Petrosal Morphology and Cochlear Function in Mesozoic Stem Therians

Total Page:16

File Type:pdf, Size:1020Kb

Petrosal Morphology and Cochlear Function in Mesozoic Stem Therians bioRxiv preprint doi: https://doi.org/10.1101/490367; this version posted December 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Petrosal morphology and cochlear function in Mesozoic stem therians Tony Harper1, Guillermo Rougier2* 5 1Tony Harper, Center for Functional Anatomy and Evolution, Johns Hopkins University, 1830 E. Monument St., Baltimore, MD 21205, USA. ORCID: 0000-0002-9561-1562 2Department of Anatomical Sciences and Neurobiology, University of Louisville, 511 S. Floyd 10 St., Louisville, KY 40202, USA. ORCID: 0000-0003-3051-1373 *Corresponding Author: Guillermo W. Rougier [email protected] 15 502-852-4541 Short Title: Stem therian petrosals 20 1 bioRxiv preprint doi: https://doi.org/10.1101/490367; this version posted December 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Here we describe the bony anatomy of the inner ear and surrounding structures seen in three of the most plesiomorphic crown mammalian petrosal specimens in the fossil record. Our 25 study sample includes the stem therian taxa Priacodon fruitaensis from the Upper Jurassic of North America, and two isolated petrosal specimens colloquially known as the Höövör petrosals, recovered from Aptian-Albian sediments in Mongolia. The second Höövör petrosal is here described at length for the first time. All three of these stem therian petrosals and a comparative sample of extant mammalian taxa have been imaged using micro-CT, allowing 30 for detailed anatomical descriptions of osteological correlates of functionally significant neurovascular features, especially along the abneural wall of the cochlear canal. The high resolution imaging provided here clarifies several hypotheses regarding the mosaic evolution of features of the cochlear endocast in early mammals. In particular, these images demonstrate that the membranous cochlear duct adhered to the bony cochlear canal 35 abneurally to a secondary bony lamina before the appearance of an opposing primary bony lamina or tractus foraminosus. Additionally, while corroborating the general trend of reduction of venous sinuses and plexuses within the pars cochlearis seen in crownward mammaliaformes generally, the Höövör petrosals show the localized enlargement of a portion of the intrapetrosal venous plexus. This new excavation is for the vein of cochlear aqueduct, a 40 structure that is solely or predominantly responsible for the venous drainage of the cochlear apparatus in extant therians. However, given that these stem therian inner ears appear to have very limited high-frequency capabilities, the development of these modern vascular features the cochlear endocast suggest that neither the initiation or enlargement of the stria 2 bioRxiv preprint doi: https://doi.org/10.1101/490367; this version posted December 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. vascularis (a unique mammalian organ) is originally associated with the capacity for high- 45 frequency hearing or precise sound-source localization. Introduction 50 Therian mammals today display an impressive variety of auditory features facilitating the adept detection of airborne sound, making this group arguably the most acoustically sophisticated and diverse living or extinct clade of terrestrial vertebrates. The widespread capacity for high-acuity hearing (in terms of sensitivity, specificity, and highest detectable frequency) among the majority of extant therian mammals has reinforced the assumption 55 among neontologists that the Mesozoic members of the therian stem linage were stereotypically nocturnal forms that leveraged their auditory faculties to locate small prey and escape gigantic predators (i.e. [1]). However, this supposition has not been supported by the known fossil record of stem therians, with prior descriptions [2-7] demonstrating that these forms lacked the level of petrosal organization characterizing plesiomorphic marsupials [8], 60 afrotheres [9], eulipotyphlans, and primatomorphs [10]. Additionally, these reports have relied heavily on the description of the external morphology of the ear region, and for the most part remained silent or equivocal regarding the performance and/or physiological implications of the bony anatomy seen in fossil specimens. Conversely, several biomechanical/experimental studies on auditory anatomy and 65 physiology across extant tetrapods [11-15] highlight the unique nature of the therian cochlear apparatus (with its well-ordered acoustic hair-cell populations arrayed along the organ of 3 bioRxiv preprint doi: https://doi.org/10.1101/490367; this version posted December 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Corti, high endolymphatic potential, and absence of the lagenar macula), as well as the plesiomorphic nature of the monotreme cochlea with respect to many modern and fossil therians [16,17]. The complete loss of the lagenar macula in particular has been posited as a 70 therian-lineage evolutionary breakthrough that allowed for the later elongation and sophistication of the cochlear apparatus for non-linear amplification of high-frequency stimuli [18]. Conversely, the retention of a functional lagenar macula, along with its accompanying