Chemical Analysis of Gaet'ale, a Hypersaline Pond
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: a Critical Review of Current Knowledge
Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 12-2013 Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: A Critical Review of Current Knowledge Danielle Barandiaran Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Soil Science Commons Recommended Citation Barandiaran, Danielle, "Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: A Critical Review of Current Knowledge" (2013). All Graduate Plan B and other Reports. 332. https://digitalcommons.usu.edu/gradreports/332 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. METHYLMERCURY FATE IN THE HYPERSALINE ENVIRONMENT OF THE GREAT SALT LAKE: A CRITICAL REVIEW OF CURRENT KNOWLEDGE By Danielle Barandiaran A paper submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Soil Science Approved: Astrid Jacobson Jeanette Norton Major Professor Committee Member - Paul Grossl Teryl Roper Committee Member Department Head UTAH STATE UNIVERSITY Logan, Utah 2013 Copyright © Danielle Barandiaran 2013 All Rights Reserved iii ABSTRACT Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: A Critical Review of Current Knowledge by Danielle Barandiaran, Master of Science Utah State University, 2013 Major Professor: Dr. Astrid R. Jacobson Department: Plants, Soils & Climate Methylmercury (MeHg) is a highly potent neurotoxic form of the environmental pollutant Mercury (Hg). -
The Great Salt Lake Osmotic Power Potential
The Great Salt Lake Osmotic Power Potential Maher Kelada MIK Technology 2100 West Loop South, Suite 900 Houston, Texas, USA 77027 [email protected] Abstract: This is a proposal to develop a new source of renewable energy relying on hypersaline osmotic power generation technology that has been developed by MIK Technology, potentially for generating up to 400 megawatts of sustainable power from the Great Salt Lake, Utah, operating isothermally without generating any emissions. The proposed technology would reduce Utah State’s demand for coal by 10% or natural gas by 50%, using a clean and safe renewable source of energy. I. Osmotic Power Generation Concept Osmosis is nature’s gift to life. It is the vehicle that transports fluids in all living cells and without it, all biological functions and all forms of life cease to exist! Osmosis is the spontaneous movement of water, through a semi-permeable membrane that is permeable to water but impermeable to solute. Water moves from a solution in which solute is less concentrated to a solution in which solute is more concentrated. The driving force of the flow movement is the difference in the chemical potential on the two sides of the semi-permeable membrane, with the solvent moving from a region of higher potential (generally of a lower solute concentration) to the region of lower potential (generally of a higher solute concentration). The term “Chemical Potential” at times can be ambiguous and elusive. In fact, it is one of the most important partial molal quantities. It is the energy source associated with the activity of the ions of an ionizable substance. -
The Importance of the Salton Sea and Other Terminal Lakes in Supporting
The Importance of the Salton Sea and Other Terminal Lakes in Supporting Birds of the Pacific Flyway Terminal lakes, so called because they have no outlet, are characteristic water features of the Great Basin of the Intermountain West. Through the process of continued evaporation, minerals and salts that flow into these water bodies are retained and concentrated over time. The salinity of the water varies considerably among terminal lakes, depending on the quality of the source water and the length of time the lake has been in existence. Several of these, including the Great Salt Lake, Mono Lake, and the Salton Sea, have become more saline than the ocean. While all of these lakes support unique physical characteristics and aquatic ecosystems, one characteristic common to all is the importance they play in sustaining birds using the Pacific Flyway and portions of the Central Flyway. Physical and Biological Characteristics of Terminal Lakes in the West Terminal lakes along the Pacific Flyway (Exhibit 1) vary widely in their physical and biological characteristics. Elevations range from 6,381 feet at Mono Lake to -227 feet at the Salton Sea. They also vary greatly in depth and salinity, as shown in Exhibits 2 and 3. Most of these lakes are shallow with seasonal water input and high evaporation in the summer. Water quality is typically characterized by hard water and saline conditions, an artifact of dissolved constituents accumulating and increasing in concentration over time. While water quality in terminal lakes limits the diversity of the aquatic community to salt-tolerant organisms, these lakes often are very productive, and provide an ample food supply for waterbirds. -
