Enhancement of Recruitment and Nursery Function

Total Page:16

File Type:pdf, Size:1020Kb

Enhancement of Recruitment and Nursery Function ENHANCEMENT OF RECRUITMENT AND NURSERY FUNCTION BY HABITAT CREATION IN PENSACOLA BAY, FLORIDA by Carrie Shannon Tomlinson Stevenson B.S., Samford University, 1998 A thesis submitted to the Department of Biology College of Arts and Sciences The University of West Florida In partial fulfillment of the requirements for the degree of Master of Science 2007 © 2007 Carrie Shannon Tomlinson Stevenson ii The thesis of Carrie Shannon Tomlinson Stevenson is approved: Barbara F. Ruth, M.S., Committee Member Date Philip C. Darby, Ph.D., Committee Member Date Richard A. Snyder, Ph.D., Committee Chair Date Accepted for the Department: George L. Stewart, Ph.D., Chair Date Accepted for the College: Jane S. Halonen, Ph.D., Dean Date Accepted for the University: Richard S. Podemski, Ph.D., Dean of Graduate Studies Date iii ACKNOWLEDGMENTS Special thanks go to all of the volunteers who assisted me with hours of seining, identifying, collecting, and net cleaning including A. MacWhinnie, S. Bowen, A. Bloaha, A. Schrift, J. DuPree, J. Liddle, C. Thompson, C. Power, B. Klein, L. Pennington, C. Seltrecht, T. Chapman, C. Cox, T. Alvarez, R. Ehlers, S. Marshall, M. Diller, N. Koch, J. McDonald, J. Cevarny, L. Cates, T. Trent, and W. Adams­Riley. Greatest thanks to my advisor and committee members for their support, advice, and patience, as well as to Dr. Patterson and Dr. Pomory for assistance with statistical analysis. To my co­workers and supervisors at the University of Florida/Escambia County Extension Service and Department of Environmental Protection, my deepest appreciation for equipment and encouragement, as well as allowing me the time to work on this project. Enormous thanks to my parents for accountability, confidence, and repeatedly asking me, “How’s your thesis going?” Most of all, this project is dedicated to my husband, son, and daughter for sharing me with UWF and for encouragement, help, and tolerance of all the odd hours and years it took to complete this undertaking. iv TABLE OF CONTENTS Page ACKNOWLEDGMENTS ......................................................................................... iv LIST OF TABLES .................................................................................................... vi LIST OF FIGURES.................................................................................................viii ABSTRACT............................................................................................................... x CHAPTER I. ESTUARINE HABITAT VALUE............................................. 1 A. Salt Marshes ......................................................................... 2 B. Seagrasses............................................................................. 4 C. Oyster Reefs.......................................................................... 5 D. Open Bottom ........................................................................ 6 E. Habitat Diversity and Complexity......................................... 7 F. Restoration and Ecological Engineering.............................. 11 CHAPTER II. STUDY SITE DESCRIPTION ................................................ 17 CHAPTER III. METHODS ............................................................................. 22 CHAPTER IV. RESULTS ............................................................................... 27 A. Species Abundance ............................................................ 29 B. Community Structure......................................................... 55 C. Species Richness................................................................ 58 D. Size.................................................................................... 61 E. DEP Sampling Results ....................................................... 71 CHAPTER V. DISCUSSION ......................................................................... 79 REFERENCES......................................................................................................... 88 APPENDIXES ....................................................................................................... 102 A. Map of FDEP Water Quality Sampling Locations ............ 103 B. Copyright Permission Letter............................................. 105 v LIST OF TABLES Table Page 1. Timeline of Construction Activity and Sampling at Study Sites ......................... 