ASD Annual Report 2011

Total Page:16

File Type:pdf, Size:1020Kb

ASD Annual Report 2011 The Astrophysics Science Division Annual Report 2011 Astrophysics Science Division The NASA/TM-2012-215898 Goddard’s Astrophysics Science Division Annual Report 2011 Joan Centrella and Francis Reddy, Editors Pat Tyler, Graphical Editor NASA/TM-2012-215898 NASA Goddard Space Flight Center Greenbelt, Maryland 20771 May 2012 The NASA STI Program Offi ce … in Profi le Since its founding, NASA has been ded i cated to the • CONFERENCE PUBLICATION. Collected ad vancement of aeronautics and space science. The pa pers from scientifi c and technical conferences, NASA Sci en tifi c and Technical Information (STI) symposia, sem i nars, or other meetings spon sored Pro gram Offi ce plays a key part in helping NASA or co spon sored by NASA. maintain this impor tant role. • SPECIAL PUBLICATION. Scientifi c, tech ni cal, The NASA STI Program Offi ce is operated by or historical information from NASA pro grams, Langley Research Center, the lead center for projects, and mission, often concerned with sub- NASAʼs scientifi c and technical in for ma tion. The jects having substan tial public interest. NASA STI Program Offi ce pro vides ac cess to the NASA STI Database, the largest collec tion of • TECHNICAL TRANSLATION. En glish-language aero nau ti cal and space science STI in the world. trans la tions of foreign scien tifi c and tech ni cal ma- The Pro gram Offi ce is also NASAʼs in sti tu tion al terial pertinent to NASAʼs mis sion. mecha nism for dis sem i nat ing the results of its research and devel op ment activ i ties. These results Specialized services that complement the STI Pro- are published by NASA in the NASA STI Report gram Offi ceʼs diverse offerings include cre at ing Series, which includes the following report types: custom thesau ri, building customized data bas es, organizing and publish ing research results . even • TECHNICAL PUBLICATION. Reports of pro vid ing videos. com pleted research or a major signifi cant phase of research that present the results of NASA pro- For more information about the NASA STI Pro gram grams and include exten sive data or theo ret i cal Offi ce, see the following: analysis. Includes compi la tions of sig nifi cant • Access the NASA STI Program Home Page at scientifi c and technical data and in for ma tion http://www.sti.nasa.gov/STI-homepage.html deemed to be of continu ing ref er ence value. NASAʼs counterpart of peer-re viewed formal • E-mail your question via the Internet to pro fes sion al papers but has less stringent limi ta - [email protected] tions on manuscript length and extent of graphic pre sen ta tions. • Fax your question to the NASA Access Help Desk at (443) 757-5803 • TECHNICAL MEMORANDUM. Scientifi c and techni cal fi ndings that are pre lim i nary or of • Telephone the NASA Access Help Desk at (443) spe cialized interest, e.g., quick release reports, 757-5802 working papers, and bib li og ra phies that contain • Write to: minimal annotation. Does not contain extensive NASA Access Help Desk analysis. NASA Center for AeroSpace In for ma tion • CONTRACTOR REPORT. Scientifi c and techni- 7115 Standard Drive cal fi ndings by NASA-sponsored con trac tors and Hanover, MD 21076 grantees. NASA/TM-2012-215898 Goddard’s Astrophysics Science Division Annual Report 2011 Joan Centrella NASA Goddard Space Flight Center, Greenbelt, Maryland Francis Reddy Syneren Technologies, Inc., Greenbelt, Maryland Pat Tyler, Graphical Editor Syneren Technologies, Inc., Greenbelt, Maryland National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 May 2012 Available from: NASA Center for AeroSpace Information National Technical Information Service 7115 Standard Drive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 Astrophysics Science Division Annual Report 2011 Table of Contents 2011: Year in Review ...................................................................................................................................1 2011 Events ...................................................................................................................................................4 Awards ..........................................................................................................................................................7 New Faces in ASD .....................................................................................................................................11 Research Highlights ..................................................................................................................................17 Resolving and Characterizing the Massive Winds of Eta Carinae ..............................................17 Testing Models of Triggered Star Formation ..................................................................................18 Tidal Disruption of a Star by a Black Hole .....................................................................................19 Probing the Intergalactic Magnetic Field with Fermi Measurements of the Extragalactic Gamma-ray Background ................................................................................20 A 5 m Image of Beta Pictoris b at a Sub-Jupiter Projected Separation .........................................22 Search for Dark Matter Using X-ray Observations of Dwarf Spheroidal Galaxies ...................23 The GISMO 2-millimeter Deep Field in GOODS-N ......................................................................25 Rest-Frame Ultraviolet Star-Forming Galaxies at Intermediate