Detailed Flora and Vegetation Survey Gabanintha Tenements

Total Page:16

File Type:pdf, Size:1020Kb

Detailed Flora and Vegetation Survey Gabanintha Tenements ENVIRONMENTAL Detailed Flora and Vegetation Survey Gabanintha Tenements Prepared for Australian Vanadium 18 November 2019 Detailed Flora and Vegetation Survey Gabanintha Tenements Document Status Rev Authors Reviewer/s Date Approved for Issue No. Name Distributed To Date 1 D.Brearley, D.Brearley 07/11/17 D.Brearley B.Durrant 09/11/17 B.Menezies J.Waters 2 D.Brearley E.Molloy 16/10/19 D.Brearley E.Molloy 07/11/19 3 D.Brearley E.Molloy 15/11/19 D.Brearley E.Molloy 18/11/19 ACN 095 837 120 PO Box 227 YALLINGUP WA 6282 Telephone 0427339842 E-mail: [email protected] COPYRIGHT: The concepts and information contained in this document are the property of Onshore Environmental Consultants Pty Ltd. Use or copying of this document in whole or in part without the written permission of Onshore Environmental Consultants Pty Ltd constitutes an infringement of copyright. DISCLAIMER: This report has been undertaken solely for Australian Vanadium Ltd. No responsibility is accepted to any third party who may come into possession of this report in whatever manner and who may use or rely on the whole or any part of this report. If any such third party attempts to rely on any information contained in this report such party should obtain independent advice in relation to such information. i Detailed Flora and Vegetation Survey Gabanintha Tenements EXECUTIVE SUMMARY Australian Vanadium Ltd (AVL) commissioned Onshore Environmental Consultants Pty Ltd (Onshore Environmental) to undertake a two season detailed flora and vegetation survey covering the Gabanintha tenements E51/843, E51/1396 and E51/1534, herein referred to as the study area. The study area is situated approximately 45 km south- east of Meekatharra in the Murchison region of Western Australia. The first season field survey was completed between the 31st March and 6th April 2017 with the second season field survey completed from the 1st to 10th September 2017. A total number of 273 plant taxa from 40 families and 104 genera were recorded from the study area. Species representation was greatest among the Fabaceae, Chenopodiaceae, Poaceae and Scrophulariaceae families. The most speciose genus was Acacia (42 taxa), followed by Eremophila (22 taxa), Ptilotus (14 taxa), Maireana (12 taxa), Senna (12 taxa) and Eragrostis (10 taxa). None of the plant taxa recorded from the study area were gazetted as Threatened Flora pursuant to the Biodiversity Conservation Act 2016 (BC Act), or listed under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). Seven Priority flora taxa were recorded from the study area: Acacia speckii (Priority 4); Dodonaea amplisemina (Priority 4); Goodenia berringbinensis (Priority 4); Hibiscus krichauffianus (Priority 3); Nicotiana heterantha (Priority 1); Ptilotus lazaridis (Priority 3); and Ptilotus luteolus (Priority 3). Six plant taxa were considered to represent significant range extensions from the current known distributions: Abutilon malvifolium; Hibiscus verdcourtii; Lipocarpha microcephala; Marsilea costulifera; Nicotiana heterantha (also listed as Priority 1); and Sida trichopoda. A total of four introduced species were recorded from the study area: *Bidens bipinnata; *Citrullus colocynthis; *Lysimachia arvensis; and *Tribulus terrestris. None of these introduced taxa are listed as Declared Pests under the Biosecurity and Agriculture Management Act 2007 (BAM Act). A total of 28 vegetation associations classified as 17 broad floristic formations and occurring on eleven broad landforms were described and mapped from the study area. None of the vegetation associations were aligned with federal or state listed Threatened Ecological Communities (TECs) or state listed Priority Ecological Communities (PECs), and all were well represented regionally. ii Detailed Flora and Vegetation Survey Gabanintha Tenements Vegetation condition within the study area ranged from completely degraded to excellent, with the most common and widespread disturbance related to grazing by cattle. Other localised impacts resulted from historical mining activities in the northern sector of the study area, more recent mining exploration, and borrow pits for road construction. Vegetation condition across the largest proportion of the study area was rated as good and very good. iii Detailed Flora and Vegetation Survey Gabanintha Tenements TABLE OF CONTENTS EXECUTIVE SUMMARY ..................................................................................................... ii TABLE OF CONTENTS ...................................................................................................... iv 1.0 INTRODUCTION ...................................................................................................... 1 1.1 Preamble ....................................................................................................................... 1 1.2 Previous Surveys ........................................................................................................ 1 1.3 Biogeographic Regions ............................................................................................. 