23 2. Water Quality Data Collected by FDEP ............................................................ 28 3. Water Visibility Data Collected by FDEP.......................................................... 29 4. Species Collected in This Study ........................................................................ 30 5. Rank Order Chart for Four Most Common Species of Fish and Most Common Crustacean .......................................................................................... 38 6. Comparison of Overall Abundance Data for the Frequently Occurring Species Between Sites by Paired Two Sample t Test for Means.......................... 40 7. Rank Order for Infrequently Occurring Species at Site 1.................................... 48 8. Rank Order for Infrequently Occurring Species at Site 2.................................... 50 9. Comparison of Four Infrequently Occurring Species Between the Sampling Sites by Paired Two­Sample t Test For Means ................................................... 54 10. Average Dissimilarity Between Habitats............................................................ 57 11. Species Richness and Diversity.......................................................................... 59 12. Comparison of Total L. xanthurus (Spot) by Size Class Between the Sampling Sites by Paired Two Sample t Test for Means ..................................... 62 13. Comparison of Total M. cephalus (Striped Mullet) by Size Class Between the Sampling Sites by Paired Two Sample t Test for Means ............................... 64 14. Comparison of Total L. rhomboides (Pinfish) by Size Class Between the Sampling Sites by Paired Two Sample t Test for Means..................................... 66 vi 15. Comparison of Total M. peninsulae (Tidewater Silverside) by Size Class Between the Sampling Sites by Paired Two Sample t Test for Means................ 68 16. Species Collected During DEP Sampling (February­August 2005), Abundance and Percentage of Total Designated by Site ..................................... 72 17. Summary Table of Statistical Analysis for Four Dominant Species................... 78 vii LIST OF FIGURES Figure Page 1. Study area in relation to the greater Gulf of Mexico region ............................... 17 2. The sampling sites along the shoreline of Pensacola Bay as seen in preproject conceptual design map for Project GreenShores............................... 19 3. Aerial photo of Sites 1 and 2............................................................................. 20 4. Timeline of overall faunal abundance by site .................................................... 36 5. Comparison of total faunal abundance between sites by sampling date ............. 37 6. The total abundance of dominant fish species recovered at the sampling locations over the entire course of the study...................................................... 41 7. Difference in total abundance of all species in Site 1 as a percentage difference from total abundance at Site 2 .......................................................... 42 8. Leiostomus xanthurus (Spot) abundance comparison ........................................ 44 9. Mugil cephalus (Striped mullet) abundance comparison ................................... 44 10. Menidia peninsulae (Tidewater silverside) abundance comparison ................... 44 11. Lagodon rhomboides (Pinfish) abundance comparison...................................... 44 12. Callinectes sapidus (Blue crab) abundance comparison .................................... 46 13. Comparative abundance for all infrequently occurring species.......................... 52 14. Comparison of abundance for four infrequently occurring species .................... 53 15. 2­D Multi­dimensional scaling plot representing analysis of similarity between Site 1 and Site 2 community structure ................................................ 55 viii 16. Species richness comparison using mean number of species captured during repeated hauls ........................................................................................ 60 17. L. xanthurus abundance for Class 1 (0­4.5 cm) ................................................. 63 18. L. xanthurus abundance for Class 2 (4.5­9.5 cm) .............................................. 63 19. L. xanthurus abundance for Class 3 (9.5­20 cm) ............................................... 63 20. M. cephalus abundance for Class 1 (0­4.5 cm) ................................................. 