earth-Jupiter-KBO trajectories, Earth-Saturn-KBO trajectories are examined, with the option to add on a flyby to either Uranus or Neptune. -
Astrometry and Occultation Predictions to Trans-Neptunian and Centaur Objects Observed Within the Dark Energy Survey
The Astronomical Journal, 157:120 (15pp), 2019 March https://doi.org/10.3847/1538-3881/aafb37 © 2019. The American Astronomical Society. All rights reserved. Astrometry and Occultation Predictions to Trans-Neptunian and Centaur Objects Observed within the Dark Energy Survey M. V. Banda-Huarca1,2 , J. I. B. Camargo1,2 , J. Desmars3 , R. L. C. Ogando1,2 , R. Vieira-Martins1,2 , M. Assafin2,4 , L. N. da Costa1,2, G. M. Bernstein5 , M. Carrasco Kind6,7 , A. Drlica-Wagner8,9 , R. Gomes1,2 , M. M. Gysi2,10, F. Braga-Ribas1,2,10 , M. A. G. Maia1,2 , D. W. Gerdes11,12 , S. Hamilton11 , W. Wester8, T. M. C. Abbott13, F. B. Abdalla14,15 , S. Allam8 , S. Avila16, E. Bertin17,18, D. Brooks14 , E. Buckley-Geer8, D. L. Burke19,20 , A. Carnero Rosell1,2 , J. Carretero21 , C. E. Cunha19, C. Davis19, J. De Vicente22 , H. T. Diehl8 , P. Doel14, P. Fosalba23,24, J. Frieman8,9 , J. García-Bellido25 , E. Gaztanaga23,24, D. Gruen19,20 , R. A. Gruendl6,7 , J. Gschwend1,2 , G. Gutierrez8 , W. G. Hartley14,26, D. L. Hollowood27 , K. Honscheid28,29, D. J. James30 , K. Kuehn31 , N. Kuropatkin8 , F. Menanteau6,7 , C. J. Miller11,12, R. Miquel21,32 , A. A. Plazas33 , A. K. Romer34 , E. Sanchez22 , V. Scarpine8, M. Schubnell11, S. Serrano23,24, I. Sevilla-Noarbe22, M. Smith35 , M. Soares-Santos36 , F. Sobreira2,37 , E. Suchyta38 , M. E. C. Swanson7 , and G. Tarle11 DES Collaboration 1 Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ—20921-400, Brazil; [email protected] 2 Laboratório Interinstitucional de e-Astronomia—LIneA, Rua Gal. -
Csaba Kiss: Collisional History of the Kuiper Belt and Binary Kuiper Belt
Collisional history of the Kuiper belt and binary Kuiper belt objects (an observationally biased talk) Csaba Kiss, Konkoly Observatory Missing links from disks to planets, 10-13 October 2016 1 Binaries in the main belt and near-Earth populations • Important observational bias — typical size range of asteroids at different heliocentric distances: • Main belt (<3AU): 1-50km • Jovian Trojans (~5AU): 10-100km • Centaurs and trans-Neptunians: 100-1000km + the largest dwarf planets (>1000km) • First system discovered: 243 Ida and its moon Dactyl (Galileo flyby, 1993) • Large systems form by collisions • Smaller systems form by rotational fission in most cases (rubble pile interior), caused e.g. by the YORP-effect • The total binary fraction is ~15%, but it includes all small satellites (we cannot see this for JTs and TNOs) 2 The first Kuiper belt binary discovery: the Pluto-Charon system • Charon’s discovery: Christy and Harrington, 1978 • System mass: high albedo and small size, previously it was very uncertain • Additional moons were detected by HST Charon Naval Observatory, Flagstaff Station 3 Presently known Kuiper belt binaries (by W. Grundy) 4 Binary TNOs • At the beginning, it was considered to be an exception (not Noll et al. (2008) very common in the main belt) • Wide pairs have been discovered by 4m-class telescopes • Most binaries were discovered by HST programmes between 2000-2010 • Some are also images by adatptive optics systems of large telescopes (Keck) • In many cases binarity is deduced from marginally resolved PSFs (many possible with HST due to its extreme PSF stability) • Kuiper belt binaries: 100-1000km 5 A season a mutual events for Sila-Nunam • Mutual events can constrain binary asteroid mutual orbits, shapes, and densities (e.g., Descamps et al. -
