Solar Energy Absorbed by the Earth

Total Page:16

File Type:pdf, Size:1020Kb

Solar Energy Absorbed by the Earth Solar Flux and Flux Density Solar Flux Density Reaching Earth q Solar Luminosity (L) q Solar Constant (S) the constant flux of energy put out by the The solar energy density at the mean distance of sun Earth from the sun (1.5 x 1011 m) L = 3.9 x 1026 W S = L / (4 p d2) q Solar Flux Density (Sd) d 26 11 2 the amount of solar energy per unit area on sun = (3.9 x 10 W) / [4 x 3.14 x (1.5 x 10 m) ] a sphere centered at the Sun with a distance = 1370 W/m2 d 2 2 Sd = L / (4 p d ) W/m ESS200A ESS200A Prof. Jin-Yi Yu Prof. Jin-Yi Yu Solar Energy Incident On the Solar Energy Absorbed by Earth Earth § Solar Constant (S) = solar flux density reaching the Earth = 1370 W/m2 § Solar energy incident on the Earth = S x the “flat” area of the Earth 2 = S x p R Earth § Solar energy absorbed by the Earth = (received solar flux) – (reflected solar flux) 2 2 = S p R Earth – S p R Earth x A 2 q Solar energy incident on the Earth (from The Earth System) = S p R Earth x (1-A) = total amount of solar energy can be absorbed by A is the planetary albedo of the Earth, which Earth is about 0.3. = (Solar constant) x (Shadow Area) 2 = S x p R Earth ESS200A ESS200A Prof. Jin-Yi Yu Prof. Jin-Yi Yu 1 What Happens After the Earth Blackbody Radiation Absorbs Solar Energy? q Blackbody q The Earth warms up and has to emit radiative A blackbody is something that emits (or absorbs) energy back to the space to reach a equilibrium electromagnetic radiation with 100% efficiency at condition. all wavelength. q The radiation emitted by the Earth is called q Blackbody Radiation “terrestrial radiation” which is assumed to be The amount of the radiation emitted by a like blackbody radiation. blackbody depends on the absolute temperature of the blackbody. ESS200A ESS200A Prof. Jin-Yi Yu Prof. Jin-Yi Yu Planetary Energy Balance Energy Emitted from Earth § Energy emitted by Earth = Energy absorbed by Earth 4 2 2 sTe x (4p R Earth ) = S p R Earth x (1-A) § The Stefan-Boltzmann Law sT 4 = S/4 * (1-A) The energy flux emitted by a blackbody e is related to the fourth power of the body’s = 1370/4 W/m2 * (1-A) absolute temperature = 342.5 W/m2 * (1-A) F = sT4 where s is 5.67x10-8 W/m2/K = 240 W/m2 § Energy emitted from the Earth (from Global Physical Climatology) = (blackbody emission) x (total area of Earth) § Earth’s blackbody temperature 4 2 = (sTe ) x (4p R Earth ) Earth’s surface temperature Te = 255 K (-18C) (from The Earth System) TS = 288 K (15C) greenhouse effect (33C) !! ESS200A ESS200A Prof. Jin-Yi Yu Prof. Jin-Yi Yu 2 Greenhouse Effect Different Wavelengths of Solar and Earth’s Radiation Greenhouse Atmosphere Normalized Planck Function Planck Function T 4 sunlight S/4 * (1- s A A) longwave sT heat 4 S 4 shortwave sTA § allow sunlight to come in At the top of the atmosphere: S/4*(1-A) = sT 4 è T =T = 255K § trap heat inside the house A A e For Earth’s surface: (from The Earth System) 4 4 S/4*(1-A) + sTA = sTS è TS =1.19TA= 303K ESS200A ESS200A Prof. Jin-Yi Yu (from Climate System Modeling) Prof. Jin-Yi Yu Greenhouse Gases Where Does the Solar Energy Go? Incoming solar energy (100) § 70% absorbed 25% 45% by Earth’s surface (ocean + land) 25% by the atmosphere and clouds § 30% reflected and scattered 45% back (from NCAR/COMET website) 20% by clouds 6% by the atmosphere 4% by surface ESS200A ESS200A Prof. Jin-Yi Yu Prof. Jin-Yi Yu 3 Important Roles of Clouds In Where Is Earth’s Radiation Emitted From? Global Climate Radiation back to Space (70 Units) § 70 (units) radiation back to space 66% by the atmosphere 4% by surface (through clear sky) (from The Earth System) § Greenhouse emission (back to surface) 88% (of solar radiation) (from The Earth System) ESS200A ESS200A Prof. Jin-Yi Yu Prof. Jin-Yi Yu How Do Atmosphere and Ocean Transport Polarward Energy Transport Heat? Annual-Mean Radiative Energy Polarward Heat Flux Atmospheric Circulation Ocean Circulation (from USA Today) The atmosphere dominates the Polarward heat flux is needed to polarward heat transport at transport radiative energy from middle and high latitudes. The the tropics to higher latitudes ocean dominates the transport at lower latitudes. 