1 1.4 Existing Land Use ........................................................................................................ 1 1.5 Climate ............................................................................................................................ 3 1.6 Soils.................................................................................................................................. 3 1.7 Landforms ..................................................................................................................... 4 1.8 Geology ........................................................................................................................... 5 1.9 Flora and Vegetation ................................................................................................. 6 1.10 Land Systems ................................................................................................................ 6 2.0 METHODOLOGY ................................................................................................... 10 2.1 Legislation and Guidance Statements ............................................................... 10 2.2 Desktop Assessment ................................................................................................ 10 2.2.1 Literature Review .............................................................................................................................. 10 2.2.2 Database Searches ............................................................................................................................. 10 2.2.3 Assessment of Likelihood of Occurrence in the Study Area ............................................ 11 2.3 Baseline Survey Methodology .............................................................................. 11 2.3.1 Timing and Personnel ...................................................................................................................... 11 2.3.2 Sampling of Study Sites ................................................................................................................... 11 2.3.3 Targeted Surveys for Conservation Significant Species.................................................... 13 2.3.4 Weed Survey and Mapping ............................................................................................................ 14 2.3.5 Floristic Analysis ................................................................................................................................ 14 2.3.6 Vegetation Association Mapping ................................................................................................. 14 2.3.7 Vegetation Association Coding ..................................................................................................... 15 2.3.8 Vouchering ............................................................................................................................................ 15 2.3.9 Field Survey Constraints ................................................................................................................. 16 2.3.10 Assessment of Conservation Significance ............................................................................... 17 3.0 RESULTS ................................................................................................................. 18 3.1 Desktop Review ......................................................................................................... 18 3.1.1 Previous Baseline Flora Surveys ................................................................................................. 18 3.1.2 Threatened Flora listed under the EPBC Act ......................................................................... 19 3.1.3 Threatened Flora listed under the IUCN Red List................................................................ 19 3.1.4 Threatened Flora listed under the BC Act ............................................................................... 19 3.1.5 Priority Flora recognised by the DBCA .................................................................................... 19 3.1.6 TECs listed under State and Federal Legislation .................................................................. 19 3.1.7 PECs recognised by DBCA .............................................................................................................. 21 3.2
Recommended publications
  • Acacia Caesaneura Maslin & J.E.Reid
    WATTLE Acacias of Australia Acacia caesaneura Maslin & J.E.Reid Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com B.R. Maslin B.R. Maslin B.R. Maslin Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com B.R. Maslin Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com B.R. Maslin B.R. Maslin See illustration. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com B.R. Maslin Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com See illustration. See illustration. See illustration. Acacia caesaneura occurrence map. O ccurrence map generated via Atlas of Living Australia (https://w w w .ala.org.au). Common Name Western Blue Mulga Family Fabaceae Distribution Endemic in W.A. with most collections from an area bounded approximately by Yalgoo, Meekatharra, Lorna Glen Stn (c.
