Heteropods, Eliminate Some of Difficulties, Which the of This of Animals Is Investigator Group Sure to Encounter

Total Page:16

File Type:pdf, Size:1020Kb

Heteropods, Eliminate Some of Difficulties, Which the of This of Animals Is Investigator Group Sure to Encounter MONOGRAPH OF THE ATLANTIDAE. 1 NOTE I. Systematic Monograph of the Atlantidae (Heteropoda) with enumeration of the species in the Leyden Museum BY Dr. J.J. Tesch (With plates 1—5). Having recently 1) tried to bring some order into the in great confusion, existing the systematic literature on the and to the Heteropods, eliminate some of difficulties, which the of this of animals is investigator group sure to encounter I with, have been convinced, more than anybody else, that could have but my study nothing a provisional value, and that firmer a base could only be obtained by means of continued labour, and comparison of more material. I For a systematic revision have chosen the family Atlantidae. These animals with their tiny, inconspicuous shells, have received but little attention, and after Souleyet’s memorable than half work, more a century ago, only very few naturalists have dealt with the group. Among them I may name Gould, Smith, Oberwimmer, Vayssière and Yet it be myself. may safely said, that the discrimination of the is more difficult than in species perhaps any other family of the Heteropods. Mr. P. J. to the Buitendijk presented, shortly ago, Museum, a collection of plankton, brought together, almost 1) J. J. Tesch. Die Iletciopodcn der Siboga-Expcdition, Siboga-Eipcditie. Monogr. LI. 1006. Notes from the Loyden Museum, "Vol. XXX. 1 2 MONOGRAPH OF TI1E ATLANTIDAE. exclusively, in the Indian Ocean and the Red Sea. The of this material has been most laborious study a task, as I had to search for the small Atlantidae among innumerable of quantities Copepods, Ostracods, Oumacea, etc., with which each of the glass vessels was crowded. The collection, from the surface of the originating Ocean, is rich in young forms and in not full-grown specimens, which seems to to the poiut the fact, quite as in Pteropoda, that the adult specimens of the Atlantidae, and probably of all the Heteropoda, are comparatively rarely found at the surface, and generally prefer deeper zones. I should not have been able to bring my study to a rather satisfactory end, if Prof. L. Joubiu had not most kindly sent to on me, my request, the valuable types of which Soulevet, are deposited in the »Museum d'Histoire naturelle' at Paris. I beg this to take gentleman my sincere thanks for the service he has great rendered me. Taking into account its long preservation, for seventy in years, alcohol, the collection proved to be in an excellent state. Unfortunately, two of Souleyet's species, Atlanta and Atlanta quoyana involuta, were not represented, while third a Atlanta had ( depressa) its shell quite dissolved. So, there remains some in uncertainty, my opinion at least, about the two firstnamed forms (which are neither in the British Museum); on the other hand, I have been fortunate to enough recognize Atlanta depressa in the collection of Mr. Buitendijk. I have it useful thought to figure all the species of Souleyet again '), with of exception those, of which good drawings, leaving no doubt as to the identification of the species, already exist. Souleyet's figures, though generally remarkably accurate, are, however, too small, and he has overlooked several remarkable features about sculpture, which excellent may supply specific characters. When else is ]) nothing noticed, the here figures given are drawn after with Souleyet's types, the camcrn. Notes from tlie Leyden Museum, Vol. XXX. MONOGRAPH OF TIIE ATLANTIDAE. 