65 21. M. cephalus abundance for Class 2 (4.5­9.5 cm) ............................................... 65 22. M. cephalus abundance for Class 3 (9.5­20 cm) ................................................ 65 23. L. rhomboides abundance for Class 1 (0­4.5 cm)............................................... 67 24. L. rhomboides abundance for Class 2 (4.5­9.5 cm) ........................................... 67 25. L. rhomboides abundance for Class 3 (9.5­14.5 cm).......................................... 67 26. M. peninsulae abundance for Class 1 (0­4.5 cm) ............................................... 70 27. M. peninsulae abundance for Class 2 (4.5­9.5
Recommended publications
  • Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3
    ACTA ICHTHYOLOGICA ET PISCATORIA (2018) 48 (4): 341–362 DOI: 10.3750/AIEP/02451 AN UPDATED CHECKLIST AND CHARACTERISATION OF THE ICHTHYOFAUNA (ELASMOBRANCHII AND ACTINOPTERYGII) OF THE LAGUNA DE TAMIAHUA, VERACRUZ, MEXICO Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3 1 Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 2 Instituto Nacional de Pesca y Acuacultura, SAGARPA, Ciudad de México 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México Raz-Guzmán A., Huidobro L., Padilla V. 2018. An updated checklist and characterisation of the ichthyofauna (Elasmobranchii and Actinopterygii) of the Laguna de Tamiahua, Veracruz, Mexico. Acta Ichthyol. Piscat. 48 (4): 341–362. Background. Laguna de Tamiahua is ecologically and economically important as a nursery area that favours the recruitment of species that sustain traditional fisheries. It has been studied previously, though not throughout its whole area, and considering the variety of habitats that sustain these fisheries, as well as an increase in population growth that impacts the system. The objectives of this study were to present an updated list of fish species, data on special status, new records, commercial importance, dominance, density, ecotic position, and the spatial and temporal distribution of species in the lagoon, together with a comparison of Tamiahua with 14 other Gulf of Mexico lagoons. Materials and methods. Fish were collected in August and December 1996 with a Renfro beam net and an otter trawl from different habitats throughout the lagoon. The species were identified, classified in relation to special status, new records, commercial importance, density, dominance, ecotic position, and spatial distribution patterns.
    [Show full text]
  • Do Closely Related Species Share of Feeding Niche Along Growth? Diets
    Environ Biol Fish (2018) 101:949–962 https://doi.org/10.1007/s10641-018-0750-2 Do closely related species share of feeding niche along growth? Diets of three sympatric species of the mojarras (Actinopterygii: Gerreidae) in a tropical bay in southeastern Brazil R. M. Vasconcellos & R. S. Gomes-Gonçalves & J. N. S. Santos & A. G. Cruz Filho & F. G. Araújo Received: 17 May 2017 /Accepted: 9 March 2018 /Published online: 15 March 2018 # Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract Understanding the trophic relationships were categorized according to breakpoints in the mor- among closely related species is a way to obtain subsi- phological structures determined by piecewise regres- dies for their management and conservation of their sion models. Significant overlapping in diets was found habitats. The diets of three co-occurring abundant fish for all size classes of D. rhombeus but not for size species of the Gerreidae family (Diapterus rhombeus, classes of the Eucinostomus genus. Furthermore, differ- Eucinostomus argenteus and Eucinostomus gula)ina ent size classes of D. rhombeus did not overlap diet with tropical bay were described. The tested hypothesis was size classes of the Eucinostomus genus. The specializa- that the three sympatric species present shifts in their use tion in feeding niches corresponding to growth seems to of resource during the ontogenetic development to fa- bring benefits for this group of fish rather than a gener- cilitate their coexistence. Size groups for each species alist feeding strategy. The hypothesis of the available resources partitioning was accepted only between the Electronic supplementary material The online version of this two genera (Diapterus and Eucinostomus), and among article (https://doi.org/10.1007/s10641-018-0750-2) contains size classes of the Eucinostomus genus that seemed to supplementary material, which is available to authorized users.