otoconial and neurovascular structures, in the monotreme and sauropsid lineagesis hard to conciliate with the soft tissue adaptations seen in modern therians. These “therian” features 75 include: 1) the exclusive reliance on the stria vascularis as the major endolymph producing organ, 2) the well-developed electromotility of prestins and other molecular components of the “cochlear amplifier”, and 3) the radical elongation and geometrical reorganization of the cochlear sensory epithelium. The distribution of these characteristics in extant animals, within the wider framework of cynodont evolution, points to a fundamental transformation of the 80 cochlear apparatus somewhere within the phylogenetic vicinity of the therian stem [18]. The lack of anatomical depiction within the Mesozoic fossil record is understandable given the general lack of high-fidelity bony correlates for key soft tissue structures such as the cochlear duct, lagenar macula, and stria vascularis. Additionally, prior studies using high- resolution imaging of the internal anatomy in pertinent fossils have not commented on or 85 depicted the possible existence of several physiologically significant bony structures that are not familiar to most paleontologists. This report uses high-resolution micro-CT information to update and qualify the descriptions of petrosal anatomy provided in the representative sample of stem therians focused on by [2] and [3], two large-scale studies characterizing the fossil record of early mammalian petrosal evolution (Fig 1). These images and reconstructions are 90 framed within a broader comparative and functional setting of modern mammalian auditory 4 bioRxiv preprint doi: https://doi.org/10.1101/490367; this version posted December 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. physiology, and morphology with the hope of bridging both fields which, due to the steep learning curves involved, have had only limited cross-referencing. These new high-resolution images allow the first descriptions of the labyrinthine anatomy in some of the most morphologically plesiomorphic petrosal regions known in the crown mammalian fossil record. 95 The three specimens focused on here include the relatively well-known triconodontid Priacodon fruitaensis and the two isolated petrosal specimens known as the Höövör petrosals. The second Höövör petrosal (Fig 1 a, b) has not been described or figured, and has only been cursorily referred to in previous publications (i.e. [2]). We regard this second petrosal as distinct from that of the previously described petrosal in [2], and therefore provide 100 here a complete description and assessment of this specimen. Fig 1. Stem therian petrosal specimens described in this report. a,b Höövör Petrosal 2 (PSS-MAE-119); c,d, Höövör Petrosal 1 (PSS-MAE-104); e,f left petrosal of Priacodon fruitaensis (LACM 120451). a,c,e in ventral view; b,d,f in dorsomedial view. Scale bar is 1 105 mm. The novel information presented here does little to overturn previous taxonomic attributions of these stem therians especially the first and second Höövör petrosals, one or both of which are tentatively referred to taxa within Gobiconodontidae and/or Tinodontidae. 110 However, the new anatomical representation provided by the images used here demonstrates the presence of a combination of plesiomorphic and derived character states of the cochlear canal that support their ancestry
Recommended publications
  • A New Gobiconodontid Mammal from the Early Cretaceous of Spain and Its Palaeogeographic Implications
    A new gobiconodontid mammal from the Early Cretaceous of Spain and its palaeogeographic implications Gloria Cuenca-Bescós and José I. Canudo Acta Palaeontologica Polonica 48 (4), 2003: 575-582 A new gobiconodontid from Vallipón (Teruel, Spain) represents the first record of this family in Europe. The site has a diverse fossil assemblage mainly composed of isolated bones and teeth probably accumulated by tidal action and water streams in an ancient beach of upper Barremian, in the transitional marine-continental sediments of the Artoles Formation. The new gobiconodontid consist of an isolated upper molar, smaller in size than that element in other gobiconodontids, with a robust cusp A, characterised by lateral bulges on each mesial and distal flanges of that cusp, and a discontinuous cingulum raised at the lingual side. The oclusal outline is smooth compared with Gobiconodon borissiaki, Gobiconodon hoburensis, or Gobiconodon ostromi. The Gobiconodontidae record is exclusively Laurasiatic. The oldest gobiconodontid fossil remains are Hauterivian; though their probable origin has to be found at the Late Jurassic in Central Asia (as inferred from derived character of the first gobiconodontids as well as phylogenetic relationships). At the end of the Early Cretaceous they expanded throughout Laurasia as indicated by findings in Asia, North America and Spain. Two dispersion events spread gobiconodontids: to the West (Europe) in the Barremian and to the East (North America) during the Aptian/Albian. Key words: Cretaceous, Barremian, Mammalia, Gobiconodontidae, Europe, palaeogeography. Gloria Cuenca−Bescós [[email protected]], José Ignacio Canudo [[email protected]], Area y Museo de Paleontología, Departamento de Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain.