3 this contribute May paper something to our knowledge of the aud facilitate in the task of future group, any way investigators — a task which I know by experience to be by no means an easy one. The genera of the Atlantidae. Two genera are generally admitted, Oxygyrus and Atlanta, which are distinguished by a whole series of characters. After the study of Souleyet's types I have thought it to add a third Protatlanta the of necessary genus, , type which is represented by Souleyet's Atlanta lamanoni, which name has been altered by Smith, for reasons of priority in in Atlanta This nomenclature, souleyeti. remarkable new forms genus in many respects a transition between Atlanta and but it cannot be classed either of Oxygyrus, among these genera. to Key the genera. 1. Shell nautiloid, all whorls in the same plain, horny to lesser to keel a greater or extent, according age; mem- branous, nearly as broad as the last whorl; operculum animal with triangular; a very bulky proboscis and a large sucker on the fin Oxygyrus Benson. Shell right-handed; apical whorls forming a little spire side the Hat umbilicus at one of shell, an existing at the op- posite operculum oval, with a spiral 2 side; rounded, portion .. 2. Keel of the shell cartilaginous, encircling nearly the is whole last whorl (but often wanting as it most easily to be removed) and extending to the outer lip of the shell 1 aperture; quite ) cartilaginous (?); animal very much resembling that of Oxygyrus with a mighty , proboscis and a large sucker Protatlanta mihi. of which well show 1) The specimens Souleyct, are very preserved, no trace of chalky matter in their shells. On the other hand, Smith (p. 44) has Atlanta. This stated, that the shell is „of the same vitreous character" as in therefore remain unsettled. question may .Notes from the Leyden Museum, "Vol. XXX. 4 MONOGRAPH OK THE ATLANTIDAE. Keel of the shell chalky, as is indeed the whole shell, outer lip of the aperture always more or less fissured; animal with a slender proboscis and a smaller sucker on the fin Atlanta Lesueur. Oxygyrus Benson¹). Atlanta (p.p.) auctorum. 1835. Oxygyrus Benson. 1836. Helicophlegma {p.p.) d'Orbigny. 1841. Ladas Cantraine. The well-known of this typical represeutant genus, O. keraudreni has been classed the (Lesueur), firstly among species of Atlanta (so by Lesueur himself, Rang, Cuvier, till Benson established it. Deshayes), a new genus for The diagnosis, given by this author of the type, his O. in flatus, has never been is which, moreover, figured, very incomplete and does not show any specific characters, although beyond doubt to be applied to Oxygyrus, and probably to It the common O. keraudreni. seems advisable to reject Benson's species. I have shown in my monograph (pp. 49 and 50), that Macdonald is the of Oxygyrus n. sp. young stage a species aside of Souleyet. Leaving some doubtful forms (which I shall have occasion to refer to further on), there remain only two species. Key to the species. Shell for the cartilaginous greater part (in adult state), large (5 — 10 mm.), chalky part of shell without spiral lines; median plate of radula with three spines, of which the middle is the largest one, while the lateral spines are nearly obliterated . Oxygyrus keraudreni (Lesueur). Shell with its cartilaginous part (if present) smaller, small As to the literature I be allowed to to 1) may refer my former monograph E. and especially to A. Smith, Challenger-Expedition LXXII, 1888. Notes from tlie Leyden Museum, Vol. XXX. MONOGRAPH OF THE ATLANTIDAE. 5 (0,5 —3 nun.), chalky part, either wholly or on the penul- timate whorl, provided with conspicuous undulating spiral lines; median plate of radula with three spines, all of the same nearly length . Oxygyrus rangi (Souleyet). Species 1. Oxygyrus keraudreni (Lesueur). 1817. Atlanta keraudreni Lesueur. 1835. Oxygyrus inflatus? Benson. 183G. Atlanta (Helicophlegma) keraudreni d'Orbiguy. 