Mcmurdo Dry Valleys, Southern Victoria Land
Measure 1 (2004) Annex Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND 1. Description of values to be protected and activities to be managed The McMurdo Dry Valleys are characterized as the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains glaciers, mountain ranges, ice-covered lakes, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area is characterized by unique ecosystems of low biodiversity and reduced food web complexity. However, as the largest ice-free region in Antarctica, the McMurdo Dry Valleys also contain relatively diverse habitats compared with other ice-free areas. -
Ethiopia Lifetime Adventure | 2019 Ethiopia Highlights
Gheralta Mountains Human © the Movie ethiopia lifetime adventure | 2019 ethiopia highlights Lalibela - exploring the incredible 12th century rock-hewn churches. Visit the church in a cave - Yemrehana Krestos. Low level flight through the spectacular Tekeze gorge Tigray Region & Gheralta mountains - ancient rock-hewn churches full of colourful frescoes and artefacts. Danakil Depression - Afar people on the salt pans, neon sulphur springs at Dallol and the turquoise pools of Lake Asal. Stellae monuments at the bustling town of Aksum, the building believed to house the Ark of the Covenant, Maria Zion and the monastery with the treasure house. Simien Mountains - high altitude landscapes, Gelada baboon & Walia Ibex. Royal Enclosure of Gondar - Castles and imperial houses dating back 400 years. End of your safari! Dawn over the Simiens © Richard Coke itinerary Aksum Day 1: Addis Ababa Explore the street markets and museum, TIGRAY and enjoy an evening in the traditional Simiens Gheralta song houses. Sheraton Hotel SUDAN Gondar Tekeze River Danakil Day 2 & 3: Lalibela FlyCongo to Lalibela viahighlights the Blue Nile gorge. AMHARA Visit some of the ancient monolithic AFAR churchesVirunga including National St George Parkand Lalibela Yemrehana Krestos, in the company of a local guide.Mountain Mountain & Lowland View Gorilla Hotel Semliki River, Lake Edward & Sinda Day 4, 5 & 6: Tigray Region Our next destination is GheraltaGorge in the Tigray region, flying via the spectacular TekezeSenkwekwe Gorge. We gorillawill visit orphanage the ancient Blue churches in the mountains including an Nile optional thrilling hike to Abuna Yemata The active volcanos of Nyamuragira - the church in the sky! Take a morning heli excursion to theand Danakil Nyiragongo Depression. -
Consequences of Drying Lake Systems Around the World
Consequences of Drying Lake Systems around the World Prepared for: State of Utah Great Salt Lake Advisory Council Prepared by: AECOM February 15, 2019 Consequences of Drying Lake Systems around the World Table of Contents EXECUTIVE SUMMARY ..................................................................... 5 I. INTRODUCTION ...................................................................... 13 II. CONTEXT ................................................................................. 13 III. APPROACH ............................................................................. 16 IV. CASE STUDIES OF DRYING LAKE SYSTEMS ...................... 17 1. LAKE URMIA ..................................................................................................... 17 a) Overview of Lake Characteristics .................................................................... 18 b) Economic Consequences ............................................................................... 19 c) Social Consequences ..................................................................................... 20 d) Environmental Consequences ........................................................................ 21 e) Relevance to Great Salt Lake ......................................................................... 21 2. ARAL SEA ........................................................................................................ 22 a) Overview of Lake Characteristics .................................................................... 22 b) Economic -
Evaporites Reveal Pleistocene Basin Dynamics in the Danakil Depression (Northern Afar, Ethiopia)