    [Show full text]
  • An Annotated Bibliography of Diet Studies of Fish of the Southeast United States and Gray’S Reef National Marine Sanctuary
    Marine Sanctuaries Conservation Series MSD-05-2 An annotated bibliography of diet studies of fish of the southeast United States and Gray’s Reef National Marine Sanctuary U.S. Department of Commerce February 2005 National Oceanic and Atmospheric Administration National Ocean Service Office of Ocean and Coastal Resource Management Marine Sanctuaries Division About the Marine Sanctuaries Conservation Series The National Oceanic and Atmospheric Administration’s Marine Sanctuary Division (MSD) administers the National Marine Sanctuary Program. Its mission is to identify, designate, protect and manage the ecological, recreational, research, educational, historical, and aesthetic resources and qualities of nationally significant coastal and marine areas. The existing marine sanctuaries differ widely in their natural and historical resources and include nearshore and open ocean areas ranging in size from less than one to over 5,000 square miles. Protected habitats include rocky coasts, kelp forests, coral reefs, sea grass beds, estuarine habitats, hard and soft bottom habitats, segments of whale migration routes, and shipwrecks. Because of considerable differences in settings, resources, and threats, each marine sanctuary has a tailored management plan. Conservation, education, research, monitoring and enforcement programs vary accordingly. The integration of these programs is fundamental to marine protected area management. The Marine Sanctuaries Conservation Series reflects and supports this integration by providing a forum for publication and discussion of the complex issues currently facing the National Marine Sanctuary Program. Topics of published reports vary substantially and may include descriptions of educational programs, discussions on resource management issues, and results of scientific research and monitoring projects. The series facilitates integration of natural sciences, socioeconomic and cultural sciences, education, and policy development to accomplish the diverse needs of NOAA’s resource protection mandate.
    [Show full text]
  • Food Resources of Eucinostomus(Perciformes
    Revista de Biología Marina y Oceanografía Vol. 51, Nº2: 395-406, agosto 2016 DOI 10.4067/S0718-19572016000200016 ARTICLE Food resources of Eucinostomus (Perciformes: Gerreidae) in a hyperhaline lagoon: Yucatan Peninsula, Mexico Recursos alimenticios de Eucinostomus (Perciformes: Gerreidae) en una laguna hiperhalina: Península de Yucatán, México Ariel Adriano Chi-Espínola1* and María Eugenia Vega-Cendejas1** 1Laboratorio de Taxonomía y Ecología de Peces, CINVESTAV-IPN, Unidad Mérida, km 6 antigua carretera a Progreso, AP 73 Cordemex, C. P. 97310 Mérida, Yucatán, México. *[email protected], **[email protected] Resumen.- La alta salinidad de las lagunas hiperhalinas las convierte en hábitats extremos para los organismos acuáticos, poniendo presión sobre sus adaptaciones fisiológicas especiales. Gerreidae es una familia de peces de amplia distribución y abundancia en las lagunas costeras, muy importantes para la función del ecosistema y las pesquerías. El objetivo de este estudio fue evaluar y comparar la ecología trófica de 2 especies de mojarra en la laguna hiperhalina (> 50) de Ría Lagartos, Yucatán, para proporcionar evidencia sobre la importancia de este hábitat sobre su crecimiento y requerimientos tróficos. Las muestras fueron colectadas bimensualmente durante un ciclo anual (2004-2005). Un total de 920 ejemplares de Eucinostomus argenteus (493) y E. gula (427) fueron colectados. Los componentes tróficos fueron analizados usando el Índice de Importancia Relativa (IIR) y análisis multivariados. Las mojarras fueron definidas como consumidores de segundo orden, alimentándose de anélidos, microcrustáceos (anfípodos, copépodos, tanaidáceos, ostrácodos) y cantidades significantes de detritus con variaciones en proporción y frecuencia de acuerdo a la disponibilidad del alimento. Ambas especies compartieron los mismos recursos alimenticios, sin embargo se observaron diferencias ontogenéticas con variaciones espaciales y temporales, que con ello se evita la competencia interespecífica.
    [Show full text]
  • Feeding Guilds Among Artificial-Reef Fishes in the Northern Gulf of Mexico Brian D
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquila Digital Community Gulf of Mexico Science Volume 14 Article 3 Number 2 Number 2 1996 Feeding Guilds Among Artificial-Reef Fishes in the Northern Gulf of Mexico Brian D. Nelson University of West Florida Stephen A. Bortone University of West Florida DOI: 10.18785/goms.1402.03 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Nelson, B. D. and S. A. Bortone. 1996. Feeding Guilds Among Artificial-Reef Fishes in the Northern Gulf of Mexico. Gulf of Mexico Science 14 (2). Retrieved from https://aquila.usm.edu/goms/vol14/iss2/3 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Nelson and Bortone: Feeding Guilds Among Artificial-Reef Fishes in the Northern Gulf Gulf of Mexico Scimce, 1996(2), pp. 66-80 Feeding Guilds Among Artificial-Reef Fishes in the Northern Gulf of Mexico BRIAN D. NELSON AND STEPHEN A. BORTONE To examine the diets of 25 demersal artificial-reef-associated fish species, 540 fishes were collected with spears and hand-nets off Panama City, Florida, in the summer of 1993. Fishes were preserved whole in the field. Stomach contents were later analyzed by frequency of occurrence, numerical abundance, and percent volume. These measures were combined into an Index of Relative Importance (IRI).