    [Show full text]
  • Miocene Mammal Reveals a Mesozoic Ghost Lineage on Insular New Zealand, Southwest Pacific
    Miocene mammal reveals a Mesozoic ghost lineage on insular New Zealand, southwest Pacific Trevor H. Worthy*†, Alan J. D. Tennyson‡, Michael Archer§, Anne M. Musser¶, Suzanne J. Hand§, Craig Jonesʈ, Barry J. Douglas**, James A. McNamara††, and Robin M. D. Beck§ *School of Earth and Environmental Sciences, Darling Building DP 418, Adelaide University, North Terrace, Adelaide 5005, South Australia, Australia; ‡Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington 6015, New Zealand; §School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales 2052, Australia; ¶Australian Museum, 6-8 College Street, Sydney, New South Wales 2010, Australia; ʈInstitute of Geological and Nuclear Sciences, P.O. Box 30368, Lower Hutt 5040, New Zealand; **Douglas Geological Consultants, 14 Jubilee Street, Dunedin 9011, New Zealand; and ††South Australian Museum, Adelaide, South Australia 5000, Australia Edited by James P. Kennett, University of California, Santa Barbara, CA, and approved October 11, 2006 (sent for review July 8, 2006) New Zealand (NZ) has long been upheld as the archetypical Ma) dinosaur material (13) and isolated moa bones from marine example of a land where the biota evolved without nonvolant sediments up to 2.5 Ma (1, 14), the terrestrial record older than terrestrial mammals. Their absence before human arrival is mys- 1 Ma is extremely limited. Until now, there has been no direct terious, because NZ was still attached to East Antarctica in the Early evidence for the pre-Pleistocene presence in NZ of any of its Cretaceous when a variety of terrestrial mammals occupied the endemic vertebrate lineages, particularly any group of terrestrial adjacent Australian portion of Gondwana.
    [Show full text]
  • Mammals from the Mesozoic of Mongolia
    Mammals from the Mesozoic of Mongolia Introduction and Simpson (1926) dcscrihed these as placental (eutherian) insectivores. 'l'he deltathcroids originally Mongolia produces one of the world's most extraordi- included with the insectivores, more recently have narily preserved assemblages of hlesozoic ma~nmals. t)een assigned to the Metatheria (Kielan-Jaworowska Unlike fossils at most Mesozoic sites, Inany of these and Nesov, 1990). For ahout 40 years these were the remains are skulls, and in some cases these are asso- only Mesozoic ~nanimalsknown from Mongolia. ciated with postcranial skeletons. Ry contrast, 'I'he next discoveries in Mongolia were made by the Mesozoic mammals at well-known sites in North Polish-Mongolian Palaeontological Expeditions America and other continents have produced less (1963-1971) initially led by Naydin Dovchin, then by complete material, usually incomplete jaws with den- Rinchen Barsbold on the Mongolian side, and Zofia titions, or isolated teeth. In addition to the rich Kielan-Jaworowska on the Polish side, Kazi~nierz samples of skulls and skeletons representing Late Koualski led the expedition in 1964. Late Cretaceous Cretaceous mam~nals,certain localities in Mongolia ma~nmalswere collected in three Gohi Desert regions: are also known for less well preserved, but important, Bayan Zag (Djadokhta Formation), Nenlegt and remains of Early Cretaceous mammals. The mammals Khulsan in the Nemegt Valley (Baruungoyot from hoth Early and Late Cretaceous intervals have Formation), and llcrmiin 'ISav, south-\vest of the increased our understanding of diversification and Neniegt Valley, in the Red beds of Hermiin 'rsav, morphologic variation in archaic mammals. which have heen regarded as a stratigraphic ecluivalent Potentially this new information has hearing on the of the Baruungoyot Formation (Gradzinslti r't crl., phylogenetic relationships among major branches of 1977).