1840. bivonae Pirajuo. „ 1841. Ladas keraudreni Cantraine. 1850. Oxygyrus keraudreni Gray. 1852. Atlanta, violacea? Gould. 1852. tessellata? Gould. ,, 1852. mediterranea? ,, Costa, non Quoy et Gaimard (1832), Souleyet (1852) '), Ray Lankester (1883) and Pelseneer (1906). Animals: Mediterranean, date? ± 20 sp., Cantraine. Atlantic N., 23" 1 Ocean, (0° W.), 1879, sp., Kruisinga. u (1° S., 23" W.), 1879, 4 sp., // Species 2. Oxygyrus rangi (Souleyet). 1852. Atlanta rangi Souleyet. 1862. Macdouald. Oxygyrus n. sp. 1888. Oxygyrus rangi Smith. Animals : 3 Mediterranean, date? sp., Buitendijk. Indian Ocean 2 ), January '06, 1 sp., u il 5 April '06, sp., u 1) Souleyet (Voy. Bonite) and after him Kay bankester (ISnc. brit.) and I'elseneer of 1 refer of A. (Treatise Zoology, p Gl) erroneously a figure peroni to O. keraudreni. It be stated that with the Ocean" in this 2) may here, term ..Indian paper always the same route: Pcrim—Point de Gallc—Sabang is meant. Notes from the I.eyden Museum, "Vol. XXX. 6 MONOGIUIMI 01'- TIIE ATI.ANTIDAE. I confess, that I entertain some doubt as to the specific distinctness of these two species. The features by which to most they are be recognized, seem to be conspicuous, but they all (except those of the radula) vanish with in- creasing age. As I have out in pointed formerly my monograph (p. 50), and is f. i. stated O. keraudreni in by Oberwimmer, passes its youth through a Bellerophina-stage, as it is called, and it seems as if O. rangi is only an intermediate form be- tween this Bellerophina and the full-grown O. keraudreni. The of Mr. all specimens Buitendijk were young specimens in different stages of development and from them I inferred the following notes: of I. Shell '/ mm.: Quite with 2 chalky, wholly provided undulating spiral lines. Form much rounded, which becomes total yet more conspicuous by the absence of a keel. tinted Faintly in rose. (Bellerophina). 1 11. Shell of mm.: At the aperture a small amount of cartilaginous matter is deposited; this part of the shell is uucoloured and without A carti- sculpture. very high keel at the laginous aperture, but only over a short distance the last on whorl, and abruptly terminating. (Stage figured by Macdonald, and copied by me, PI. I, fig.
Recommended publications
  • Atlanta Ariejansseni, a New Species of Shelled Heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea)
    A peer-reviewed open-access journal ZooKeys 604: 13–30 (2016) Atlanta ariejansseni, a new species of shelled heteropod.... 13 doi: 10.3897/zookeys.604.8976 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea) Deborah Wall-Palmer1,2, Alice K. Burridge2,3, Katja T.C.A. Peijnenburg2,3 1 School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK 2 Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands3 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P. O. Box 94248, 1090 GE Amster- dam, The Netherlands Corresponding author: Deborah Wall-Palmer ([email protected]) Academic editor: N. Yonow | Received 21 April 2016 | Accepted 22 June 2016 | Published 11 July 2016 http://zoobank.org/09E534C5-589D-409E-836B-CF64A069939D Citation: Wall-Palmer D, Burridge AK, Peijnenburg KTCA (2016) Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea). ZooKeys 604: 13–30. doi: 10.3897/zookeys.604.8976 Abstract The Atlantidae (shelled heteropods) is a family of microscopic aragonite shelled holoplanktonic gastro- pods with a wide biogeographical distribution in tropical, sub-tropical and temperate waters. The arago- nite shell and surface ocean habitat of the atlantids makes them particularly susceptible to ocean acidifica- tion and ocean warming, and atlantids are likely to be useful indicators of these changes. However, we still lack fundamental information on their taxonomy and biogeography, which is essential for monitoring the effects of a changing ocean.
