NANOCEM 10Th Anniversary OPEN MEETING App,Ril 8, 2014 , Starlin G Hotel , Saint-Sul P,Pice, Switzerland Listst Oof Participantspa T C Pa Ts

Total Page:16

File Type:pdf, Size:1020Kb

NANOCEM 10Th Anniversary OPEN MEETING App,Ril 8, 2014 , Starlin G Hotel , Saint-Sul P,Pice, Switzerland Listst Oof Participantspa T C Pa Ts NANOCEM 10th Anniversary OPEN MEETING Tuesday, April 8, 2014 Starling Hotel Lausanne Saint Sulpice, Switzerland Rolex Learning Center EPFL, Lausanne ©Alain Herzog Welcome to the 10th Anniversary celebration Open meeting of the Nanocem Consortium, April 8th, 2014 in Lausanne It is a pleasure to welcome you to our Open meeting in celebration of the 10th Anniversary of the Nanocem Consortium. Today we take the opportunity to present some of the research of the consortium which has made a difference in the field of cement and concrete: Thermodynamics, Proton Nuclear Magnetic Resonance, Admixtures and Cement, Atomistic modeling and the effects of SCMs on the microstructure of cement and concrete. Although these may sound rather fundamental topics, we hope you will see their relevance to everyday applications. We will end the meeting with a talk from Wolfgang Dienemann, head of the Industrial Advisory Board, on the perspectives of the industry for the future. Nanocem, founded in 2004, is a consortium of twenty-three academic and eleven industrial partners who have a common interest in the nanoscale science of cement and concrete. The Nanocem partnership is unique: the industry finances a central Nanocem fund; and the academic partners contribute to the network with one of their externally funded projects, Partner Project, sharing the main results. Together, they identify gaps and plan collaborative research, our Core Projects, which get financed via the Nanocem central fund. The fundamental aspect of the research is of utmost importance. It means that the research is done at a pre-competitive level. The aim is to understand the physical and chemical mechanisms governing the performance of cementitious materials at the nanoscale rather than to develop new products. This builds the foundation for future developments to allow for better and more sustainable cementitious materials. To date fourteen Core Projects have been initiated, half of them have been completed. The principal results of seventy Partner Projects have been shared within the consortium. Two European Marie Skáodwoska Curie training network projects supporting some 30 researchers mostly at an early stage have been awarded to subgroups of Nanocem. Please browse our display of posters of these projects in the foyer and the conference room. With this booklet, we have attached a folder containing five factsheets which explains who we are and what we do and a mortar USB key including a list of the publications issued from Nanocem We take the opportunity to thank our industrial partners who have generously sponsored the event, the speakers and all our partners who have prepared posters. We hope you will enjoy your stay in Lausanne and we thank you for joining us for the celebration of the 10th Anniversary of Nanocem. Karen Scrivener Coordinator of the Nanocem network - 3 - - 4 - Table of contents Nanocem Consortium ................................................................................................................................. 6 Partners ...................................................................................................................................................... 7 List of Core projects.................................................................................................................................... 8 Programme ................................................................................................................................................. 9 List of attendees ....................................................................................................................................... 10 Presentations............................................................................................................................................ 12 10 years of Nanocem research - some highlights K. Scrivener (EPFL, CH) .......................................................................................................................... 13 Thermodynamics: from phase diagrams to predictive engineering T. Matschei (Holcim Technology Centre, CH) ........................................................................................... 