    [Show full text]
  • Early Cretaceous Amphilestid ('Triconodont') Mammals from Mongolia
    Early Cretaceous amphilestid ('triconodont') mammals from Mongolia ZOFIAKIELAN-JAWOROWSKA and DEMBERLYIN DASHZEVEG Kielan-Jaworowską Z. &Daslueveg, D. 1998. Early Cretaceous amphilestid (.tricono- dont') mammals from Mongotia. - Acta Pal.aeontol.ogicaPolonica,43,3, 413438. Asmall collection of ?Aptianor ?Albian amphilestid('triconodont') mammals consisting of incomplete dentaries and maxillae with teeth, from the Khoboor localiĘ Guchin Us counĘ in Mongolia, is described. Grchinodon Troftmov' 1978 is regarded a junior subjective synonym of GobiconodonTroftmov, 1978. Heavier wear of the molariforms M3 andM4than of themore anteriorone-M2 in Gobiconodonborissiaki gives indirect evidence formolariformreplacement in this taxon. The interlocking mechanismbetween lower molariforms n Gobiconodon is of the pattern seen in Kuchneotherium and Ttnodon. The ińterlocking mechanism and the type of occlusion ally Amphilestidae with Kuehneotheriidae, from which they differ in having lower molariforms with main cusps aligned and the dentary-squamosal jaw joint (double jaw joint in Kuehneotheńdae). The main cusps in upper molariforms M3-M5 of Gobiconodon, however, show incipient tńangular arrangement. The paper gives some support to Mills' idea on the therian affinities of the Amphilestidae, although it cannot be excluded that the characters that unite the two groups developed in parallel. Because of scanty material and arnbiguĘ we assign the Amphilestidae to order incertae sedis. Key words : Mammali4 .triconodonts', Amphilestidae, Kuehneotheriidae, Early Cretaceous, Mongolia. Zofia Kiel,an-Jaworowska [zkielnn@twarda,pan.pl], InsĘtut Paleobiologii PAN, ul. Twarda 5 I /5 5, PL-00-8 I 8 Warszawa, Poland. DemberĘin Dash7eveg, Geological Institute, Mongolian Academy of Sciences, Ulan Bator, Mongolia. Introduction Beliajeva et al. (1974) reportedthe discovery of Early Cretaceous mammals at the Khoboor locality (referred to also sometimes as Khovboor), in the Guchin Us Soinon (County), Gobi Desert, Mongolia.
    [Show full text]
  • Two New Species of Gobiconodon (Mammalia, Eutriconodonta, Gobiconodontidae) from the Lower Cretaceous Shahai and Fuxin Formations, Northeastern China
    Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 Two new species of Gobiconodon (Mammalia, Eutriconodonta, Gobiconodontidae) from the Lower Cretaceous Shahai and Fuxin formations, northeastern China Nao Kusuhashi, Yuan-Qing Wang, Chuan-Kui Li & Xun Jin To cite this article: Nao Kusuhashi, Yuan-Qing Wang, Chuan-Kui Li & Xun Jin (2016) Two new species of Gobiconodon (Mammalia, Eutriconodonta, Gobiconodontidae) from the Lower Cretaceous Shahai and Fuxin formations, northeastern China, Historical Biology, 28:1-2, 14-26 To link to this article: http://dx.doi.org/10.1080/08912963.2014.977881 Published online: 01 Oct 2015. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Download by: [University of Sussex Library] Date: 01 October 2015, At: 18:24 Historical Biology, 2016 Vol. 28, Nos. 1–2, 14–26, http://dx.doi.org/10.1080/08912963.2014.977881 Two new species of Gobiconodon (Mammalia, Eutriconodonta, Gobiconodontidae) from the Lower Cretaceous Shahai and Fuxin formations, northeastern China Nao Kusuhashia*, Yuan-Qing Wangb, Chuan-Kui Lib and Xun Jinb aDepartment of Earth’s Evolution and Environment, Graduate School of Science and Engineering, Ehime University, Ehime 790-8577, Japan; bKey Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, P.R. China (Received 29 July 2014; accepted 14 October 2014) Two new gobiconodontid mammals, Gobiconodon tomidai sp.