Redshift Epochs ....................27 The Destruction of Interstellar Dust by Supernova Blast Waves .................................................30 Searching for Electromagnetic Counterparts to Gravitational-Wave Events.............................30 BESS-Polar Long-Duration Flights ...................................................................................................32 Research and Development .....................................................................................................................35 Suborbital .............................................................................................................................................35 Super Trans-Iron Galactic Element Recorder (Super-TIGER)................................................35 Cosmic Ray Energetics and Mass (CREAM) ............................................................................35 X-ray Quantum Calorimeter (XQC), Micro-X, and DXL Sounding Rockets .......................37 X-ray Advanced Concepts Testbed (XACT) .............................................................................39 Primordial Inflation Polarization Explorer (PIPER) ...............................................................41 Calorimetric Electron Telescope (CALET) ...............................................................................42 The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) .............43 Technology Development ..................................................................................................................45 Laboratory Astrophysics Using an X-ray Microcalorimeter with an Electron Beam Ion Trap ................................................................................................45 X-ray Calorimeter Development................................................................................................46 Next Generation X-ray Optics ...................................................................................................48 Far-Infrared Detectors .................................................................................................................48 Technology Development for Gravitational Wave Detection ................................................50 Three-Dimensional Track Imager Detector for Gamma-ray and Neutron Imaging ..........53 100-meter X-ray Calibration Beamline Facility ........................................................................54 Projects ........................................................................................................................................................55 In Operation ........................................................................................................................................56 Fermi Gamma-ray Space Telescope ..........................................................................................56 The Rossi X-ray Timing Explorer (RXTE) ................................................................................58 XMM-Newton Guest Observer Facility ....................................................................................59 Suzaku (Astro-E2) ........................................................................................................................61 The Hubble Space Telescope: Pushing New Frontiers ...........................................................63 Swift ...............................................................................................................................................67 Galaxy Evolution Explorer (GALEX) ........................................................................................68 High Energy Astrophysics Science Archive Research Center (HEASARC) ........................70 WMAP ..........................................................................................................................................73 Table of Contents v Annual Report 2011 Astrophysics Science Division In Development ..................................................................................................................................75
Recommended publications
  • Neutron Stars
    Chandra X-Ray Observatory X-Ray Astronomy Field Guide Neutron Stars Ordinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% Chandra Image of Vela Pulsar open space! (NASA/PSU/G.Pavlov et al. What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see—or feel—the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons! Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons.
    [Show full text]
  • II Publications, Presentations
    II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class.
    [Show full text]
  • 1. INTRODUCTION of the Beam (See, E.G., Mannheim 1993)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MURAL - Maynooth University Research Archive Library THE ASTROPHYSICAL JOURNAL, 511:149È156, 1999 January 20 ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. MEASUREMENT OF THE MULTI-TeV GAMMA-RAY FLARE SPECTRA OF MARKARIAN 421 AND MARKARIAN 501 F. KRENNRICH,1 S. D. BILLER,2 I. H. BOND,3 P. J. BOYLE,4 S. M. BRADBURY,3 A. C. BRESLIN,4 J. H. BUCKLEY,5 A. M. BURDETT,3 J. BUSSONS GORDO,4 D. A. CARTER-LEWIS,1 M. CATANESE,1 M. F. CAWLEY,6 D. J. FEGAN,4 J. P. FINLEY,7 J. A. GAIDOS,7 T. HALL,7 A. M. HILLAS,3 R. C. LAMB,8 R. W. LESSARD,7 C. MASTERSON,4 J. E. MCENERY,9 G. MOHANTY,1,10 P. MORIARTY,11 J. QUINN,12 A. J. RODGERS,3 H. J. ROSE,3 F. W. SAMUELSON,1 G. H. SEMBROSKI,6 R. SRINIVASAN,6 V. V. VASSILIEV,12 AND T. C. WEEKES12 Received 1998 July 22; accepted 1998 August 27 ABSTRACT The energy spectrum of Markarian 421 in Ñaring states has been measured from 0.3 to 10 TeV using both small and large zenith angle observations with the Whipple Observatory 10 m imaging telescope. The large zenith angle technique is useful for extending spectra to high energies, and the extraction of spectra with this technique is discussed. The resulting spectrum of Markarian 421 is Ðtted reasonably well by a simple power law: J(E) \ E~2.54B0.03B0.10 photons m~1 s~1 TeV~1, where the Ðrst set of errors is statistical and the second set is systematic.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Dear Supervisors- Attached Please Find Our Letter of Opposition to the SCA Ordinance for Sleepy Hollow As Drafted by Our Attorne