15 (top from The Earth System) (1 petaWatts = 10 W) ESS200A ESS200A (figures from Global Physical Climatology) Prof. Jin-Yi Yu (bottom from USGCRP) Prof. Jin-Yi Yu 4.
Recommended publications
  • The Future Life Span of Earth's Oxygenated Atmosphere
    In press at Nature Geoscience The future life span of Earth’s oxygenated atmosphere Kazumi Ozaki1,2* and Christopher T. Reinhard2,3,4 1Department of Environmental Science, Toho University, Funabashi, Chiba 274-8510, Japan 2NASA Nexus for Exoplanet System Science (NExSS) 3School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA 4NASA Astrobiology Institute, Alternative Earths Team, Riverside, CA, USA *Correspondence to: [email protected] Abstract: Earth’s modern atmosphere is highly oxygenated and is a remotely detectable signal of its surface biosphere. However, the lifespan of oxygen-based biosignatures in Earth’s atmosphere remains uncertain, particularly for the distant future. Here we use a combined biogeochemistry and climate model to examine the likely timescale of oxygen-rich atmospheric conditions on Earth. Using a stochastic approach, we find that the mean future lifespan of Earth’s atmosphere, with oxygen levels more than 1% of the present atmospheric level, is 1.08 ± 0.14 billion years (1σ). The model projects that a deoxygenation of the atmosphere, with atmospheric O2 dropping sharply to levels reminiscent of the Archaean Earth, will most probably be triggered before the inception of moist greenhouse conditions in Earth’s climate system and before the extensive loss of surface water from the atmosphere. We find that future deoxygenation is an inevitable consequence of increasing solar fluxes, whereas its precise timing is modulated by the exchange flux of reducing power between the mantle and the ocean– atmosphere–crust system. Our results suggest that the planetary carbonate–silicate cycle will tend to lead to terminally CO2-limited biospheres and rapid atmospheric deoxygenation, emphasizing the need for robust atmospheric biosignatures applicable to weakly oxygenated and anoxic exoplanet atmospheres and highlighting the potential importance of atmospheric organic haze during the terminal stages of planetary habitability.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • Useful Constants
    Appendix A Useful Constants A.1 Physical Constants Table A.1 Physical constants in SI units Symbol Constant Value c Speed of light 2.997925 × 108 m/s −19 e Elementary charge 1.602191 × 10 C −12 2 2 3 ε0 Permittivity 8.854 × 10 C s / kgm −7 2 μ0 Permeability 4π × 10 kgm/C −27 mH Atomic mass unit 1.660531 × 10 kg −31 me Electron mass 9.109558 × 10 kg −27 mp Proton mass 1.672614 × 10 kg −27 mn Neutron mass 1.674920 × 10 kg h Planck constant 6.626196 × 10−34 Js h¯ Planck constant 1.054591 × 10−34 Js R Gas constant 8.314510 × 103 J/(kgK) −23 k Boltzmann constant 1.380622 × 10 J/K −8 2 4 σ Stefan–Boltzmann constant 5.66961 × 10 W/ m K G Gravitational constant 6.6732 × 10−11 m3/ kgs2 M. Benacquista, An Introduction to the Evolution of Single and Binary Stars, 223 Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7, © Springer Science+Business Media New York 2013 224 A Useful Constants Table A.2 Useful combinations and alternate units Symbol Constant Value 2 mHc Atomic mass unit 931.50MeV 2 mec Electron rest mass energy 511.00keV 2 mpc Proton rest mass energy 938.28MeV 2 mnc Neutron rest mass energy 939.57MeV h Planck constant 4.136 × 10−15 eVs h¯ Planck constant 6.582 × 10−16 eVs k Boltzmann constant 8.617 × 10−5 eV/K hc 1,240eVnm hc¯ 197.3eVnm 2 e /(4πε0) 1.440eVnm A.2 Astronomical Constants Table A.3 Astronomical units Symbol Constant Value AU Astronomical unit 1.4959787066 × 1011 m ly Light year 9.460730472 × 1015 m pc Parsec 2.0624806 × 105 AU 3.2615638ly 3.0856776 × 1016 m d Sidereal day 23h 56m 04.0905309s 8.61640905309