19 Water and cement : new insights from nuclear magnetic resonance techniques P. Mcdonald (University of Surrey, UK) .................................................................................................... 23 Workability and interactions between admixtures and cement R. Flatt (ETHZ, CH) .................................................................................................................................. 30 Atomistic modelling of cementitious materials: from crystal growth to disordered structures P. Bowen (EPFL, CH) ............................................................................................................................... 36 Effects of supplementary cementitious materials on microstructure and performance of cements B. Lothenbach (EMPA, CH) ...................................................................................................................... 43 An Industrial Perspectives on the future of Nanocem W. Dienemann (HeidelbergCement, DE).................................................................................................. 49 - 5 - NANOCEM CONSORTIUM Nanocem is a consortium of academic and industrial partners with a common interest in fundamental research into the nano and micro-scale of the phenomena that govern the performance of cements and concrete. Nanocem was founded in 2004 and has grown to a network of 23 academic and 11 industry partners. This unique cooperation between the industry and the academic community has lead to identify common issues and has helped map the research needs for sustainable cement and concrete. A few of the ways that Nanocem brings added value to its members in the cement and concrete industry: x organizing workshops and seminars, x sponsoring research in multi-partner projects, x acting as a recruitment base for researchers in cementitious materials, x highlighting the importance of R&D on cementitious materials at the European level, x acting as a networking body to ensure academic research is relevant. Aims Research: To grow the basic knowledge needed to develop new cementitious materials, linking features and processes that take place at atomic level and their impact once used in buildings, bridges or other structures, and to disseminate the results of our work. Education: To prepare the next generation of researchers, by educating university graduates and providing a platform for future employment in the cement and concrete industry. Responsibility: 7R KHOS ¿QG VROXWLRQV WKDW ZLOO IXUWKHU UHGXFH WKH HQYLURQPHQWDO LPSDFW RI FHPHQW DQG concrete. - 6 - PARTNERS Industrial Partners 1. Aalborg Portland (Cementir Holding), Denmark 2. BASF, Germany 3. CTG Italcementi Group, Italy 4. Elkem as Silicon Materials, Norway 5. HeidelbergCement AG, Germany 6. Holcim Technology Ltd, Switzerland 7. Lafarge, France 8. SCG Cement-Building Materials, Siam Research and Innovation Co., Ltd, Thailand 9. SIKA Technology AG, Switzerland 10. VDZ, Germany 11. WR Grace, USA Academic Partners 1. Ecole polytechnique fédérale de Lausanne, Switzerland $JHQFLD(VWDWDO&RQVHMR6XSHULRU,QYHVWLJDFLRQHV&LHQWL¿FDV6SDLQ 3. Aarhus University, Denmark 4. Bauhaus-Universität Weimar, Germany 5. Commissariat à l’énergie atomique et aux énergies alternatives, France 6. CSGI/University of Florence, Italy 7. Czech Technical University in Prague, Czech Republic 8. Danish Technological Institute, Denmark 9. Empa, Swiss Federal Laboratories for Materials Science and Technology, Switzerland 10. Eidgenossische Technische Hochschule Zurich, Switzerland 11. Institut français des sciences et technologies des transports, de l’aménagement et des réseaux (ex-LCPC), France 12. Imperial College London, United Kingdom 13. Lund University, Sweden 14. Norwegian University of Science and Technology (NTNU), Norway 15. Technical University of Denmark, Denmark 16. Technische Universität München, Germany 17. Technische Universität Wien, Austria 18. University of Aberdeen, United Kingdom 19. Université de Bourgogne, France 20. University of Leeds, United Kingdom 21. Universitat Politècnica de Catalunya-Barcelona Tech, Spain 22. University of Surrey, United Kingdom 23. ZAG, Slovenia - 7 - LIST OF CORE PROJECTS These are fundamental, long-term research projects carried out by two or more contractors, funded by the resources of the Nanocem Consortium. Typically 2-3 of the academic partners work together sharing a PhD student who moves