    [Show full text]
  • Evidence for the Validity of Protatlanta Sculpta (Gastropoda: Pterotracheoidea)
    Contributions to Zoology, 85 (4) 423-435 (2016) Evidence for the validity of Protatlanta sculpta (Gastropoda: Pterotracheoidea) Deborah Wall-Palmer1, 2, 6, Alice K. Burridge2, 3, Katja T.C.A. Peijnenburg2, 3, Arie Janssen2, Erica Goetze4, Richard Kirby5, Malcolm B. Hart1, Christopher W. Smart1 1 School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, United Kingdom 2 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands 3 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands 4 Department of Oceanography, University of Hawai‘i at Mānoa, 1000 Pope Road, Honolulu, HI 96822, USA 5 Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, United Kingdom 6 E-mail: [email protected] Key words: Atlantic Ocean, biogeography, DNA barcoding, morphometrics, Protatlanta, shelled heteropod Abstract Introduction The genus Protatlanta is thought to be monotypic and is part of The genus Protatlanta Tesch, 1908 is one of three the Atlantidae, a family of shelled heteropods. These micro- shelled heteropod genera within the family Atlantidae. scopic planktonic gastropods are poorly known, although re- search on their ecology is now increasing in response to con- All members of the Atlantidae are microscopic (<12 cerns about the effects of ocean acidification on calcareous mm), holoplanktonic gastropods that have a foot mod- plankton. A correctly implemented taxonomy of the Atlantidae ified for swimming, a long proboscis, large, complex is fundamental to this progressing field of research and it re- eyes and flattened shells with keels. Defining charac- quires much attention, particularly using integrated molecular teristics of the three genera within the Atlantidae are and morphological techniques.
    [Show full text]
  • Distribution Patterns of Pelagic Gastropods at the Cape Verde Islands Holger Ossenbrügger
    Distribution patterns of pelagic gastropods at the Cape Verde Islands Holger Ossenbrügger* Semester thesis 2010 *GEOMAR | Helmholtz Centre for Ocean Research Kiel Marine Ecology | Evolutionary Ecology of Marine Fishes Düsternbrooker Weg 20 | 24105 Kiel | Germany Contact: [email protected] Contents 1. Introduction . .2 1.1. Pteropods . 2 1.2. Heteropods . 3 1.3. Hydrography . 4 2. Material and Methods . 5 3. Results and Discussion . 7 3.1. Pteropods . 7 3.1.1. Species Composition . 7 3.1.2. Spatial Density Distribution near Senghor Seamount . .. 9 3.1.3. Diel Vertical Migration . 11 3.2. Heteropods . 17 3.2.1. Species Composition . .17 3.2.2. Spatial Density Distribution near Senghor Seamount . .17 3.2.3. Diel Vertical Migration . 18 4. Summary and directions for future research . 19 References . 20 Acknowledgements . 21 Attachment . .22 1. Introduction 1.1. Pteropods Pteropods belong to the phylum of the Mollusca. They are part of the class Gastropoda and located in the order Ophistobranchia. The pteropods are divided into the orders Thecosomata and Gymnosomata. They are small to medium sized animals, ranging from little more than 1mm for example in many members of the Genus Limacina to larger species such as Cymbulia peroni, which reaches a pseudoconch length of 65mm. The mostly shell bearing Thecosomata are known from about 74 recent species worldwide and are divided into five families. The Limacinidae are small gastropods with a sinistrally coiled shell; they can completely retract their body into the shell. Seven recent species of the genus Limacina are known. The Cavoliniidae is the largest of the thecosomate families with about 47 species with quite unusually formed shells.