    [Show full text]
  • Diameter and Photospheric Structures of Canopus from AMBER/VLTI Interferometry,
    A&A 489, L5–L8 (2008) Astronomy DOI: 10.1051/0004-6361:200810450 & c ESO 2008 Astrophysics Letter to the Editor Diameter and photospheric structures of Canopus from AMBER/VLTI interferometry, A. Domiciano de Souza1, P. Bendjoya1,F.Vakili1, F. Millour2, and R. G. Petrov1 1 Lab. H. Fizeau, CNRS UMR 6525, Univ. de Nice-Sophia Antipolis, Obs. de la Côte d’Azur, Parc Valrose, 06108 Nice, France e-mail: [email protected] 2 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany Received 23 June 2008 / Accepted 25 July 2008 ABSTRACT Context. Direct measurements of fundamental parameters and photospheric structures of post-main-sequence intermediate-mass stars are required for a deeper understanding of their evolution. Aims. Based on near-IR long-baseline interferometry we aim to resolve the stellar surface of the F0 supergiant star Canopus, and to precisely measure its angular diameter and related physical parameters. Methods. We used the AMBER/VLTI instrument to record interferometric data on Canopus: visibilities and closure phases in the H and K bands with a spectral resolution of 35. The available baselines (60−110 m) and the high quality of the AMBER/VLTI observations allowed us to measure fringe visibilities as far as in the third visibility lobe. Results. We determined an angular diameter of / = 6.93 ± 0.15 mas by adopting a linearly limb-darkened disk model. From this angular diameter and Hipparcos distance we derived a stellar radius R = 71.4 ± 4.0 R. Depending on bolometric fluxes existing in the literature, the measured / provides two estimates of the effective temperature: Teff = 7284 ± 107 K and Teff = 7582 ± 252 K.
    [Show full text]
  • Solar Radiation
    SOLAR CELLS Chapter 2. Solar Radiation Chapter 2. SOLAR RADIATION 2.1 Solar radiation One of the basic processes behind the photovoltaic effect, on which the operation of solar cells is based, is generation of the electron-hole pairs due to absorption of visible or other electromagnetic radiation by a semiconductor material. Today we accept that electromagnetic radiation can be described in terms of waves, which are characterized by wavelength ( λ ) and frequency (ν ), or in terms of discrete particles, photons, which are characterized by energy ( hν ) expressed in electron volts. The following formulas show the relations between these quantities: ν = c λ (2.1) 1 hc hν = (2.2) q λ In Eqs. 2.1 and 2.2 c is the speed of light in vacuum (2.998 × 108 m/s), h is Planck’s constant (6.625 × 10-34 Js), and q is the elementary charge (1.602 × 10-19 C). For example, a green light can be characterized by having a wavelength of 0.55 × 10-6 m, frequency of 5.45 × 1014 s-1 and energy of 2.25 eV. - 2.1 - SOLAR CELLS Chapter 2. Solar Radiation Only photons of appropriate energy can be absorbed and generate the electron-hole pairs in the semiconductor material. Therefore, it is important to know the spectral distribution of the solar radiation, i.e. the number of photons of a particular energy as a function of wavelength. Two quantities are used to describe the solar radiation spectrum, namely the spectral power density, P(λ), and the photon flux density, Φ(λ) .