between partners. Finished Core Projects: 1. Mineralogy of Hydrated Cements University of Aberdeen, UK – Empa, CH 2. Pore Structure Characterisation by Magnetic Resonance Techniques University of Surrey, UK – Ecole Polytechique, FR 3. Organo-Aluminates Interactions Ecole Supérieure de Physique et Chimie Industrielles de Paris – ParisTech, FR 4. Hydration of Blended Cements EPFL, CH – Aarhus University, DK – University of Leeds, UK – DTU, DK 5. Alkali Activation of Aluminosilicates - An Assessment of Fundamental Mechanisms University of Aberdeen, UK – CSIC, SP 6. Atomistic Modelling on Cementitious Systems EPFL, CH 7. Fundamental Mechanisms of Cement Prehydration TUMünchen, DE – University of Leeds, UK – Lund University, SE – ZAG, SI On-going Core Projects: 8. Non-Saturated Transport Properties of Cementitious Materials Lund University, SE - IFSTTAR, FR - CSIC, SP - Empa, CH - DTU, DK - Imperial College London,
Recommended publications
  • Construction Engineering Australia • June/July 2017
    PROUDLY SUPPORTED BY PROUD MEDIA PARTNER CONCRETE INSTITUTE of AUSTRALIA CONSTRUCTION ENGINEERING OFFICIAL PUBLICATION AUSTRALIA JUNE/JULY 2017 V3.03 CONSTRUCTION CIVIL WORKS CIVIL ENGINEERING PRINT POST APPROVED - 100001889 Keynote Speakers Professor Tim Ibell Professor Karen Scrivener Ms Louise Adams Professor Doug Hooton Mr Peter McBean Professor Des Bull Invited Speakers Mr Mike Schneider Dr Stuart Matthews Conference Registration Now Open Concrete 2017 includes • Quality Technical Program REGISTER TODAY AT: • Cement and Durability Workshops www.concrete2017.com.au • Huge Trade Exhibition • Gala “Awards for Excellence in Concrete” Dinner • Social and Networking Events 28th Biennial Conference hosted by Conference Partner www.concrete2017.com.au JUNE/JULY 2017 contents Volume 3 Number3 Published by: 2 Editorial Editorial and Publishing Consultants Pty Ltd ABN 85 007 693 138 PO Box 510, Broadford 4 Industry News Victoria 3658 Australia Phone: 1300 EPCGROUP (1300 372 476) Int’l: +61 3 5784 3438 Fax: +61 3 5784 2210 10 Cover Feature: City of Gold Coast www.epcgroup.com Publisher and Managing Editor Anthony T Schmidt 14 Product Focus: MetaMax 10 Phone: 1300 EPCGROUP (1300 372 476) Mobile: 0414 788 900 Email: [email protected] 14 Product Focus: Aussie Pumps Deputy Editor Rex Pannell Tsurumi Piling Pump Mobile: 0433 300 106 Email: [email protected] 16 Case Study: Modular Walls National Advertising Sales Manager Yuri Mamistvalov Phone: 1300 EPCGROUP (1300 372 476) Mobile: 0419 339 865 18 Lift and Shift Email: [email protected] 16 Advertising Sales - SA Jodie Chester - G Advertising 22 Innovative Solutions Mobile: 0439 749 993 Email: [email protected] 26 Materials Handling Advertising Sales - WA Licia Salomone - OKeeffe Media Mobile: 0412 080 600 Email: [email protected] 30 Concrete Institute News Graphic Design Annette Epifanidis 38 National Precast Feature 38 Mobile: 0416 087 412 TERMS AND CONDITIONS 46 Equipment Feature This publication is published by Editorial and Publishing Consultants Pty Ltd (the “Publisher”).
    [Show full text]
  • Strategic Energy Technology Plan
    STRATEGIC ENERGY TECHNOLOGY PLAN Scientific Assessment in support of the Materials Roadmap enabling Low Carbon Energy Technologies Energy efficient materials for buildings Authors: M. Van Holm, L. Simões da Silva, G. M. Revel, M. Sansom, H. Koukkari, H. Eek JRC Coordination: P. Bertoldi, E. Tzimas EUR 25173 EN - 2011 The mission of the JRC-IET is to provide support to Community policies related to both nuclear and non-nuclear energy in order to ensure sustainable, secure and efficient energy production, distribution and use. European Commission Joint Research Centre Institute for Energy and Transport Contact information Address: Via Enrico Fermi, 2749 I-21027 Ispra (VA) E-mail: [email protected] Tel.: +39 (0332) 78 9299 Fax: +39 (0332) 78 5869 http://iet.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC68158 EUR 25173 EN ISBN 978-92-79-22790-5 (pdf) ISBN 978-92-79-22789-9 (print) ISSN 1831-9424 (online) ISSN 1018-5593 (print) doi:10.2788/64929 Luxembourg: Publications Office of the European Union,2011 © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy Preamble This scientific assessment serves as the basis for a materials research roadmap for Energy efficient materials for buildings technology, itself an integral element of an overall "Materials Roadmap Enabling Low Carbon Technologies", a Commission Staff Working Document published in December 2011.