    [Show full text]
  • The Evolution of Eyes
    Annual Reviews www.annualreviews.org/aronline Annu. Reo. Neurosci. 1992. 15:1-29 Copyright © 1992 by Annual Review~ Inc] All rights reserved THE EVOLUTION OF EYES Michael F. Land Neuroscience Interdisciplinary Research Centre, School of Biological Sciences, University of Sussex, Brighton BN19QG, United Kingdom Russell D. Fernald Programs of HumanBiology and Neuroscience and Department of Psychology, Stanford University, Stanford, California 94305 KEYWORDS: vision, optics, retina INTRODUCTION: EVOLUTION AT DIFFERENT LEVELS Since the earth formed more than 5 billion years ago, sunlight has been the most potent selective force to control the evolution of living organisms. Consequencesof this solar selection are most evident in eyes, the premier sensory outposts of the brain. Becauseorganisms use light to see, eyes have evolved into manyshapes, sizes, and designs; within these structures, highly conserved protein molecules for catching photons and bending light rays have also evolved. Although eyes themselves demonstrate manydifferent solutions to the problem of obtaining an image--solutions reached rela- by University of California - Berkeley on 09/02/08. For personal use only. tively late in evolution--some of the molecules important for sight are, in fact, the same as in the earliest times. This suggests that once suitable Annu. Rev. Neurosci. 1992.15:1-29. Downloaded from arjournals.annualreviews.org biochemical solutions are found, they are retained, even though their "packaging"varies greatly. In this review, we concentrate on the diversity of eye types and their optical evolution, but first we consider briefly evolution at the more fundamental levels of molecules and cells. Molecular Evolution The opsins, the protein componentsof the visual pigments responsible for catching photons, have a history that extends well beyond the appearance of anything we would recognize as an eye.
    [Show full text]
  • INVEMAR BOLETIN 50 AÑOS Final.Indd
    Instituto de Investigaciones Marinas y Costeras Boletin de Investigaciones Marinas y Costeras ISSN 0122-9761 “José Benito Vives de Andréis” Bulletin of Marine and Coastal Research Santa Marta, Colombia, 2017 46 (2), 175-181 NOTA / NOTE: Heteropods (Gastropoda: Pterotracheoidea) identified along a coastal-oceanic transect in the Colombian Pacific Heterópodos (Gastropoda: Pterotracheoidea) identificados en un transecto costa-océano en el Pacífico colombiano María Moreno-Alcántara1, Alan Giraldo2 and Gerardo Aceves-Medina1 0000-0002-2501-843X 0000-0001-9182-888X 0000-0002-7614-6669 1 Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Departamento de Plancton y Ecología Marina. Avenida IPN s/n, La Paz, B.C.S, C.P. 23096, México. [email protected], [email protected] 2 Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Departamento de Biología. Grupo de Investigación en Ciencias Oceanográficas. Calle 13 # 100-00, Cali, Colombia. [email protected], [email protected]. RESUMEN on el propósito de establecer la composición taxonómica del ensamblaje de heterópodos que habita en el Pacífico colombiano, se analizaron muestras de zooplancton recolectadas en marzo de 2014 a lo largo de un trayecto costa-océano. Se identificaron 12 especies pertenecientes a tres familias y tres géneros. Atlanta lesuerii fue la especie más abundante en el área de estudio. Además, Cse registran por primera vez a A. frontieri, A. oligogyra, A. inflata y A. plana en el Pacífico sudamericano, así como A. helicinoidea en el Pacífico colombiano. Este trabajo contribuye de manera significativa en el conocimiento de los moluscos heterópodos del Pacífico colombiano. Palabras Clave: Diversidad marina, Moluscos pelágicos, Pterotracheoidea, Zooplancton, Heterópodos.
    [Show full text]
  • Abstract Volume
    ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-225 Poster Presentations…………………………………………………………………………………226-291 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity.