    [Show full text]
  • • Flux and Luminosity • Brightness of Stars • Spectrum of Light • Temperature and Color/Spectrum • How the Eye Sees Color
    Stars • Flux and luminosity • Brightness of stars • Spectrum of light • Temperature and color/spectrum • How the eye sees color Which is of these part of the Sun is the coolest? A) Core B) Radiative zone C) Convective zone D) Photosphere E) Chromosphere Flux and luminosity • Luminosity - A star produces light – the total amount of energy that a star puts out as light each second is called its Luminosity. • Flux - If we have a light detector (eye, camera, telescope) we can measure the light produced by the star – the total amount of energy intercepted by the detector divided by the area of the detector is called the Flux. Flux and luminosity • To find the luminosity, we take a shell which completely encloses the star and measure all the light passing through the shell • To find the flux, we take our detector at some particular distance from the star and measure the light passing only through the detector. How bright a star looks to us is determined by its flux, not its luminosity. Brightness = Flux. Flux and luminosity • Flux decreases as we get farther from the star – like 1/distance2 • Mathematically, if we have two stars A and B Flux Luminosity Distance 2 A = A B Flux B Luminosity B Distance A Distance-Luminosity relation: Which star appears brighter to the observer? Star B 2L L d Star A 2d Flux and luminosity Luminosity A Distance B 1 =2 = LuminosityB Distance A 2 Flux Luminosity Distance 2 A = A B Flux B Luminosity B DistanceA 1 2 1 1 =2 =2 = Flux = 2×Flux 2 4 2 B A Brightness of stars • Ptolemy (150 A.D.) grouped stars into 6 `magnitude’ groups according to how bright they looked to his eye.
    [Show full text]
  • Habitability of the Early Earth: Liquid Water Under a Faint Young Sun Facilitated by Strong Tidal Heating Due to a Nearby Moon
    Habitability of the early Earth: Liquid water under a faint young Sun facilitated by strong tidal heating due to a nearby Moon Ren´eHeller · Jan-Peter Duda · Max Winkler · Joachim Reitner · Laurent Gizon Draft July 9, 2020 Abstract Geological evidence suggests liquid water near the Earths surface as early as 4.4 gigayears ago when the faint young Sun only radiated about 70 % of its modern power output. At this point, the Earth should have been a global snow- ball. An extreme atmospheric greenhouse effect, an initially more massive Sun, release of heat acquired during the accretion process of protoplanetary material, and radioactivity of the early Earth material have been proposed as alternative reservoirs or traps for heat. For now, the faint-young-sun paradox persists as one of the most important unsolved problems in our understanding of the origin of life on Earth. Here we use astrophysical models to explore the possibility that the new-born Moon, which formed about 69 million years (Myr) after the ignition of the Sun, generated extreme tidal friction { and therefore heat { in the Hadean R. Heller Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 G¨ottingen, Germany E-mail: [email protected] J.-P. Duda G¨ottingenCentre of Geosciences, Georg-August-University G¨ottingen, 37077 G¨ottingen,Ger- many E-mail: [email protected] M. Winkler Max Planck Institute for Extraterrestrial Physics, Giessenbachstraße 1, 85748 Garching, Ger- many E-mail: [email protected] J. Reitner G¨ottingenCentre of Geosciences, Georg-August-University G¨ottingen, 37077 G¨ottingen,Ger- many G¨ottingenAcademy of Sciences and Humanities, 37073 G¨ottingen,Germany E-mail: [email protected] L.