    [Show full text]
  • CEMENT for BUILDING with AMBITION Aalborg Portland A/S Portland Aalborg Cover Photo: the Great Belt Bridge, Denmark
    CEMENT FOR BUILDING WITH AMBITION Aalborg Portland A/S Cover photo: The Great Belt Bridge, Denmark. AALBORG Aalborg Portland Holding is owned by the Cementir Group, an inter- national supplier of cement and concrete. The Cementir Group’s PORTLAND head office is placed in Rome and the Group is listed on the Italian ONE OF THE LARGEST Stock Exchange in Milan. CEMENT PRODUCERS IN Cementir's global organization is THE NORDIC REGION divided into geographical regions, and Aalborg Portland A/S is included in the Nordic & Baltic region covering Aalborg Portland A/S has been a central pillar of the Northern Europe. business community in Denmark – and particularly North Jutland – for more than 125 years, with www.cementirholding.it major importance for employment, exports and development of industrial knowhow. Aalborg Portland is one of the largest producers of grey cement in the Nordic region and the world’s leading manufacturer of white cement. The company is at the forefront of energy-efficient production of high-quality cement at the plant in Aalborg. In addition to the factory in Aalborg, Aalborg Portland includes five sales subsidiaries in Iceland, Poland, France, Belgium and Russia. Aalborg Portland is part of Aalborg Portland Holding, which is the parent company of a number of cement and concrete companies in i.a. the Nordic countries, Belgium, USA, Turkey, Egypt, Malaysia and China. Additionally, the Group has acti vities within extraction and sales of aggregates (granite and gravel) and recycling of waste products. Read more on www.aalborgportlandholding.com, www.aalborgportland.dk and www.aalborgwhite.com. Data in this brochure is based on figures from 2017, unless otherwise stated.
    [Show full text]
  • CSI/ECRA Technology Papers 2017 Can Again Serve As Important Reference Documents for Developing Further Technology Roadmaps in the Cement Sector
    European Cement Research European Cement Research Academy Academy GmbH Tannenstrasse 2 40476 Duesseldorf, GERMANY Phone: +49-211-23 98 38-0 Fax: +49-211-23 98 38-500 [email protected] www.ecra-online.org Chairman of the advisory board: Daniel Gauthier Managing director: Martin Schneider Registration office: Duesseldorf Court of registration: Duesseldorf Commercial registration no.: 47580 A-2016/2305 CSI/ECRA-Technology Papers 2017 Development of State of the Art Techniques in Cement Manufacturing: Trying to Look Ahead Dusseldorf, Geneva, 20 March 2017 2 / 190 Development of State of the Art-Techniques in Cement Manufacturing: Trying to Look Ahead, Revision 2017 Cement Sustainability Initiative (CSI) European Cement Research Academy GmbH WBCSD, Maison de la Paix, Chemin Eugène-Rigot 2B CP 2075, 1211 Geneva 1 Tannenstrasse 2 Switzerland 40476 Duesseldorf Germany www.wbcsdcement.org Phone: +49-211-23 98 38-0 [email protected] Fax: +49-211-23 98 38-500 Managing director: Philippe Fonta www.ecra-online.org [email protected] Project officer: Cristiana Ciaraldi Chairman of the advisory board: Daniel Gauthier Managing director: Martin Schneider Project manager: Volker Hoenig Person in charge: Johannes Ruppert Registration office: Duesseldorf Court of registration: Duesseldorf Commercial registration no.: 47580 This study was commissioned by the Cement Sustainability Initiative (CSI), a member-led programme of the World Business Council for Sustainable Development (WBCSD). The re- port represents the independent research efforts of the European Cement Research Acade- my (ECRA) to identify, describe and evaluate technologies which may contribute to increas- ing energy efficiency and reducing greenhouse gas emissions from global cement production today as well as in the medium and long-term future.
    [Show full text]
  • Laboratory Investigation of the Fracture Properties of Nanoclay-Modified Asphalt Materials Under Direct Tensile Test
    Laboratory Investigation of the Fracture Properties of Nanoclay-Modified Asphalt Materials under Direct Tensile Test Mohammad Hossein Esfahani1, Ali Asadollahi baboli2, Sunil Deshpande3 & Amir Asadollahi Baboli4 1Dept of Civil Engineering, Imam Khomeini International University, Qazvin, Iran 2&3Dept of Civil Engineering, Bharati Vidyapeeth University, Pune, India 4Dept of Civil Engineering, Islamic Azad University Qaemshahr, Gaemshahr,Iran E-mail : [email protected], [email protected], [email protected], [email protected] they contain carbon, hydrogen, nitrogen, sulfur, oxygen, Abstract – Increasing traffic loads and traffic volume, combined with the rising cost of asphalt, have led to an etc. Researchers have been trying to use different kinds urgent need to improve the durability, safety and efficiency of additives to modify the base asphalt in order to of asphalt pavements through asphalt modification. In this increase the resistance to pavement distress. In general, research, we have tried to use a kind of additives to modify fibers and polymers are two main materials used in the the base asphalt in order to increase the resistance to asphalt modification [1–5]. Fiber was one of the most pavement distress. The objective of this study is to review widely used additives to enhance the bonding between existing literature in the area of nano-modification of asphalt and aggregates or within asphalt since 4000 asphalt and proceed to apply nano-materials to asphalt to years old ago [6–12]. In addition, scientist and engineers improve the performance. This study integrates literature tried to use the polymer Styrene Butadiene Styrene review, preparation, and characterization of nano- modified asphalt materials.