    [Show full text]
  • Pliocene Heteropods (Mollusca: Gastropoda) from Miyagi-Shima, Okinawa, Japan
    豊橋市自然史博物館研報 Sci. Rep. Toyohashi Mus. Nat. Hist., No. 18, 1-9, 2008 Pliocene Heteropods (Mollusca: Gastropoda) from Miyagi-shima, Okinawa, Japan Hiroshi Shibata * and Atsushi Ujihara** 沖縄県宮城島産の鮮新世異足類(軟体動物:腹足類) 柴田 博* ・氏原 温** (Abstract) Nine species of heteropods are described from Pliocene strata of the Shinzato Formation of the Shimajiri Group at Miyagi- shima in Okinawa Prefecture. They are Oxygyrus sp., Protatlanta kakegawaensis Shibata, Atlanta helicinoides Souleyet, A. peroni Lesueur, A. plana Richter, A. tokiokai van der Spoel and Troost, A. sp. 1, A. sp. 2 and Carinaria sp. All these species are reported from this group for the first time. Three living species, A. helicinoides, A. plana and A. tokiokai from this site constitute their oldest occurrence record. Introduction from the Shinzato Formation at the locality near our collection site. We follow Seapy (1990) and Richter In 1990, 1993 and 1996 we made the survey of and Seapy(1999)for the taxonomic classification pelagic mollusks in the Plio-Pleistocene Shimajiri of heteropoda. All specimens described herein are Group in Okinawa. No or a few specimens of housed in Graduate School of Environmental Studies, heteropods, holoplanktonic gastropoda, were obtained Nagoya University. at most localities sampled. An exposure of the We are grateful to Takashi Ichihara of Nagoya Shinzato Formation of this group at Miyagi-shima, University for his preparation of figures for this paper. however, exceptionally yielded a large number of heteropod specimens. The heteropod collection from Locality and geologic setting this exposure consists of one species of the genus Oxygyrus, one species of the genus Protatlanta, six The stratigraphy and age of the Shimajiri Group can species of the genus Atlanta and one species of the be found in MacNeil (1960), Natori and Kageyama genus Carinaria.
    [Show full text]
  • Biogeography and Genetic Diversity of the Atlantid Heteropods T ⁎ Deborah Wall-Palmera,B, , Alice K
    Progress in Oceanography 160 (2018) 1–25 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean SCCWRP #1038 Biogeography and genetic diversity of the atlantid heteropods T ⁎ Deborah Wall-Palmera,b, , Alice K. Burridgeb,c, Erica Goetzed, Frank R. Stokvisb, Arie W. Janssenb, Lisette Mekkesb,c, María Moreno-Alcántarae, Nina Bednaršekf, Tom Schiøtteg, Martin Vinther Sørenseng, Christopher W. Smarta, Katja T.C.A. Peijnenburgb,c a School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK b Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands c Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE Amsterdam, The Netherlands d Department of Oceanography, University of Hawai‘iatMānoa, Honolulu, HI 96822, USA e Departamento de Plancton y Ecología Marina, Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz C.P. 23096, Mexico f Southern California Coastal Waters Research Project, Harbor Blvd #110, Costa Mesa, CA 92626, USA g The Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark ARTICLE INFO ABSTRACT Keywords: The atlantid heteropods are regularly encountered, but rarely studied marine planktonic gastropods. Relying Atlantidae on a small (< 14 mm), delicate aragonite shell and living in the upper ocean means that, in common with Atlanta pteropods, atlantids are likely to be affected by imminent ocean changes. Variable shell morphology and Cytochrome c oxidase subunit 1 (mtCO1) widespread distributions indicate that the family is more diverse than the 23 currently known species. DNA barcoding Uncovering this diversity is fundamental to determining the distribution of atlantids and to understanding Planktonic gastropods their environmental tolerances.