    From: Andrea Taber To: Rice, Katie; Kinsey, Steven; Adams, Susan; Arnold, Judy; Sears, Kathrin Cc: Dan Stein; Thorsen, Suzanne; Lai, Thomas Subject: Sleepy Hollow Homeowners Association Letter of Oppostion to the SCA Ordinance Date: Wednesday, May 22, 2013 8:12:53 PM Attachments: Document4.docx Dear Supervisors- Attached please find our letter of opposition to the SCA Ordinance for Sleepy Hollow as drafted by our attorney Neil Moran of Freitas McCarthy MacMahon & Keating, LLP. Sleepy Hollow Homeowners Association May 3, 2013 Board of Supervisors of Marin County 3501 Civil Center Drive San Rafael, CA 94903-4157 Re: Stream Conservation Area (SCA) Proposed Amendments to the Development Code Honorable Members of the Board of Supervisors: INTRODUCTION The Sleepy Hollow Homes Association (SHHA) objects to the proposed changes to Chapters 22.33 (Stream Protection) and 22.63 (Stream Conservation Area Permit) as they would apply to the residents of the unincorporated portion of San Anselmo known as Sleepy Hollow. We ask that the County exempt and/or delay implementation of any changes to Chapters 22.33 and 22.63 as to the city-centered corridor streams, including Sleepy Hollow. The SHHA supports implementation of the proposed amendments to the San Geronimo Valley, to protect wildlife habitat in streams where Coho Salmon currently exist. The SHHA supports regulations to ensure the health and survival of the species in these areas. The SHHA recognizes the urgency of this matter to the San Geronimo Valley, both for the survival of the endangered and declining Coho population and for the property rights of the affected residents who are currently subject to a building moratorium.
    [Show full text]
  • Understanding the X-Ray Flaring from N Carinae A
    To be Submitted to the Astrophysical Journal Understanding the X-ray Flaring from n Carinae A. F. J. Moffat Departement de physique, UniversiM de Montreal, Succursale Centre-Ville, Montreal, QC, H3C V7, and Centre de recherche en astrophysique du Quebec, Canada [email protected] M. F. Corcoranl CRESST and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, jWD 20771, USA [email protected] ABSTRACT We quantify the rapid variations in X-ray brightness ( "flares") from the ex- tremely massive colliding wind binary n Carinae seen during the past three or- bital cycles by RXTE. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the LBV component entering and compressing the hard X-ray emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like power- law distribution of clumps, decreasing in number towards larger sizes, as seen in Wolf-Rayet winds. Subject headings: X-rays: stars — stars: early-type — stars: individual (p Car) — stars: LBV 'Universities Space Research Association, 10211 W incopin Circle. Suite 500 Columbia, 1v1D 21044, USA. -2— 1. Introduction The extremely massive binary star rl Carinae consists of a Luminous Blue Variable (LBV) primary (star A) coupled with a hot, fast-wind secondary (star B) which is probably an evolved 0 star (Verner et al.
    [Show full text]
  • Arxiv:1904.05358V1 [Astro-Ph.EP] 10 Apr 2019
    Draft version April 12, 2019 Typeset using LATEX default style in AASTeX62 The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics From 10{100 AU Eric L. Nielsen,1 Robert J. De Rosa,1 Bruce Macintosh,1 Jason J. Wang,2, 3, ∗ Jean-Baptiste Ruffio,1 Eugene Chiang,3 Mark S. Marley,4 Didier Saumon,5 Dmitry Savransky,6 S. Mark Ammons,7 Vanessa P. Bailey,8 Travis Barman,9 Celia´ Blain,10 Joanna Bulger,11 Jeffrey Chilcote,1, 12 Tara Cotten,13 Ian Czekala,3, 1, y Rene Doyon,14 Gaspard Duchene^ ,3, 15 Thomas M. Esposito,3 Daniel Fabrycky,16 Michael P. Fitzgerald,17 Katherine B. Follette,18 Jonathan J. Fortney,19 Benjamin L. Gerard,20, 10 Stephen J. Goodsell,21 James R. Graham,3 Alexandra Z. Greenbaum,22 Pascale Hibon,23 Sasha Hinkley,24 Lea A. Hirsch,1 Justin Hom,25 Li-Wei Hung,26 Rebekah Ilene Dawson,27 Patrick Ingraham,28 Paul Kalas,3, 29 Quinn Konopacky,30 James E. Larkin,17 Eve J. Lee,31 Jonathan W. Lin,3 Jer´ ome^ Maire,30 Franck Marchis,29 Christian Marois,10, 20 Stanimir Metchev,32, 33 Maxwell A. Millar-Blanchaer,8, 34 Katie M. Morzinski,35 Rebecca Oppenheimer,36 David Palmer,7 Jennifer Patience,25 Marshall Perrin,37 Lisa Poyneer,7 Laurent Pueyo,37 Roman R. Rafikov,38 Abhijith Rajan,37 Julien Rameau,14 Fredrik T. Rantakyro¨,39 Bin Ren,40 Adam C. Schneider,25 Anand Sivaramakrishnan,37 Inseok Song,13 Remi Soummer,37 Melisa Tallis,1 Sandrine Thomas,28 Kimberly Ward-Duong,25 and Schuyler Wolff41 1Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 2Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 3Department of Astronomy, University of California, Berkeley, CA 94720, USA 4NASA Ames Research Center, Mountain View, CA 94035, USA 5Los Alamos National Laboratory, P.O.