Evaporites reveal Pleistocene basin dynamics in the Danakil depression (northern Afar, Ethiopia) Valentin Rime1,*, A. Foubert1, R. Fentimen1, H. Negga1, A. El Korh1, T. Adatte2, I. Hajdas3, B. Atnafu4 & T. Kidane5 1 Department of Geosciences, University of Fribourg, Ch. Du Musée 6, Fribourg, Switzerland. 2 Faculty of Geosciences and Environment, University of Lausanne, Switzerland 2 Department of Physics, ETH Zürich, Switzerland 4 School of Earth Sciences, Addis Ababa University, Ethiopia. 5 School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal Durban, South Africa. * [email protected] Welcome! Welcome to my COVID-type presentation! • If you like to know the summary of this study, jump to the next slide. • If you are only interested in the results, jump to page 8. • If you are only interested in the discussion, jump to page 12. • If you are only interested in the conclusion, jump to page 22. Don’t hesitate to comment, ask questions, or make any suggestions to this study! Highlights • Multiproxy study of a drillcore in the Danakil depression, Afar, Ethiopia. • More than 600m of sediments dominated by evaporites most probably formed during the last 130ka. • Formation by evaporation of seawater after flooding of the depression and by remobilization through meteoric water inflow. • High sedimentation rates, important subsidence and rapid extensional tectonics. • Probably the most Recent analogue of Past Salt Giants. Fig. 1: Lithostratigraphic log of the core record Introduction: Geological setting (1) The Danakil depression (Afar, Ethiopia) is a rift valley forming the southernmost part of the Red Sea rift. It is situated between the Ethiopian plateau and the Danakil block and Fig. -
Observations of Pale and Rüppell's Fox from the Afar Desert
Dinets et al. Pale and Rüppell’s fox in Ethiopia Copyright © 2015 by the IUCN/SSC Canid Specialist Group. ISSN 1478-2677 Research report Observations of pale and Rüppell’s fox from the Afar Desert, Ethiopia Vladimir Dinets1*, Matthias De Beenhouwer2 and Jon Hall3 1 Department of Psychology, University of Tennessee, Knoxville, Tennessee 37996, USA. Email: [email protected] 2 Biology Department, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001 Heverlee, Belgium. 3 www.mammalwatching.com, 450 West 42nd St., New York, New York 10036, USA. * Correspondence author Keywords: Africa, Canidae, distribution, Vulpes pallida, Vulpes rueppellii. Abstract Multiple sight records of pale and Rüppell’s foxes from northwestern and southern areas of the Afar De- sert in Ethiopia extend the ranges of both species in the region. We report these sightings and discuss their possible implications for the species’ biogeography. Introduction 2013 during a mammalogical expedition. Foxes were found opportu- nistically during travel on foot or by vehicle, as specified below. All coordinates and elevations were determined post hoc from Google The Afar Desert (hereafter Afar), alternatively known as the Afar Tri- Earth. Distances were estimated visually. angle, Danakil Depression, or Danakil Desert, is a large arid area span- ning Ethiopia, Eritrea, Djibouti and Somaliland (Mengisteab 2013). Its fauna remains poorly known, as exemplified by the fact that the first Results possible record of Canis lupus dates back only to 2004 (Tiwari and Sillero-Zubiri 2004; note that the identification in this case is still On 14 May 2007, JH saw a fox in degraded desert near the town of uncertain). -
Genomic Methods and Microbiological Technologies for Profiling Novel
ARTICLE Genomic Methods and Microbiological Technologies for Profiling Novel and Extreme Environments for the Extreme Microbiome Project (XMP) † Scott Tighe,1,* , Ebrahim Afshinnekoo,2,3,4,* Tara M. Rock,5 Ken McGrath,6 Noah Alexander,2,3 Alexa McIntyre,2,3 Sofia Ahsanuddin,2,3 Daniela Bezdan,2,3 Stefan J. Green,7 Samantha Joye,8 Sarah Stewart Johnson,9 Don A. Baldwin,10 Nathan Bivens,11 Nadim Ajami,12,13 Joseph R. Carmical,12,13 Ian Charold Herriott,14 Rita Colwell,15 Mohamed Donia,16 Jonathan Foox,2,3,17 Nick Greenfield,18 Tim Hunter,1 Jessica Hoffman,1 Joshua Hyman,19 Ellen Jorgensen,20 Diana Krawczyk,21 Jodie Lee,22 Shawn Levy,23 Nat`alia Garcia-Reyero,24 Matthew Settles,25 Kelley Thomas,26 Felipe G´omez,27 Lynn Schriml,28,29 Nikos Kyrpides,30 Elena Zaikova,9 ‡ Jon Penterman,31 and Christopher E. Mason2,3,32, 1Advanced Genomics Lab, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, USA; 2Department of Physiology and Biophysics, 3The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, and 32The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA; 4School of Medicine, New York Medical College, Valhalla, New York, USA; 5Center for Genomics and Systems Biology, New York University, New York, New York, USA; 6Australian Genome Research Facility, Gehrmann Labs, University of Queensland, St Lucia, QLD, Australia; 7DNA Services Facility, Research Resources Center, University of Illinois, Chicago, Illinois, USA; 8Marine Sciences, The -