    [Show full text]
  • Chinaxiv:201908.00120V1 (Eutriconodonta, Mammalia) from the Lower Cretaceous Shahai and Fuxin Formations, Liaoning, China
    ChinaXiv合作期刊 DOI: 10.19615/j.cnki.1000-3118.190724 New gobiconodontid (Eutriconodonta, Mammalia) from the Lower Cretaceous Shahai and Fuxin formations, Liaoning, China KUSUHASHI Nao1 WANG Yuan-Qing2,3,4* LI Chuan-Kui2 JIN Xun2 (1 Department of Earth’s Evolution and Environment, Graduate School of Science and Engineering, Ehime University Matsuyama, Ehime 790-8577, Japan [email protected]) (2 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China * Corresponding author: [email protected]) (3 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044, China) (4 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049, China) Abstract Eutriconodontans are one of the key members of mammals to our understanding of the evolution and transition of mammalian fauna in Asia during the Cretaceous. Two gobiconodontid and two triconodontid species have previously been reported from the upper Lower Cretaceous Shahai and Fuxin formations. Here we describe two additional eutriconodontans from the formations, Fuxinoconodon changi gen. et sp. nov. and ?Gobiconodontidae gen. et sp. indet. This new species is attributed to the Gobiconodontidae, characterized by having an enlarged first lower incisor, reduction in the number of incisors and premolariforms, proportionally large cusps b and c being well distant from cusp a on the molariforms, presence of a labial cingulid, and a unique mixed combination of molariform characters seen on either the first or the second, but not both, generations of molariforms in Gobiconodon. Together with the four known species, eutriconodontans remained diverse to some extent in the late Early Cretaceous in Asia, although their family-level and generic level diversity appears to have been already reduced at that time.
    [Show full text]
  • New Gobiconodontid (Eutriconodonta, Mammalia) from the Lower
    第58卷 第1期 古 脊 椎 动 物 学 报 pp. 45–66 2020年1月 VERTEBRATA PALASIATICA figs. 1–5 DOI: 10.19615/j.cnki.1000-3118.190724 New gobiconodontid (Eutriconodonta, Mammalia) from the Lower Cretaceous Shahai and Fuxin formations, Liaoning, China KUSUHASHI Nao1 WANG Yuan-Qing2,3,4* LI Chuan-Kui2 JIN Xun2 (1 Department of Earth’s Evolution and Environment, Graduate School of Science and Engineering, Ehime University Matsuyama, Ehime 790-8577, Japan [email protected]) (2 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China * Corresponding author: [email protected]) (3 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044, China) (4 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049, China) Abstract Eutriconodontans are one of the key members of mammals to our understanding of the evolution and transition of mammalian fauna in Asia during the Cretaceous. Two gobiconodontid and two triconodontid species have previously been reported from the upper Lower Cretaceous Shahai and Fuxin formations. Here we describe two additional eutriconodontans from the formations, Fuxinoconodon changi gen. et sp. nov. and ?Gobiconodontidae gen. et sp. indet. This new species is attributed to the Gobiconodontidae, characterized by having an enlarged first lower incisor, reduction in the number of incisors and premolariforms, proportionally large cusps b and c being well distant from cusp a on the molariforms, presence of a labial cingulid, and a unique mixed combination of molariform characters seen on either the first or the second, but not both, generations of molariforms in Gobiconodon.