    [Show full text]
  • Solar Constant
    ME 432 Fundamentals of Modern Photovoltaics Discussion 2: A Nuclear Fusion Power Plant 9.3(107) Miles Away 26 August 2020 The Sun • Sun’s core: Fusion reaction - the conversion of H to He, T=20,000,000 K • Sun’s surface: Photosphere T=5800K • All life and power on earth comes to us from the sun http://www.solcomhouse.com/thesun.htm (photosynthesis, fossil fuels) Today’s Objectives • Estimate the power density and peak wavelength emitted by a black body at a given temp T • Derive the solar constant and the average solar irradiation at the earth’s surface • Describe 4 ways to directly capture the energy of the sun on earth • List some advantages & challenges for the widescale adoption of solar photovoltaics • Describe the main solar photovoltaic technologies available today, and their relative merits/shortcomings Today’s Objectives • Estimate the power density and peak wavelength emitted by a black body at a given temp T • Derive the solar constant and the average solar irradiation at the earth’s surface • Describe 4 ways to directly capture the energy of the sun on earth • List some advantages & challenges for the widescale adoption of solar photovoltaics • Describe the main solar photovoltaic technologies available today, and their relative merits/shortcomings Planck’s Law of Blackbody Radiation • Hot bodies emit electromagnetic radiation with a spectral distribution that is determined by the temperature • For a “black body”, which is an idealization of a perfect absorber, the spectral distribution is given by Planck’s Law of Blackbody Radiation • As a black body is heated, the total emitted radiation increases and the wavelength of the peak emission decreases • The sun is a very good approximation of a black body at temperature T=5800K hc 1240 (eV-nm) Useful relationship: E = hυ = E (eV) = λ λ (nm) Planck’s Law of Blackbody Radiation • The expression for the unique electromagnetic spectrum that is emitted by a perfect blackbody.
    [Show full text]
  • M31 Andromeda Galaxy Aq
    Constellation, Star, and Deep Sky Object Names Andromeda : M31 Andromeda Galaxy Lyra : Vega & M57 Ring Nebula Aquila : Altair Ophiuchus : Bernard’s Star Auriga : Capella Orion : Betelgeuse , Rigel & M42 Orion Nebula Bootes : Arcturus Perseus : Algol Cancer : M44 Beehive Cluster Sagittarius: Sagittarius A* Canes Venatici: M51 Whirlpool Galaxy Taurus : Aldebaran , Hyades Star Cluster , M1 Crab Nebula & Canis Major : Sirius M45 Pleiades Canis Minor : Procyon Tucana : Small Magellanic Cloud (SMC) Cassiopeia : Cassiopeia A & Tycho’s “Star” Ursa Minor : Polaris Centaurus : Proxima Centauri Virgo : Spica Dorado/Mensa : Large Magellanic Cloud (LMC) Milky Way Galaxy Gemini : Castor & Pollux Hercules : M13 Globular Cluster Characteristics of Stars (Compared with Sun) Class Color Temp. ( 1000 K) Absolute Magnitude Solar Luminosity Solar Mass Solar Diameter O Blue 60 -30 -7 1,000,000 50 100 to 1000 B Blue -White 30 -10 -3 10,000 10 10 to 100 A White 10 -7.5 +2 100 2 2 to 10 F White -Yellow 7.5 -6.5 +4 10 1.5 1 to 2 G Yellow 6.5 -4.5 +4.6 1 1 1 K Orange 4.5 -3.5 +11 1/100 0.5 0.5 M Red 3.5 -2.8 +15 1/100,000 0.08 0.1 Magnitude Magnitude scales: The smaller the magnitude number, the brighter the star Every 5 magnitudes = 100 times the brightness of object Every magnitude = 2.512 times the brightness of object Apparent magnitude = the brightness of object as seen from the viewer’s viewpoint (Earth) Absolute magnitude = “true brightness” – brightness as seen from 10 parsecs (32.6 light years) away Distance Measurement 1 astronomical unit = distance between Earth and Sun = 150 million kilometres or 93 million miles 1 light year ≈ 6 trillion miles / 9.5 trillion km Parsec = parallax second of arc – distance that a star “jumps” one second of a degree of arc in the sky as a result of the earth’s revolution around the sun.