Summer Reading Challenge Passport
Reading Colors Your World! SUMMER READING PASSPORT 2021 Travel the world Traveler’s Name: with us Through books! For every 3 hours you read, you will travel Age: across a continent. If you attend a library program, you can count that towards your mileage. When you have visited all 7 Phone Number: continents, bring your passport to the library for a stamp and a World Reader brag tag! Remember that any reading you complete for your passport mileage you can log in our Summer Reading Challenge. Welcome to Asia! Largest Continent Highest Elevation Mt. Everest, Tibet-Nepal 29,035 feet above sea level Lowest Elevation Dead Sea, Israel-Jordan 1,349 feet below sea level Asia has the highest human population on earth 4.6 billion people! Animals found in Asia include Giant Pandas, Asian Elephants, Orangutans, Bengal Tigers, and Hornbills Find books about Asia at the library: J 950 Asia For every 20 minutes of reading, fill in a footprint! Asia Welcome to Africa Africa! 2nd Largest Continent Highest Elevation Kilimanjaro, Tanzania 19,340 feet above sea level Lowest Elevation Lake Assal, Dijbouti 515 feet below sea level The Nile River is the longest in the world! Animals found in Africa include Rhinos, Cheetahs, Giraffes, Hippos, Leopards, Zebras, and Lions For every 20 minutes Find books about Africa at the library: J 960 of reading, fill in a footprint! Welcome to North America! 3rd Largest Continent Highest Elevation Denali, Alaska 20,310 feet above sea level Lowest Elevation Badwater Basin, Death Valley, California 282 feet below sea level Two of the world’s largest tectonic plates are in North America! Animals found in North America include American Bison, Plains Coyotes, Prairie Chicken, Pronghorn Antelope, and Wild Turkeys Find books about North America North America North North America North at the library: J 970 For every 20 minutes of reading, fill in a footprint! Welcome to South America South America! 4th Largest Continent Highest Elevation Mt. -
Draft ASMA Plan for Dry Valleys
Measure 18 (2015) Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND Introduction The McMurdo Dry Valleys are the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains mountain ranges, nunataks, glaciers, ice-free valleys, coastline, ice-covered lakes, ponds, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area was jointly proposed by the United States and New Zealand and adopted through Measure 1 (2004). This Management Plan aims to ensure the long-term protection of this unique environment, and to safeguard its values for the conduct of scientific research, education, and more general forms of appreciation. -
Discovery of a Hydrothermal Fissure in the Danakil Depression
EPSC Abstracts Vol. 12, EPSC2018-381-1, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Discovery of a hydrothermal fissure in the Danakil depression Daniel Mège (1), Ernst Hauber (2), Mieke De Craen (3), Hugo Moors (3) and Christian Minet (2) (1) Space Research Centre, Polish Academy of Sciences, Poland ([email protected]), (2) DLR, Germany ([email protected], [email protected], (3) Belgian Nuclear Research Centre, Belgium ([email protected], [email protected]) Abstract Oily Lake and Gaet’Ale). It is manifested by (1) salt polygon geometry directly influenced by the underlying Volcanic rift zones are among the most emblematic fracture; (2) bubbling pools; (3) dead pools; (4) shallow analogue features on Earth and Mars [1-2], with expected sinkholes; (4) a variety of other micromorphologies differences mainly resulting from the different value of a related to free or pressurised upflow of gas and fluids; single parameter, gravity [3]. Beyond the understanding and (5) rare evidence of fumarolic activity. In this context, of the geology, rift zones provide appropriate the Yellow Lake appears as a possible salt karst feature hydrothermal environments for the development of [10] the location and growth of which is controlled by micro-organisms in extreme conditions which depend at relay zone deformation between the fissure segments. first order on endogenic processes, and weakly on the planetary climate conditions. The Europlanet 2018 3. Hydrothermal fluids Danakil field campaign enabled identifying a previously The physico-chemistry of fluids and minerals from two unreported 4.5 km long hydrothermal fissure on the Lake small pools located along the Yellow Lake Fissure, as Asale salt flats, the Erta Ale - Dallol segment of the well as the Yellow Lake, have been analysed (Table 1).