The Egg Man Iversity Press
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Centrosome Detection in Sea Urchin Eggs with a Monoclonal
Proc. Nati. Acad. Sci. USA Vol. 84, pp. 8488-8492, December 1987 Cell Biology Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: Characterization of stages of the division cycle of centrosomes (cytoskeleton/fertilization/microtubules/mitosis) HEIDE SCHATTEN*, MARIKA WALTERt, DANIEL MAZIAt, HARALD BIESSMANNt, NEIDHARD PAWELETZ§, GE2RARD COFFE*, AND GERALD SCHATTEN* *Integrated Microscopy Resource for Biomedical Research, University of Wisconsin, 1117 West Johnson Street, Madison, WI 53706; tCenter for Developmental Biology, University of California, Irvine, CA 92717; tHopkins Marine Station, Department of Biological Sciences, Stanford University, Pacific Grove, CA 93950; and 1lnstitute for Cell and Tumor Biology, German Cancer Research Center, D-6900 Heidelberg, Federal Republic of Germany Contributed by Daniel Mazia, August 27, 1987 ABSTRACT A mouse monoclonal antibody generated Most all of the previous immunocytochemical work on against DrosophUa intermediate filament proteins (designated centrosomes has used an autoimmune serum from a patient Ah6/5/9 and referred to herein as Ah6) is found to cross-react suffering from CREST (calcinosis, Raynaud phenomenon, specifically with centrosomes in sea urchin eggs and with a esophageal dysmotility, sclerodactyly, telangiectasia) scle- 68-kDa antigen in eggs and isolated mitotic apparatus. When roderma (6-10). However, the inability to use this serum for preparations stained with Ah6 are counterstained with a immunoblotting precluded -
Bioelectric Responses at Fertilization: Separation of the Events Associated
Gamete Research 5:363-377 (1982) Bioelectric Responses at Fertilization: Separation of the Events Associated With Insemination From Those Due to the Cortical Reaction in Sea Urchin, Lytechinus variegatus Dieter Hulser and Gerald Schatten Department of Biological Science, The Florida State University, Tallahassee The bioelectric responses at fertilization of the sea urchin Lytechinus variegatus are a com- plex series of membrane potential and resistance changes that occur concomitant with ga- mete fusion, ionic fluxes, and the cortical granule discharge. This work attempts to separate the electrical effects of sperm-egg interactions from those of the cortical reactions. Two ap- proaches were taken to discern the electrical events associated with insemination, distinct from cortical granule discharge: 1) fertilization of eggs treated with 3% urethane, 10 mM procaine, or 10 mM nicotine, to prevent the cortical reaction and 2) refertilization of fertil- ized eggs (denuded with 1 mM aminotriazole containing 1 mg/ml soybean trypsin inhibitor). Cortical granule discharge in the absence of sperm incorporation was investigated by artifi- cial activation with 5 pM A23187 or by fertilization in the presence of 10 pM cytochalasin D, which prevents incorporation. These results are consistent with a model in which the sperm-egg interaction triggers both a rapid (50-400 msec), but minor (= 10 mV), electrical transient that leads to an action potential and then both the Na+-dependent fast block to polyspermy and the late block re- sulting from the secretion of the cortical granules. Key words: fertilization, sea urchin, bioelectric response, secretion, motility INTRODUCTION At fertilization the sea urchin egg undergoes a complex series of electrical changes in membrane potential and resistance. -
Fraudulent Human Embryonic Stem Cell Research in South Korea: Lessons Learned