    [Show full text]
  • Proces Wymiany Zębów U Wybranych Grup Ssaków W Ujęciu Ewolucyjnym
    Tom 70 2021 Numer 1 (330) Strony 83–93 Paweł Muniak Wydział Biologii Uniwersytet Jagielloński Gronostajowa 7, 30-387 Kraków E-mail: [email protected] PROCES WYMIANY ZĘBÓW U WYBRANYCH GRUP SSAKÓW W UJĘCIU EWOLUCYJNYM WSTĘP pod względem wymiany zębowej wyjątkowe, gdyż tylko u nich widać kształtującą się w Wymiana zębów u zwierząt kręgowych ciągu ewolucji tendencję do difiodoncji, czy- jest ważnym zjawiskiem zarówno w ska- li wytwarzania jedynie dwóch pokoleń zę- li osobnika, zwiększającym jego dostosowa- bów: mlecznych i stałych, wymienianych w nie do środowiska i co za tym idzie, szan- skoordynowany sposób w ciągu krótkiego se przeżycia, jak i w szerszej perspektywie czasu życia zwierzęcia (zazwyczaj pomiędzy ewolucyjnej, pokazując trendy ewolucyjne w ukończeniem stadium oseska a dojrzałością obrębie całych grup. płciową) (SZARSKI 1998). Wymiana uzębienia jest powszechna wśród zwierząt. Większość zwierząt posiada- TERMINOLOGIA jących zęby wymienia je na nowe, stosując różne strategie. Najczęstszym typem wymia- W niniejszej pracy będę posługiwał się ny jest polifiodoncja. Polega ona na tym, że ogólnie przyjętymi skrótami z terminolo- utracony ząb jest zastępowany przez nowy, gii anatomicznej, gdzie zęby szczęki (górne) wyrastający na jego miejscu. W taki sposób będą oznaczane wielką literą: I, C, P, M, a wymienia zęby większość gadów, u których zęby żuchwy (dolne) małą literą: i, c, p, m. wymieniane są one w sposób przypadko- I tak: wy: gdy jeden ulegnie złamaniu lub wypad- nie, na jego miejsce wyrasta nowy. U ryb I/i – siekacz, chrzęstnoszkieletowych, w tym rekinów, zna- C/c – kieł, ne są inne mechanizmy wymiany uzębienia, P/p – ząb przedtrzonowy, tzn. spirale zębowe, pozwalające na wymianę M/m – ząb trzonowy.
    [Show full text]
  • Aspects of the Microvertebrate Fauna of the Early Cretaceous (Barremian) Wessex Formation of the Isle of Wight, Southern England
    ASPECTS OF THE MICROVERTEBRATE FAUNA OF THE EARLY CRETACEOUS (BARREMIAN) WESSEX FORMATION OF THE ISLE OF WIGHT, SOUTHERN ENGLAND By STEVEN CHARLES SWEETMAN M.A. (Oxon.) 1980 F.G.S. A thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of Portsmouth School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, PO1 3QL, U.K. April, 2007 0 Disclaimer Whilst registered for this degree, I have not registered for any other award. No part of this work has been submitted for any other academic award. 1 Acknowledgements At inception of this project there was a significant risk that the Wessex Formation would not yield a microvertebrate fauna. I would, therefore, like to express special thanks to Dave Martill (University of Portsmouth) for his initial support and for securing the research scholarship which made this study possible. I would also like to thank him for his supervision, generous support, encouragement and advice thereafter. Special thanks also to Susan Evans (UCL) for her enthusiastic help and advice on all matters relating to microvertebrates in general, and lizards in particular, and to Jerry Hooker (NHM) for everything relating to mammals; also to Brian Gasson for his support in the field and for the generous donation of many exceptional specimens from his private collection. The broad scope of this study has engendered the help, support and advice of many others and I am grateful to all. At the University
    [Show full text]
  • A New Spalacotheriid Symmetrodont from the Early Cretaceous of Northeastern China
    PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3475, 20 pp., 5 ®gures, 1 table May 11, 2005 A New Spalacotheriid Symmetrodont from the Early Cretaceous of Northeastern China YAO-MING HU,1 RICHARD C. FOX,2 YUAN-QING WANG,3 AND CHUAN-KUI LI4 ABSTRACT Symmetrodonts are Mesozoic mammals having lower molars with nearly symmetrical tri- gonids but lacking talonids. They appear to be stem members of the mammalian clade that led to extant tribosphenic mammals, but the fossil record of symmetrodonts is poor. Here we report a new genus and species of an acute-angled spalacotheriid symmetrodont, Heishanlestes changi, n.gen. and n.sp., represented by well-preserved lower jaws with teeth from the Early Cretaceous of northeastern China. The new mammal has four tightly spaced premolars and three morphological groups of lower molars, in which the ®rst molar has an obtuse trigonid angle and the last two molars have a large neomorphic cusp in the center of the trigonid, a feature not seen in other mammals. Heishanlestes appears to be a specialized member of the spalacotheriid subfamily, Spalacolestinae, which is otherwise only known from North America. The animal probably used the premolars to crush its prey before shearing it with the molars. 1 Division of Paleontology, American Museum of Natural History; Institute of Vertebrate Paleontology and Paleo- anthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China; Biology Program, Graduate School and City College of New York, City University of New York ([email protected]).