Presentazione Standard Di Powerpoint
VIAGGIO NELLO SPAZIO 1 VIAGGIO NELLO SPAZIO • Il Sistema Solare XX secolo • Il Sistema Solare moderno • La nostra Galassia • L’universo ALDAI 17.10.2019 2 3 5 Con una riduzione di 1 a 58 milioni 12.746 km diametro 22 cm diametro 6 1.390.000 km / 58 milioni =24 m 7 8 9 10 11 12 Le stelle più grandi Raggio Nome stella Galassia Note (sole=1) UY Scuti 1 708[1] Via Lattea Attualmente la più grande stella nella Via Lattea e nell'Universo. Se posta al centro del nostro sistema solare, la superficie della stella avrebbe inghiottito Saturno. Distanza 9.454 anni luce WOH G64 1 540 Grande Nube Magellano Una delle più grandi della Grande Nube di Magellano, circondata da una nebulosità di materiale espulso, come Eta Carinae. Dista 163.000 yl Westerlund 1-26 1 530[2]- 2 544[3] Via Lattea Stella insolita con forti emissioni radio; il suo spettro è variabile, tuttavia non lo è la sua luminosità. VX Sagittarii A 1 520[4] Via Lattea Stella pulsante, le cui dimensioni variano notevolmente. V354 Cephei A 1 520[5] Via Lattea KW Sagittarii 1 460[6] Via Lattea Distanza 9.800 anni luce VY Canis Majoris 1 420 Via Lattea Le prime stime (2 200 volte Sole) contraddicevano le teorie ; poi nuovi studi hanno ridotto dimensioni. KY Cygni 1 420[8] Via Lattea Mu Cephei 1 420[9] Via Lattea VV Cephei A ~1,400 Via Lattea Probabilmente la stella più grande visibile a occhio nudo. VV Cephei A è una stella molto distorta che (1 050[10]-1 900[11]) fa parte di un sistema binario stretto, con perdita di massa verso la secondaria. -
Missions to and Sample Returns from Nearby Interstellar Objects
Interstellar Now! Missions to and Sample Returns from Nearby Interstellar Objects Primary Authors: Andreas M. Hein 1, Institute for Interstellar Studies (I4IS) T. Marshall Eubanks 2, 1, Space Initiatives Inc. and I4IS Co-authors: Adam Hibberd 1, Dan Fries 1, Jean Schneider 3, Manasvi Lingam 4, 5, Robert G. Kennedy 1, Nikolaos Perakis 1, 6, Bernd Dachwald 7, Pierre Kervella 3 1 Institute for Interstellar Studies 2 Space Initiatives 3 Paris Observatory 4 Department of Aerospace, Physics and Space Science, Florida Institute of Technology 5 Institute of Theory and Computation, Harvard University 6 Department of Space Propulsion, Technical University of Munich 7 FH Aachen University of Applied Sciences 1 1. Introduction We live in a special epoch in which, after centuries of speculation, the first exoplanets have been detected. Detecting and characterizing these worlds holds the potential to revolutionize our understanding of astrophysics and planetary science as well as exobiology if they harbor "alien" life (e.g., [1], [2]). Terrestrial telescopes and even very large interferometers like the Labeyrie Hypertelescope will be insufficient to properly characterize and understand local geology, chemistry and possibly biology of extrasolar objects [3], [4]. These properties can only be investigated in situ. Miniscule gram-scale probes, even if laser-launched from Earth to relativistic speeds, are unlikely to return science data from other stellar systems much sooner than 2070 (e.g., [3]–[5]). But there is another opportunity. Extrasolar objects have passed through our home system twice now in just the last three years: 1I/'Oumuamua, 2I/Borisov (e.g., [6], [7]). Such interstellar objects (ISOs) provide a previously unforeseen chance to directly sample physical material from other stellar systems much sooner.