Accountability in Research, 13:101–109, 2006 Copyright © Taylor & Francis Group, LLC ISSN: 0898-9621 print DOI: 10.1080/08989620600634193 GACR0898-96211545-5815Accountability in Research:Research Policies and Quality Assurance, Vol. 13, No. 01, February 2006: pp. 0–0 Commentary FRAUDULENT HUMAN EMBRYONIC STEM CELL RESEARCH IN SOUTH KOREA: LESSONS LEARNED Commentary:D. B. Resnik et Korean al. Stem Cell Fraud DAVID B. RESNIK , JD, PHD National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA ADIL E. SHAMOO, PHD Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA SHELDON KRIMSKY, PHD Department of Urban & Environmental Policy & Planning, Tufts University, Boston, Massachusetts, USA Now that most of the smoke has cleared from the South Korean human embryonic stem cell fraud, it is time to reflect on some lessons that one can learn from this scandal. First, a brief review of events will help to set the stage. In June 2005, Seoul University investigator Woo Suk Hwang and 24 co-authors published what appeared to be a ground- breaking paper in Science in which they claimed to have estab- lished eleven embryonic stem cell lines containing nuclear DNA from somatic cells of research subjects (Hwang et al., 2005). In March 2004, Hwang’s research team had published another apparently important paper in which they claimed to have estab- lished one cell line with the nuclear DNA from a research subject (Hwang et al 2004). If these two papers had been valid, they would have represented a significant step forward in human embryonic stem cell research, since they would have demon- strated the feasibility of a technique known as therapeutic Editor’s note: Although this piece is not related to the topic of this issue, we felt it was important to comment on the recent events in South Korea. -
Strategies for Improving Animal Models for Regenerative Medicine
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell Stem Cell Forum Strategies for Improving Animal Models for Regenerative Medicine Jose Cibelli,1 Marina E. Emborg,2 Darwin J. Prockop,3 Michael Roberts,4 Gerald Schatten,5 Mahendra Rao,6 John Harding,7 and Oleg Mirochnitchenko7,* 1Michigan State University, Cellular Reprogramming Laboratory, Department of Animal Science, B270 Anthony Hall, East Lansing, MI 48824, USA 2University of Wisconsin-Madison, Department of Medical Physics and Wisconsin National Primate Research Center, 1223 Capitol Court, Madison, WI 53715, USA 3Texas A&M Health Science Center, College of Medicine Institute for Regenerative Medicine at Scott and White, Department of Medicine, 5701 Airport Road, Module C, Temple, TX 76502, USA 4University of Missouri, 240b C.S. Bond Life Sciences Center, 1201 East Rollins Street, Columbia, MO 65211-7310, USA 5University of Pittsburgh, Department of Cell Biology and Physiology, S362 Biomedical Science Towers, 3500 Terrace Street, Pittsburgh, PA 15261, USA 6Center for Regenerative Medicine, National Institutes of Health, 50 South Drive, Suite 1140, Bethesda, MD 20892, USA 7Division of Comparative Medicine/ORIP/DPCPSI/OD, National Institutes of Health, 6701 Democracy Boulevard, Suite 943/950, Bethesda, MD 20892, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.stem.2013.01.004 The field of regenerative medicine is moving toward translation to clinical practice. However, there are still knowledge gaps and safety concerns regarding stem cell-based therapies. Improving large animal models and methods for transplantation, engraftment, and imaging should help address these issues, facilitating eventual use of stem cells in the clinic. -
From Dolly to Zhong Zhong to Human Cloning?
Feature Article From Dolly to Zhong Zhong to Human Cloning? Zhong Zhong and Hua Hua (Photo courtesy: www.engadget.com) Biju Dharmapalan formal and ancient name for “China.” This scientific milestone has political HE recent news about the overtones. The name has been selected successful cloning of monkeys to show the Chinese supremacy in the by Chinese scientists grabbed scientific world, where most of the T dolly.roslin.ed.ac.uk) media attention some time back. In countries have put a blanket ban on a research paper published in the human cloning research. journal Cell (February 8, 2018), Public attention in cloning got Photo courtesy: scientists from the Chinese Academy significance with the birth of Dolly ( of Sciences in Shanghai announced the in 1996 by Sir Ian Wilmut’s group at successful cloning of a pair of Long- the Scottish Centre for Regenerative tailed macaques Zhong Zhong and Hua Medicine at the University of Edinburgh Dolly and her surrogate mother Hua using DNA from foetal connective through a technique known as Somatic tissue cells, using Somatic Cell Nuclear Cell Nuclear Transfer (SCNT). In then merges with the implanted nucleus Transfer (SCNT) technique, which was SCNT, the nucleus