    [Show full text]
  • How to Make Concrete More Sustainable Harald Justnes1
    Journal of Advanced Concrete Technology Vol. 13, 147-154, March 2015 / Copyright © 2015 Japan Concrete Institute 147 Scientific paper How to Make Concrete More Sustainable Harald Justnes1 A selected paper of ICCS13, Tokyo 2013. Received 12 November 2013, accepted 16 February 2015 doi:10.3151/jact.13.147 Abstract Production of cement is ranking 3rd in causes of man-made carbon dioxide emissions world-wide. Thus, in order to make concrete more sustainable one may work along one or more of the following routes; 1) Replacing cement in con- crete with larger amounts of supplementary cementing materials (SCMs) than usual, 2) Replacing cement in concrete with combinations of SCMs leading to synergic reactions enhancing strength, 3) Producing leaner concrete with less cement per cubic meter utilizing plasticizers and 4) Making concrete with local aggregate susceptible to alkali silica reaction (ASR) by using cement replacements, thus avoiding long transport of non-reactive aggregate. 1 Introduction SCMs, also uncommon ones like calcined marl 2. Replacing cement in concrete with combinations of The cement industry world-wide is calculated to bring SCMs leading to synergic reactions enhancing about 5-8% of the total global anthropogenic carbon strength dioxide (CO2) emissions. The general estimate is about 3. Producing leaner concrete with less cement per cubic 1 tonne of CO2 emission per tonne clinker produced, if meter utilizing plasticizers. fossil fuel is used and no measures are taken to reduce it. 4. Making concrete with local aggregate susceptible to The 3rd rank is not because cement is such a bad mate- alkali silica reaction (ASR) by using cement re- rial with respect to CO2 emissions, but owing to the fact placements, thus avoiding long transport of non- that it is so widely used to construct the infrastructure reactive aggregate and buildings of modern society as we know it.
    [Show full text]
  • Silica Fume and Metakaolin As Supplementary Cementing Materials- a Review
    ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 6, Issue 10, October 2017 Silica Fume and Metakaolin as Supplementary Cementing Materials- A Review Syed Abuthahir 1, Nirmalkumar2 P.G. Student, Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, India1 Professor, Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, India2 ABSTRACT:The replacement of cement by various mineral admixtures as supplementary cementing materials for concrete has gained a global attention in recent years. This replacement becomes efficient not only by increasing the strength and durability of the concrete but also reduces the usage of the ordinary cement thereby curtailing the environmental hazardous due to cement manufacturing industries. This paper reviews the work carried out on the use of silica fume (SF) and Metakaolin (MK) as supplementary cementing materials as a partial replacement for cement. The literature demonstrates that both SF and MK are effective and causes significant improvement in various properties of the concrete in both fresh and harden state. KEYWORDS: Metakaolin, Silica Fume, Compressive Strength, Durability Properties. I.INTRODUCTION Major of the construction company relies on the concrete. Cement is major constituent of concrete. The annual global production of ordinary portland cement is about 3 Gt. Cement becomes a dominant binder due to its versatility, durability, and its demand increases dramatically. Even though it is a vital material, it production directly affects the environment by releasing 0.87t of carbon dioxide for every tonne of cement produced.