    [Show full text]
  • Of the FLORIDA STATE MUSEUM Biological Sciences
    2% - p.*' + 0.:%: 4.' 1%* B -944 3 =5. M.: - . * 18 . .,:i -/- JL J-1.4:7 - of the FLORIDA STATE MUSEUM Biological Sciences Volume 24 1979 Number 1 THE ORIGIN AND SEASONALITY OF THE FISH FAUNA ON A NEW JETTY IN THE NORTHEASTERN GULF OF MEXICO ROBERT W. HASTINGS *S 0 4 - ' In/ g. .f, i»-ly -.Id UNIVERSITY OF FLORIDA - GAINESVILLE Numbers of the Bulletin of the Florida State Museum, Biological Sciences, are pub- lished at irregular intervals. Volumes contain about 300 pages and are not necessarily completed in any one calendar year. John William Hardy, Editor Rhoda J. Rybak, Managing Editor Consultants for this issue: Robert L. Shipp Donald P. deSylva Communications concerning purchase or exchange of the publications and all manuscripts should be addressed to: Managing Editor, Bulletin; Florida State Museum; University of Florida; Gainesville, Florida 32611. Copyright © 1979 by the Florida State Museum of the University of Florida. This public document was promulgated at an annual cost of $3,589.40, or $3.589 per copy. It makes available to libraries, scholars, and all interested persons the results of researches in the natural sciences, emphasizing the circum-Caribbean region. Publication date: November 12, 1979 Price, $3.60 THE ORIGIN AND SEASONALITY OF THE FISH FAUNA ON A NEW JETTY IN THE NORTHEASTERN GULF OF MEXICO ROBERT W. HASTINGS1 SYNOPSIS: The establishment of the fish fauna on a new jetty at East Pass at the mouth of Choctawhatchee Bay, Okaloosa County, Florida, was studied from June, 1968, to January, 1971. Important components of the jetty fauna during its initial stages of development were: (a) original residents that exhibit some attraction to reef habitats, including some sand-beach inhabitants, several pelagic species, and a few ubiquitous estuarine species; and (b) reef fishes originating from permanent populations on offshore reefs.
    [Show full text]
  • Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2016 Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes Christi Linardich Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Environmental Health and Protection Commons, and the Marine Biology Commons Recommended Citation Linardich, Christi. "Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes" (2016). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/hydh-jp82 https://digitalcommons.odu.edu/biology_etds/13 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES by Christi Linardich B.A. December 2006, Florida Gulf Coast University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY August 2016 Approved by: Kent E. Carpenter (Advisor) Beth Polidoro (Member) Holly Gaff (Member) ABSTRACT HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES Christi Linardich Old Dominion University, 2016 Advisor: Dr. Kent E. Carpenter Understanding the status of species is important for allocation of resources to redress biodiversity loss.