is removed from and develops into a clone of whatever it used to clone Dolly. an egg cell and is replaced with a was that donated the nucleus. The name Zhong Zhong was different nucleus from another cell, Dolly was cloned from a cell taken derived from the term Zhonghua, a usually a somatic cell. The egg cell from the mammary gland of a six-year- TIMELINE OF ANIMAL CLONING 1894: German biologist Hans Driesch used Xenopus laevis to show Schatten creates Tetra, a rhesus takes a two-cell sea urchin from that nuclei from specialised cells macaque, using embryo splitting the Bay of Naples and shakes still held the potential to be any technique. -
1 Are We Ready for Genome Editing in Human Embryos for CLINICAL
Are we ready for genome editing in human embryos FOR CLINICAL PURPOSES? Joyce C Harper and Gerald Schatten Joyce C Harper, Professor of Reproductive Science, Institute for Women’s Health, University College Londona Gerald Schatten, Professor of Ob-Gyn-Repro Sci, Cell Biology and Bioengineering, University of Pittsburgh School of Medicineb aInstitute for Women’s Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK, 0044 7880 795791, [email protected] (Corresponding author) b204 Craft Avenue Pittsburgh, PA 15213 412/641-2403 [phone] 412/641-6342 [fax] [email protected] [email protected] Abstract Perhaps the two most significant pioneering biomedical discoveries with immediate clinical implications during the past forty years have been the advent of assisted reproductive technologies (ART) and the genetics revolution. ART, including in vitro fertilization (IVF), intracytoplasmic sperm injection and preimplantation genetic testing, has resulted in the birth of more than 8 million children, and the pioneer of IVF, Professor Bob Edwards, was awarded the 2010 Nobel Prize. The genetics revolution has resulted in our genomes being sequenced and many of the molecular mechanisms understood, and technologies for genomic editing have been developed. With the combination of nearly routine ART protocols for healthy conceptions together with almost error- free, inexpensive and simple methods for genetic modification, the question “Are we ready for genome editing in human embryos FOR CLINICAL PURPOSES?” was debated at the 5th Congress on Controversies in Preconception, Preimplantation and Prenatal Genetic Diagnosis, in collaboration with the Ovarian Club Meeting, in November 2018 in Paris. The co-authors each presented scientific, medical and bioethical backgrounds, and the debate was chaired by Professor Alan Handyside. -
IVF) Versus Intracytoplasmic Sperm Injection (ICSI) Calvin R
www.nature.com/scientificreports OPEN Fertilization and Cleavage Axes Difer In Primates Conceived By Conventional (IVF) Versus Intracytoplasmic Sperm Injection (ICSI) Calvin R. Simerly1, Diana Takahashi2, Ethan Jacoby3, Carlos Castro1, Carrie Hartnett1, Laura Hewitson4, Christopher Navara5 & Gerald Schatten 1* With nearly ten million babies conceived globally, using assisted reproductive technologies, fundamental questions remain; e.g., How do the sperm and egg DNA unite? Does ICSI have consequences that IVF does not? Here, pronuclear and mitotic events in nonhuman primate zygotes leading to the establishment of polarity are investigated by multidimensional time-lapse video microscopy and immunocytochemistry. Multiplane videos after ICSI show atypical sperm head displacement beneath the oocyte cortex and eccentric para-tangential pronuclear alignment compared to IVF zygotes. Neither fertilization procedure generates incorporation cones. At frst interphase, apposed pronuclei align obliquely to the animal-vegetal axis after ICSI, with asymmetric furrows assembling from the male pronucleus. Furrows form within 30° of the animal pole, but typically, not through the ICSI injection site. Membrane fow drives polar bodies and the ICSI site into the furrow. Mitotic spindle imaging suggests para-tangential pronuclear orientation, which initiates random spindle axes and minimal spindle:cortex interactions. Parthenogenetic pronuclei drift centripetally and assemble astral spindles lacking cortical interactions, leading to random furrows through the animal pole. Conversely, androgenotes display cortex-only pronuclear interactions mimicking ICSI. First cleavage axis determination in primates involves dynamic cortex-microtubule interactions among male pronuclei, centrosomal microtubules, and the animal pole, but not the ICSI site. With perhaps ten million ART babies now, fundamental problems regarding the mechanisms of fertilization and the onset of early development remain. -