    [Show full text]
  • Recent Advances on the Study of Mesozoic Mammals from China
    Asociación Paleontológica Argentina. Publicación Especial 7 ISSN 0328-347)( VII International Symposium on Mesozoic Terrestrial Ecosystems: 179-184. Buenos Aires, 30-6-2001 Recent advances on the study of Mesozoic mammals from China Yuanqing WANG', Yaoming HU', Chuankuei LP and Zhenglu CHANG' Abstract. History of the study of Chinese Mesozoic mammals can be traced back to over 60 years ago when Yabe and Shikama described Manchurodon simplicidens Yabe and Shikama, an amphidontid "syrn- metrodont" from northeastern China in 1938. So far, a dozen of localities yielding Mesozoic mammals have been reported from China, representing a wide range of Mesozoic mammal groups, including sinoconodontids, morganucodontids, triconodonts, multituberculates, syrnmetrodonts, shuotheriids, and eutherians, etc. Complete skeletons of Zhangheotherium quinquecuspidens Hu et al., a symmetrodont, and Jeholodens jenkinsi [i et al., an eutriconodont, from the same early Cretaceous lacustrine deposits as those bearing the feathered dinosaurs and the primitive birds, offer new insight into the relationships of the ma- jor lineages of marnmals and the evolution of the marnmalian skeleton. Discovery of an upper molar of Shuoihenum shilongi Wang et al. from the same locality as S. dongi Chow and Rich, the type species of the genus, confirms the existence of the pseudo-tribosphenic molar pattern, in contrast to tribosphenic one, and indicates that Yinotheria represents a separate lineage in early therian diversity. Keywords.China.Mesozoicrnarnrnals.History.New information. Introduction posed later (Teilhard de Chardin and Leroy, 1942; Chow, 1953; Patterson, 1956; Zhang, 1984). Further Mammals have dominated the continental envi- work suggested a Middle Jurassic age for the mam- ronments for about 65 Ma in Cenozoic after the great mal-bearing beds (Zhow et al., 1991).
    [Show full text]
  • Mammal Disparity Decreases During the Cretaceous Angiosperm Radiation
    Mammal disparity decreases during the Cretaceous angiosperm radiation David M. Grossnickle1 and P. David Polly2 1Department of Geological Sciences, and 2Departments of Geological Sciences, Biology, and Anthropology, rspb.royalsocietypublishing.org Indiana University, Bloomington, IN 47405, USA Fossil discoveries over the past 30 years have radically transformed tra- ditional views of Mesozoic mammal evolution. In addition, recent research provides a more detailed account of the Cretaceous diversification of flower- Research ing plants. Here, we examine patterns of morphological disparity and functional morphology associated with diet in early mammals. Two ana- Cite this article: Grossnickle DM, Polly PD. lyses were performed: (i) an examination of diversity based on functional 2013 Mammal disparity decreases during dental type rather than higher-level taxonomy, and (ii) a morphometric analysis of jaws, which made use of modern analogues, to assess changes the Cretaceous angiosperm radiation. Proc R in mammalian morphological and dietary disparity. Results demonstrate a Soc B 280: 20132110. decline in diversity of molar types during the mid-Cretaceous as abundances http://dx.doi.org/10.1098/rspb.2013.2110 of triconodonts, symmetrodonts, docodonts and eupantotherians dimin- ished. Multituberculates experience a turnover in functional molar types during the mid-Cretaceous and a shift towards plant-dominated diets during the late Late Cretaceous. Although therians undergo a taxonomic Received: 13 August 2013 expansion coinciding with the angiosperm radiation, they display small Accepted: 12 September 2013 body sizes and a low level of morphological disparity, suggesting an evol- utionary shift favouring small insectivores. It is concluded that during the mid-Cretaceous, the period of rapid angiosperm radiation, mammals experi- enced both a decrease in morphological disparity and a functional shift in dietary morphology that were probably related to changing ecosystems.
    [Show full text]