    [Show full text]
  • Opsanus Beta
    Journal of the Marine Opsanus beta (Goode & Bean, 1880) Biological Association of the United Kingdom (Acanthopterygii: Batrachoididae), a non-indigenous toadfish in Sepetiba Bay, cambridge.org/mbi south-eastern Brazil Magda F. Andrade-Tubino1, Fernando Luiz K. Salgado1, Wagner Uehara1, Original Article Ricardo Utsunomia2 and Francisco Gerson Araújo1 Cite this article: Andrade-Tubino MF, Salgado 1Laboratório de Ecologia de Peixes, Departamento de Biologia Animal, Universidade Federal Rural do Rio de FLK, Uehara W, Utsunomia R, Araújo FG (2021). 2 Opsanus beta (Goode & Bean, 1880) Janeiro, Rodovia BR 465, km 7, 23897-030 Seropédica, RJ, Brazil and Departamento de Genética, Universidade (Acanthopterygii: Batrachoididae), a Federal Rural do Rio de Janeiro, BR 465, km 7, 23897-900 Seropédica, RJ, Brazil non-indigenous toadfish in Sepetiba Bay, south-eastern Brazil. Journal of the Marine Abstract Biological Association of the United Kingdom 101, 179–187. https://doi.org/10.1017/ The introduction of non-native predator fish is thought to have important negative effects on S0025315421000011 native prey populations. Opsanus beta is a non-native toadfish that was originally described in the Gulf of Mexico, between the west coast of Florida and Belize. In the present study, we Received: 17 June 2020 ′ Revised: 21 December 2020 describe, for the first time, the occurrence of O. beta in Sepetiba Bay (22°55 S), south-eastern Accepted: 31 December 2020 Brazil, probably brought into the bay through ships’ ballast water. Thirteen specimens were First published online: 26 February 2021 recorded in this area near to Sepetiba Port. Similarly, three other records of this species in the Brazilian coast were also reported near to port areas at Rio de Janeiro (22°49′S), Santos Key words: ′ ′ Ballast water; Brazilian coast; coastal fish; fish (23°59 S) and Paranaguá (25°33 S) ports.
    [Show full text]
  • Guide to the Coastal Marine Fishes of California
    STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 157 GUIDE TO THE COASTAL MARINE FISHES OF CALIFORNIA by DANIEL J. MILLER and ROBERT N. LEA Marine Resources Region 1972 ABSTRACT This is a comprehensive identification guide encompassing all shallow marine fishes within California waters. Geographic range limits, maximum size, depth range, a brief color description, and some meristic counts including, if available: fin ray counts, lateral line pores, lateral line scales, gill rakers, and vertebrae are given. Body proportions and shapes are used in the keys and a state- ment concerning the rarity or commonness in California is given for each species. In all, 554 species are described. Three of these have not been re- corded or confirmed as occurring in California waters but are included since they are apt to appear. The remainder have been recorded as occurring in an area between the Mexican and Oregon borders and offshore to at least 50 miles. Five of California species as yet have not been named or described, and ichthyologists studying these new forms have given information on identification to enable inclusion here. A dichotomous key to 144 families includes an outline figure of a repre- sentative for all but two families. Keys are presented for all larger families, and diagnostic features are pointed out on most of the figures. Illustrations are presented for all but eight species. Of the 554 species, 439 are found primarily in depths less than 400 ft., 48 are meso- or bathypelagic species, and 67 are deepwater bottom dwelling forms rarely taken in less than 400 ft.
    [Show full text]
  • Making a Big Splash with Louisiana Fishes
    Making a Big Splash with Louisiana Fishes Written and Designed by Prosanta Chakrabarty, Ph.D., Sophie Warny, Ph.D., and Valerie Derouen LSU Museum of Natural Science To those young people still discovering their love of nature... Note to parents, teachers, instructors, activity coordinators and to all the fishermen in us: This book is a companion piece to Making a Big Splash with Louisiana Fishes, an exhibit at Louisiana State Universi- ty’s Museum of Natural Science (MNS). Located in Foster Hall on the main campus of LSU, this exhibit created in 2012 contains many of the elements discussed in this book. The MNS exhibit hall is open weekdays, from 8 am to 4 pm, when the LSU campus is open. The MNS visits are free of charge, but call our main office at 225-578-2855 to schedule a visit if your group includes 10 or more students. Of course the book can also be enjoyed on its own and we hope that you will enjoy it on your own or with your children or students. The book and exhibit was funded by the Louisiana Board Of Regents, Traditional Enhancement Grant - Education: Mak- ing a Big Splash with Louisiana Fishes: A Three-tiered Education Program and Museum Exhibit. Funding was obtained by LSUMNS Curators’ Sophie Warny and Prosanta Chakrabarty who designed the exhibit with Southwest Museum Services who built it in 2012. The oarfish in the exhibit was created by Carolyn Thome of the Smithsonian, and images exhibited here are from Curator Chakrabarty unless noted elsewhere (see Appendix II).