Embryogenesis and Blastocyst Development After Somatic Cell Nuclear Transfer in Nonhuman Primates: Overcoming Defects Caused by Meiotic Spindle Extraction$
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Biology 276 (2004) 237–252 www.elsevier.com/locate/ydbio Embryogenesis and blastocyst development after somatic cell nuclear transfer in nonhuman primates: overcoming defects caused by meiotic spindle extraction$ Calvin Simerlya,b,1, Christopher Navaraa,b,1, Sang Hwan Hyuna,b,1, Byeong Chun Leec, Sung Keun Kangc, Saverio Capuanoa,b, Gabriella Gosmana,b, Tanja Dominko2, Kowit-Yu Chonga,b, Duane Comptond, Woo Suk Hwangc, Gerald Schattena,b,* aDepartment of Obstetrics-Gynecology-Reproductive Sciences, Pittsburgh Development Center, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA bDepartment of Cell Biology-Physiology, Pittsburgh Development Center, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA cDepartment of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea dDepartment of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA Received for publication 13 August 2004, revised 28 September 2004, accepted 12 October 2004 Abstract Therapeutic cloning or nuclear transfer for stem cells (NTSC) seeks to overcome immune rejection through the development of embryonic stem cells (ES cells) derived from cloned blastocysts. The successful derivation of a human embryonic stem cell (hESC) line from blastocysts generated by somatic cell nuclear transfer (SCNT) provides proof-of-principle for btherapeutic cloning,Q though immune matching of the differentiated NT-hES remains to be established. Here, in nonhuman primates (NHPs; rhesus and cynomologus macaques), the strategies used with human SCNT improve NHP-SCNT development significantly. -
Status of the Implementation of the Federal Stem Cell Research Policy
S. HRG. 107–874 STATUS OF THE IMPLEMENTATION OF THE FEDERAL STEM CELL RESEARCH POLICY HEARING BEFORE A SUBCOMMITTEE OF THE COMMITTEE ON APPROPRIATIONS UNITED STATES SENATE ONE HUNDRED SEVENTH CONGRESS SECOND SESSION SPECIAL HEARING SEPTEMBER 25, 2002—WASHINGTON, DC Printed for the use of the Committee on Appropriations ( Available via the World Wide Web: http://www.access.gpo.gov/congress/senate U.S. GOVERNMENT PRINTING OFFICE 85–408 PDF WASHINGTON : 2003 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2250 Mail: Stop SSOP, Washington, DC 20402–0001 COMMITTEE ON APPROPRIATIONS ROBERT C. BYRD, West Virginia, Chairman DANIEL K. INOUYE, Hawaii TED STEVENS, Alaska ERNEST F. HOLLINGS, South Carolina THAD COCHRAN, Mississippi PATRICK J. LEAHY, Vermont ARLEN SPECTER, Pennsylvania TOM HARKIN, Iowa PETE V. DOMENICI, New Mexico BARBARA A. MIKULSKI, Maryland CHRISTOPHER S. BOND, Missouri HARRY REID, Nevada MITCH MCCONNELL, Kentucky HERB KOHL, Wisconsin CONRAD BURNS, Montana PATTY MURRAY, Washington RICHARD C. SHELBY, Alabama BYRON L. DORGAN, North Dakota JUDD GREGG, New Hampshire DIANNE FEINSTEIN, California ROBERT F. BENNETT, Utah RICHARD J. DURBIN, Illinois BEN NIGHTHORSE CAMPBELL, Colorado TIM JOHNSON, South Dakota LARRY CRAIG, Idaho MARY L. LANDRIEU, Louisiana KAY BAILEY HUTCHISON, Texas JACK REED, Rhode Island MIKE DEWINE, Ohio TERRENCE E. SAUVAIN, Staff Director CHARLES KIEFFER, Deputy Staff Director STEVEN J. CORTESE, Minority Staff Director LISA SUTHERLAND, Minority Deputy Staff Director SUBCOMMITTEE ON DEPARTMENTS OF LABOR, HEALTH AND HUMAN SERVICES, AND EDUCATION, AND RELATED AGENCIES TOM HARKIN, Iowa, Chairman ERNEST F. -
The Egg and the Sperm: How Science Has Constructed a Romance Based on Stereotypical Male- Female Roles Author(S): Emily Martin Reviewed Work(S): Source: Signs, Vol