    [Show full text]
  • Title SHELLS of ATLANTIDAE (HETEROPODA
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Kyoto University Research Information Repository SHELLS OF ATLANTIDAE (HETEROPODA) COLLECTED Title BY THE SOYO-MARU IN THE SOUTHERN WATERS OF JAPAN Author(s) Tokioka, Takasi PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1955), 4(2-3): 237-250 Issue Date 1955-05-30 URL http://hdl.handle.net/2433/174524 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University SHELLS OF ATLANTIDAE (HETEROPODA) COLLECTED BY THE SOYO-MARU IN THE SOUTHERN WATERS OF JAPAN') T AKASI TOKIOKA Seto Marine Biological Laboratory, Sirahama With Plates XVII-XVIII and 10 Text-figures Far ago, I had an opportunity of examining a number of plankton samples collected by the S6y6-Maru chiefly in the southern waters of Japan including Bays of Sagami and Suruga and a part of the eastern waters in the years 1934 and 1937- 1939. I selected at that time shells of Atlantidae out of the material and prepared abundant figures and data about their occurrence. Here, these figures and data are arranged for publication. At first, the following six species are easily discriminated: Oxygyrus keraudreni Atlanta lesueuri Atlanta peroni Atlanta fusca Atlanta inclinata Atlanta turriculata 1. Oxygyrus keraudreni (LESUEUR), 1817 (Figs. 1-2) Oxygyrus keraudreni-SMITH (1888) : p. 6. VAYSSIERE (1904) : p. 56, Pl. V figs. 71-75. TESCH (1949): p. 10; Figs. 1-3, 44. Oxygyrus keraudreni+ Oxygyrus rangi-TESCH (1908) : pp. 5 and 6. Oxygyrus rangi-TESCH (1906): p. 49; Pl. VII figs. 2-4, 6B. Long Aperture Height of Whorl Number of width: diameter formula whorls keel hei!;l'ht 1.5mm 640 ,u 1.5 1:0.25:- 2 1: 1.3 690 1.7 1:0.24:- 2 1: 1.3 740 1) Contributions from the Seto Marine Biological Laboratory, No.
    [Show full text]
  • Visual Acuity in Pelagic Fishes and Mollusks
    W&M ScholarWorks VIMS Articles 2013 Visual acuity in pelagic fishes and mollusks YL Gagnon TT Sutton S Johnsen Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Gagnon, YL; Sutton, TT; and Johnsen, S, "Visual acuity in pelagic fishes and mollusks" (2013). VIMS Articles. 885. https://scholarworks.wm.edu/vimsarticles/885 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Vision Research 92 (2013) 1–9 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Visual acuity in pelagic fishes and mollusks ⇑ Yakir L. Gagnon a, , Tracey T. Sutton b, Sönke Johnsen a a Department of Biology, Duke University, Durham, NC 27708, USA b College of William & Mary, Virginia Institute of Marine Science, Gloucester Point, VA, USA article info abstract Article history: In the sea, visual scenes change dramatically with depth. At shallow and moderate depths (<1000 m), Received 26 June 2013 there is enough light for animals to see the surfaces and shapes of prey, predators, and conspecifics. This Received in revised form 13 August 2013 changes below 1000 m, where no downwelling daylight remains and the only source of light is biolumi- Available online 30 August 2013 nescence. These different visual scenes require different visual adaptations and eye morphologies. In this study we investigate how the optical characteristics of animal lenses correlate with depth and ecology.
    [Show full text]
  • Atlanta Ariejansseni, a New Species of Shelled Heteropod
    A peer-reviewed open-access journal ZooKeys 604: 13–30 (2016) Atlanta ariejansseni, a new species of shelled heteropod.... 13 doi: 10.3897/zookeys.604.8976 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea) Deborah Wall-Palmer1,2, Alice K. Burridge2,3, Katja T.C.A. Peijnenburg2,3 1 School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK 2 Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands3 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P. O. Box 94248, 1090 GE Amster- dam, The Netherlands Corresponding author: Deborah Wall-Palmer ([email protected]) Academic editor: N. Yonow | Received 21 April 2016 | Accepted 22 June 2016 | Published 11 July 2016 http://zoobank.org/09E534C5-589D-409E-836B-CF64A069939D Citation: Wall-Palmer D, Burridge AK, Peijnenburg KTCA (2016) Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea). ZooKeys 604: 13–30. doi: 10.3897/zookeys.604.8976 Abstract The Atlantidae (shelled heteropods) is a family of microscopic aragonite shelled holoplanktonic gastro- pods with a wide biogeographical distribution in tropical, sub-tropical and temperate waters. The arago- nite shell and surface ocean habitat of the atlantids makes them particularly susceptible to ocean acidifica- tion and ocean warming, and atlantids are likely to be useful indicators of these changes. However, we still lack fundamental information on their taxonomy and biogeography, which is essential for monitoring the effects of a changing ocean.
    [Show full text]
  • Caenogastropoda
    13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa.
    [Show full text]