    [Show full text]
  • Checklist of the Inland Fishes of Louisiana
    Southeastern Fishes Council Proceedings Volume 1 Number 61 2021 Article 3 March 2021 Checklist of the Inland Fishes of Louisiana Michael H. Doosey University of New Orelans, [email protected] Henry L. Bart Jr. Tulane University, [email protected] Kyle R. Piller Southeastern Louisiana Univeristy, [email protected] Follow this and additional works at: https://trace.tennessee.edu/sfcproceedings Part of the Aquaculture and Fisheries Commons, and the Biodiversity Commons Recommended Citation Doosey, Michael H.; Bart, Henry L. Jr.; and Piller, Kyle R. (2021) "Checklist of the Inland Fishes of Louisiana," Southeastern Fishes Council Proceedings: No. 61. Available at: https://trace.tennessee.edu/sfcproceedings/vol1/iss61/3 This Original Research Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Southeastern Fishes Council Proceedings by an authorized editor. For more information, please visit https://trace.tennessee.edu/sfcproceedings. Checklist of the Inland Fishes of Louisiana Abstract Since the publication of Freshwater Fishes of Louisiana (Douglas, 1974) and a revised checklist (Douglas and Jordan, 2002), much has changed regarding knowledge of inland fishes in the state. An updated reference on Louisiana’s inland and coastal fishes is long overdue. Inland waters of Louisiana are home to at least 224 species (165 primarily freshwater, 28 primarily marine, and 31 euryhaline or diadromous) in 45 families. This checklist is based on a compilation of fish collections records in Louisiana from 19 data providers in the Fishnet2 network (www.fishnet2.net).
    [Show full text]
  • Novel Vocal Repertoire and Paired Swimbladders of the Three-Spined Toadfish, Batrachomoeus Trispinosus: Insights Into the Diversity of the Batrachoididae
    1377 The Journal of Experimental Biology 212, 1377-1391 Published by The Company of Biologists 2009 doi:10.1242/jeb.028506 Novel vocal repertoire and paired swimbladders of the three-spined toadfish, Batrachomoeus trispinosus: insights into the diversity of the Batrachoididae Aaron N. Rice* and Andrew H. Bass Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA *Author for correspondence (e-mail: [email protected]) Accepted 23 February 2009 SUMMARY Toadfishes (Teleostei: Batrachoididae) are one of the best-studied groups for understanding vocal communication in fishes. However, sounds have only been recorded from a low proportion of taxa within the family. Here, we used quantitative bioacoustic, morphological and phylogenetic methods to characterize vocal behavior and mechanisms in the three-spined toadfish, Batrachomoeus trispinosus. B. trispinosus produced two types of sound: long-duration ‘hoots’ and short-duration ‘grunts’ that were multiharmonic, amplitude and frequency modulated, with a dominant frequency below 1 kHz. Grunts and hoots formed four major classes of calls. Hoots were typically produced in succession as trains, while grunts occurred either singly or as grunt trains. Aside from hoot trains, grunts and grunt trains, a fourth class of calls consisted of single grunts with acoustic beats, apparently not previously reported for individuals from any teleost taxon. Beats typically had a predominant frequency around 2 kHz with a beat frequency around 300 Hz. Vocalizations also exhibited diel and lunar periodicities. Spectrographic cross- correlation and principal coordinates analysis of hoots from five other toadfish species revealed that B. trispinosus hoots were distinct. Unlike any other reported fish, B. trispinosus had a bilaterally divided swimbladder, forming two separate swimbladders.
    [Show full text]