    [Show full text]
  • The Nature of Light I
    PHYS 320 Lecture 3 The Nature of Light I Jiong Qiu Wenda Cao MSU Physics Department NJIT Physics Department Courtesy: Prof. Jiong Qiu 9/22/15 Outline q How fast does light travel? How can this speed be measured? q How is the light from an ordinary light bulb different from the light emitted by a neon sign? q How can astronomers measure the temperatures of the Sun and stars? q How can astronomers tell what distant celestial objects are made of? q How can we tell if a celestial object is approaching us or receding from us? Light travels with a very high speed q Galileo first tried but failed to measure the speed of light . He concluded that the speed of light is very high. q In 1675, Roemer first proved that light does not travel instantaneously from his observations of the eclipses of Jupiter’s moons. q Modern technologies are able to find the speed of light; in an empty space: c = 3.00 x 108 m/s one of the most important numbers in modern physical sciences! Ex.1: The distance between the Sun and the Earth is 1AU (= 1.5x1011m). (a) how long does it take the light to travel from the Sun to an observer on the Earth? (b) A concord airplane has a speed of 600 m/ s; how long does it take a traveler on a Concord airplane to travel from the Earth to the Sun? Ex.2: A lunar laser ranging retro-reflector array was planted on the Moon on July 21, 1969, by the crew of the Apollo 11.
    [Show full text]
  • Final Exam, AST 203, Spring 2009 Monday, May 18, 9:00AM-12:00PM
    Final Exam, AST 203, Spring 2009 Monday, May 18, 9:00AM-12:00PM General grading rules for calculational problems (in both Sections A and C): 4 points off for each arithmetic or algebraic error. 2 points off per problem for excess significant figures in a final result (i.e., more than 2 sig figs). In computational problems in this exam, there is no requirement to write in full sentences. Explanations should be clear, even if they use a minimum of English; if the context is unambiguous, no points off for undefined symbols. However, take off 2 points per problem if a student gives absolutely no context for their calculation (this should be relatively rare). Not giving units or not giving results in the units asked for, is 2 points off. Giving the correct number with incorrect units is 4 points off. In problem 1b (and depending how they do it, 3b), the answer depends on the previous parts; in these cases, you should give full credit for consistent results. Take an additional 3 points off in cases in which the answer is absurd (e.g., the Milky Way has a mass much less than a solar mass, the speed is thousands of times the speed of light, etc.), without any comment that something is not quite right. In many of the problems, there is an easy way and a hard way to do it; full credit for doing problems the hard way (and getting the right answer). The exam is worth a total of 300 points. Do all problems. Section A: Analytic Questions (100 points) 1.
    [Show full text]
  • Measuring the Solar Constant
    SOLAR PHYSICS AND TERRESTRIAL EFFECTS 2+ Activity 3 4= Activity 3 Measuring the Solar Constant Purpose With this activity, we will let solar radiation raise the temperature of a measured quantity of water. From the observation of how much time is required for the temperature change, we can calculate the amount of energy absorbed by the water and then relate this to the energy output of the Sun. Materials Simple Jar and Thermometer small, flat sided glass bottle with 200 ml capacity—the more regular the shape the easier it will be to calculate the surface area later cork stopper for the bottle with a hole drilled in it to accept a thermometer; the regular cap of the bottle can be used, but the hole for the thermometer may have to be sealed with silicon or caulking after the thermometer is placed in it. _ thermometer with a range up to at least 50 C stopwatch black, water soluble ink metric measuring cup Option: Insulated Collector Jar and Digital Multi-Meter (DMM) Temperature Probes all of the above but substitute the temperature probes from a DMM or a computer to col- lect the data; the computer could also provide a more accurate time base a more sophisticated, insulated collector bottle could be made—try to minimize heat loss to the environment with your design. substitute different materials other than water as the solar collection material. Ethylene glycol (antifreeze) might be used, or even a photovoltaic cell could act as a collector. Re- member, some of the parameters in your calculations will need to be changed if water is not used different colors of water soluble ink Procedures 1.
    [Show full text]