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • INTEGRAL View Of
    INTEGRAL view of AGN Angela Maliziaa,∗, Sergey Sazonovb, Loredana Bassania, Elena Piana, Volker Beckmannc, Manuela Molinaa, Ilya Mereminskiyb, Guillaume Belangerd aOAS-INAF, Via P. Gobetti 101, 40129 Bologna, Italy bSpace Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia cInstitut National de Physique Nuclaire et de Physique des Particules (IN2P3) CNRS, Paris, France dESA/ESAC, Camino Bajo del Castillo, 28692 Villanueva de la Canada, Madrid, Spain Abstract AGN are among the most energetic phenomena in the Universe and in the last two decades INTEGRAL’s contribution in their study has had a significant impact. Thanks to the INTEGRAL extragalactic sky surveys, all classes of soft X-ray detected (in the 2-10 keV band) AGN have been observed at higher energies as well. Up to now, around 450 AGN have been catalogued and a conspicuous part of them are either objects observed at high-energies for the first time or newly discovered AGN. The high-energy domain (20-200 keV) represents an important window for spectral studies of AGN and it is also the most appropriate for AGN population studies, since it is almost unbiased against obscuration and therefore free of the limitations which affect surveys at other frequencies. Over the years, INTEGRAL data have allowed to characterise AGN spectra at high energies, to investigate their absorption properties, to test the AGN unification scheme and to perform population studies. In this review the main results are reported and INTEGRAL’s contribution to AGN science is highlighted for each class of AGN. Finally, new perspectives are provided, connecting INTEGRAL’s science with that at other wavelengths and in particular to the GeV/TeV regime which is still poorly explored.
    [Show full text]
  • SPACE NEWS Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page BEF Mags INTERNATIONAL
    Contents | Zoom in | Zoom out For navigation instructions please click here Search Issue | Next Page SPACEAPRIL 19, 2010 NEWSAN IMAGINOVA CORP. NEWSPAPER INTERNATIONAL www.spacenews.com VOLUME 21 ISSUE 16 $4.95 ($7.50 Non-U.S.) PROFILE/22> GARY President’s Revised NASA Plan PAYTON Makes Room for Reworked Orion DEPUTY UNDERSECRETARY FOR SPACE PROGRAMS U.S. AIR FORCE AMY KLAMPER, COLORADO SPRINGS, Colo. .S. President Barack Obama’s revised space plan keeps Lockheed Martin working on a Ulifeboat version of a NASA crew capsule pre- INSIDE THIS ISSUE viously slated for cancellation, potentially positioning the craft to fly astronauts to the interna- tional space station and possibly beyond Earth orbit SATELLITE COMMUNICATIONS on technology demonstration jaunts the president envisions happening in the early 2020s. Firms Complain about Intelsat Practices Between pledging to choose a heavy-lift rocket Four companies that purchase satellite capacity from Intelsat are accusing the large fleet design by 2015 and directing NASA and Denver- operator of anti-competitive practices. See story, page 5 based Lockheed Martin Space Systems to produce a stripped-down version of the Orion crew capsule that would launch unmanned to the space station by Report Spotlights Closed Markets around 2013 to carry astronauts home in an emer- The office of the U.S. Trade Representative has singled out China, India and Mexico for not meet- gency, the White House hopes to address some of the ing commitments to open their domestic satellite services markets. See story, page 13 chief complaints about the plan it unveiled in Feb- ruary to abandon Orion along with the rest of NASA’s Moon-bound Constellation program.
    [Show full text]