    [Show full text]
  • Cements for the Future
    The meeting will be held at the Village Hotel Leeds. Address: The Village Hotel Leeds 186 Otley Road Headingley Leeds, LS16 5PR United Kingdom Tel: +44 113 278 1000 th Fax: +44 113 278 1111 5 OPEN MEETING http://www.village-hotels.co.uk/hotels/leeds/ The Village Hotel, Leeds, UK Cements for the Future Tuesday, April 28, 2009 The Village Hotel Headingley Leeds, United Kingdom http://www.nanocem.org/leeds2009 Nanocem is a network of European academic and industrial partners, all Invited speakers: interested in fundamental research on cement and concrete. The consortium is Peter Robery, Technical Director, Halcrow Group Ltd, Visiting Professor, entirely financed by its industrial partners. Academic partners contribute in kind the University of Leeds, Immediate Past President, The Concrete Society, UK through their projects. Pal Chana, Chief Executive (Acting), British Cement Association, UK Since its foundation in 2002, the network has constantly grown and consists and speakers from Nanocem network: now of 24 academic partners and 15 industry partners from all over Europe. More Leon Black, University of Leeds, UK than 120 academic researchers are managing some 60 PhD and PostDoctoral Jesper Sand Damtoft, Aalborg Portland, DK research projects in the area of fundamental research. Peter McDonald, University of Surrey, UK Donald Macphee, University of Aberdeen, Scotland, UK Nanocem’s main activities are: Phil Purnell, University of Leeds, UK • organizing workshops and seminars, Ian Richardson, University of Leeds, UK • sponsoring research in multi-partner projects, Karen Scrivener, Coordinator Nanocem, Ecole Polytechnique Fédérale de • acting as a recruitment base for researchers in cementitious materials, Lausanne, Switzerland • highlighting the importance of R&D on cementitious materials at the European level.
    [Show full text]
  • Recovery of Waste Expanded Polystyrene in Lightweight Concrete Production
    73 The Mining-Geology-Petroleum Engineering Bulletin Recovery of waste expanded polystyrene UDC: 624.01 in lightweight concrete production DOI: 10.17794/rgn.2019.3.8 Original scientifi c paper Gordan Bedeković1; Ivana Grčić2; Aleksandra Anić Vučinić2; Vitomir Premur2 1University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, 10000 Zagreb, Croatia 2University of Zagreb, Faculty of Geotechnical Engineering, Hallerova 7, 42000 Varaždin, Croatia Abstract Polystyrene concrete, as a type of lightweight aggregate concrete, has been used in civil construction for years. The use of waste expanded polystyrene (EPS) as a fi ll material in lightweight concrete production is highly recommended from the point of view of the circular economy. Published data shows that an increase in the proportion of lightweight aggre- gates, i.e. EPS, results in a decrease in strength, bulk density and thermal conductivity of the concrete. Utilizing large quantities of waste EPS in non-structural polystyrene concrete production is particularly important. Unlike structural polystyrene concrete, according to the published papers, non-structural polystyrene concrete has not been investigated suffi ciently. The purpose of this paper is to determine the infl uence of the ratios of the basic components in a concrete mixture on the bulk density and compressive strength of non-structural polystyrene concrete produced by utilizing waste EPS as a fi ll material. The test specimens, i.e. cubes with an edge length of 100 mm each, were prepared in labora- tory conditions by varying the proportions of EPS, sand up to 600 g and cement ranging from 300 g to 450 g per speci- men.
    [Show full text]
  • Item 421 Hydraulic Cement Concrete
    421 Item 421 Hydraulic Cement Concrete 1. DESCRIPTION Furnish hydraulic cement concrete for concrete pavements, concrete structures, and other concrete construction. 2. MATERIALS Use materials from prequalified sources listed on the Department website. Provide coarse and fine aggregates from sources listed in the Department’s Concrete Rated Source Quality Catalog (CRSQC). Use materials from non-listed sources only when tested and approved by the Engineer before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources. Do not combine approved material with unapproved material. 2.1. Cement. Furnish cement conforming to DMS-4600, “Hydraulic Cement.” 2.2. Supplementary Cementing Materials (SCM). Fly Ash. Furnish fly ash, ultra-fine fly ash (UFFA), and modified Class F fly ash (MFFA) conforming to DMS-4610, “Fly Ash.” Slag Cement. Furnish Slag Cement conforming to DMS-4620, “Slag Cement.” Silica Fume. Furnish silica fume conforming to DMS-4630, “Silica Fume.” Metakaolin. Furnish metakaolin conforming to DMS-4635, “Metakaolin.” 2.3. Cementitious Material. Cementitious materials are the cement and supplementary cementing materials used in concrete. 2.4. Chemical Admixtures. Furnish admixtures conforming to DMS-4640, “Chemical Admixtures for Concrete.” 2.5. Water. Furnish mixing and curing water that is free from oils, acids, organic matter, or other deleterious substances. Water from municipal supplies approved by the Texas Department of Health will not require testing. Provide test reports showing compliance with Table 1 before use when using water from other sources. Water that is a blend of concrete wash water and other acceptable water sources, certified by the concrete producer as complying with the requirements of both Table 1 and Table 2, may be used as mix water.