The Egg and the Sperm: How Science Has Constructed a Romance Based on Stereotypical Male- Female Roles Author(s): Emily Martin Reviewed work(s): Source: Signs, Vol. 16, No. 3 (Spring, 1991), pp. 485-501 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/3174586 . Accessed: 06/04/2012 21:00 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Signs. http://www.jstor.org THE EGG AND THE SPERM:HOW SCIENCEHAS CONSTRUCTED A ROMANCEBASED ON STEREOTYPICAL MALE-FEMALEROLES EMILYMARTIN The theory of the human body is always a part of a world- picture.... The theory of the human body is always a part of a fantasy. [JAMESHILLMAN, The Myth of Analysis]' As an anthropologist, I am intrigued by the possibility that culture shapes how biological scientists describe what they discover about the naturalworld. If this were so, we would be learning about more than the natural world in high school biology class; we would be learning about cultural beliefs and practices as if they were part of nature. -
Transgenic Animals
IQP-43-DSA-4330 IQP-43-DSA-0486 TRANSGENIC ANIMALS An Interactive Qualifying Project Report Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By: ____________________ ____________________ Travis Abele Michelle Miller August 27, 2008 APPROVED: _________________________ Prof. David S. Adams, Ph.D. WPI Project Advisor ABSTRACT This project examined the methods of creating transgenic animals, the reasons for doing so, and the effect of this controversial new technology on society via ethical and legal issues. A detailed description of what a transgenic animal is, how they are created, and their use in society today and in the future was followed by how transgenic animals have already provided much societal benefit, including information on human diseases, drugs to save human lives, and knowledge of the biological function of newly discovered proteins. Transgenic technology should have a positive impact on society as long as animal suffering is kept at a minimum and used solely for the purpose of helping humans. 2 TABLE OF CONTENTS Signature Page …………………………………………………………………….. 1 Abstract ……………………………………………………………………………. 2 Table of Contents ………………………………………………………………….. 3 Project Objective ……………………………………...…………………………… 4 Chapter-1: Transgenic Technology …….………………………………………… 5 Chapter-2: Transgenic Applications ..…………………………………………….. 20 Chapter-3: Transgenic Ethics …………………………………………………… 35 Chapter-4: Transgenic Legalities …………………………………………………. 47 Conclusions ………………………………………………………………………… 59 3 PROJECT OBJECTIVES The objective of this IQP project was to examine the topic of transgenic animals and to discuss the effect of this controversial new technology on society. The report explains to readers what transgenic animals are, how they are created, and describes the types of transgenic animals created to date. -
Cloning in Farm Animals: Concepts and Applications
Biochemistry and Biotechnology Research Vol. 3(1), pp. 1-10, February 2015 ISSN: 2354-2136 Review Cloning in farm animals: Concepts and applications Anwar Shifaw1 and Mebratu Asaye2* 1College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Debre Zeit, Ethiopia. 2Faculty of Veterinary Medicine, University of Gondar, P. O. Box 196, Gondar, Ethiopia. Accepted 9 February, 2015 ABSTRACT Cloning is a scientific term used to describe the process of genetic duplication. The most commonly applied and recent technique is nuclear transfer from somatic cell, in which the nucleus from a body cell transferred to an egg cell to create an embryo that is virtually genetically identical to the donor nucleus. Cloning has started early in the development of biological science during the Theodor Schwann period of cell theory. The application of animal cloning are rapid multiplication of desired livestock, animal preservation, research models, human cell based therapies, xenotransplantation and gene farming. However, cloning of animals is restricted to highly advanced laboratories in developed countries. The problems associated with farm animal cloning has been reviewed and discussed in this paper which includes incomplete reprogramming, placental abnormalities, parturition difficulties, postnatal death, clone specific phenotype and lung emphysema as well as socio-cultural problems. Most of the problems were molecularly explained as the failure of genetic reprogramming. In Ethiopia this type of science is not yet conceived and