    [Show full text]
  • Armorhab: Design Reference Architecture (DRA) for Human
    Copyright © 2016 by Dark Sea Industries LLC and the University of New Mexico. Published by The Mars Society with permission ArmorHab: Design Reference Architecture (DRA) for human habitation in deep space Peter Vorobieff Professor and Assistant Chair, Assistant Chair of Facilities, Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: (505) 277-8347 email: [email protected] Affiliation: University of New Mexico Craig Davidson Administrator 4808 Downey NE Albuquerque, NM 87109 Phone: 505-720-2321 email: [email protected] Affiliation: Dark Sea Industries LLC Dr. Mahmoud Reda Taha, Peng Professor and Chair, Department of Civil Engineering University of New Mexico, Albuquerque, NM 87131-0001 Office: (505) 277-1258, Cell: (505) 385-8930, Fax (505) 277-1988 http://civil.unm.edu/faculty-staff/faculty-profiles/mahmoud-taha.html www.unm.edu/~mrtaha/index.htm Affiliation: University of New Mexico Christos Christodoulou Associate Dean for Research Distinguished Professor, Electrical & Computer Engineering University of New Mexico Albuquerque, NM 87131 Tel: (505) 277-6580 www.ece.unm.edu/faculty/cgc www.cosmiac.org Affiliation: University of New Mexico Anil K. Prinja Professor and Chair Department of Nuclear Engineering University of New Mexico Albuquerque, NM 87131-1070 -1- Copyright © 2016 by Dark Sea Industries LLC and the University of New Mexico. Published by The Mars Society with permission Phone: (505)-277-4600, Fax: (505)-277-5433 [email protected] Affiliation: University of New Mexico Svetlana V. Poroseva Assistant Professor Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: 1(505) 277-1493, Fax: 1(505) 277-1571 email: poroseva at unm.edu Affiliation: University of New Mexico Mehran Tehrani Assistant Professor Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: 1(505) 277-1493, Fax: 1(505) 277-1571 email: [email protected] Affiliation: University of New Mexico David T.
    [Show full text]
  • ANNUAL REPORT 2016 PERFORMANCE INDICATORS Pictured on the Front Cover (Top to Bottom)
    ANNUAL REPORT 2016 PERFORMANCE INDICATORS Pictured on the front cover (top to bottom): Professor Craig Simmons is the Scientific Director of the Translational Biology and Engineering Program (TBEP). TBEP is the University of Toronto’s component of the Ted Rogers Centre for Heart Research (TRCHR) and brings together faculty members and their students from U of T Dentistry, Engineering and Medicine. Together, these researchers are advancing heart research, diagnostics, and regeneration using a comprehensive approach that includes systems and developmental biology, technology innovation and clinical translation. On May 13, 2016 more than 1,400 students and teachers from across the Greater Toronto Area converged on U of T Engineering for Innovate U. The one-day workshop was Canada’s largest science, technology, engineering and math (STEM) event for children in Grades 3 to 8. Innovate U was run in partnership with Google Canada and Actua, a national STEM charity. Two students from U of T Engineering work on the Formula SAE racing car. Students can choose from more than 90 engineering clubs and teams, from design and competition groups such as the Human-Powered Vehicle Team to cultural and arts groups such as Skule™ Orchestra, as well as national organizations such as Engineers Without Borders. Currently under construction, the Centre for Engineering Innovation & Entrepreneurship (CEIE) will set a new standard for engineering education and research. When the CEIE opens in 2017, it will provide a new home for some of our world-leading institutes, such as the Centre for Global Engineering and the Institute for Sustainable Energy. Its design/meet rooms and fabrication facilities will enable students, faculty and industry partners to collaborate across disciplines on complex global challenges and launch new companies to bring their innovations to market.
    [Show full text]