    [Show full text]
  • Additional Information
    Current Survey Introduced Flora Records Vegetation Condition *Acetosa vesicaria Excellent 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000
    [Show full text]
  • Supplementary Materialsupplementary Material
    10.1071/BT13149_AC © CSIRO 2013 Australian Journal of Botany 2013, 61(6), 436–445 SUPPLEMENTARY MATERIAL Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records Joseph T. MillerA,E, Daniel J. MurphyB, Simon Y. W. HoC, David J. CantrillB and David SeiglerD ACentre for Australian National Biodiversity Research, CSIRO Plant Industry, GPO Box 1600 Canberra, ACT 2601, Australia. BRoyal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Vic. 3141, Australia. CSchool of Biological Sciences, Edgeworth David Building, University of Sydney, Sydney, NSW 2006, Australia. DDepartment of Plant Biology, University of Illinois, Urbana, IL 61801, USA. ECorresponding author. Email: [email protected] Table S1 Materials used in the study Taxon Dataset Genbank Acacia abbreviata Maslin 2 3 JF420287 JF420065 JF420395 KC421289 KC796176 JF420499 Acacia adoxa Pedley 2 3 JF420044 AF523076 AF195716 AF195684; AF195703 Acacia ampliceps Maslin 1 KC421930 EU439994 EU811845 Acacia anceps DC. 2 3 JF420244 JF420350 JF419919 JF420130 JF420456 Acacia aneura F.Muell. ex Benth 2 3 JF420259 JF420036 JF420366 JF419935 JF420146 KF048140 Acacia aneura F.Muell. ex Benth. 1 2 3 JF420293 JF420402 KC421323 JQ248740 JF420505 Acacia baeuerlenii Maiden & R.T.Baker 2 3 JF420229 JQ248866 JF420336 JF419909 JF420115 JF420448 Acacia beckleri Tindale 2 3 JF420260 JF420037 JF420367 JF419936 JF420147 JF420473 Acacia cochlearis (Labill.) H.L.Wendl. 2 3 KC283897 KC200719 JQ943314 AF523156 KC284140 KC957934 Acacia cognata Domin 2 3 JF420246 JF420022 JF420352 JF419921 JF420132 JF420458 Acacia cultriformis A.Cunn. ex G.Don 2 3 JF420278 JF420056 JF420387 KC421263 KC796172 JF420494 Acacia cupularis Domin 2 3 JF420247 JF420023 JF420353 JF419922 JF420133 JF420459 Acacia dealbata Link 2 3 JF420269 JF420378 KC421251 KC955787 JF420485 Acacia dealbata Link 2 3 KC283375 KC200761 JQ942686 KC421315 KC284195 Acacia deanei (R.T.Baker) M.B.Welch, Coombs 2 3 JF420294 JF420403 KC421329 KC955795 & McGlynn JF420506 Acacia dempsteri F.Muell.
    [Show full text]
  • The-Potential-Use-For-Groundwater
    i Professor Peter Cook 84 Richmond Avenue Colonel Light Gardens SA 5041 [email protected] Professor Derek Eamus School of Life Sciences University of Technology Sydney PO Box 123 Sydney NSW 2007 [email protected] Cover Photo: Open woodland vegetation in the Ti Tree Basin. ii Table of Contents Executive Summary .................................................................................................................... v 1. INTRODUCTION ................................................................................................................... 9 2. METHODOLOGIES TO INFER GROUNDWATER USE .......................................................... 11 2.1 Direct Measurements of Rooting Depth 11 2.2 Soil Water Potentials 12 2.3 Leaf and Soil Water Potentials 13 2.4 Stable Isotopes 2H and 18O 14 2.5 Depth of Water Use and Groundwater Access 16 2.6 Green Islands 17 2.7 Transpiration Rates 19 2.8 Tree Rings 20 2.9 Dendrometry 22 2.10 13C of Sapwood 22 3. GROUNDWATER AND VEGETATION IN THE TI TREE BASIN .............................................. 24 3.1 Geography and Climate 24 3.2 Groundwater Resources 27 3.3 Vegetation Across the Ti Tree Basin 29 4. TI TREE BASIN GDE STUDIES ............................................................................................. 32 4.1 Transpiration and Evapotranspiration Rates 32 4.2 Soil Water Potentials 35 4.3 Leaf Water Potentials 38 4.4 Stable Isotopes 43 4.5 Sapwood 13C and Leaf Vein Density 44 5. OTHER ARID ZONE STUDIES .............................................................................................
    [Show full text]
  • Background Detailed Flora and Vegetation Assessment
    Our ref: EEN18041.003 Level 2, 27-31 Troode Street West Perth WA 6005 T +61 8 9211 1111 Date: 04 June 2019 Tanya McColgan Bellevue Gold Limited Suite 3, Level 3, 24 Outram Street WEST PERTH WA 6008 Dear Tanya, Flora and vegetation values identified within PoW 79431 In response to your request for the preliminary results of the detailed flora and vegetation assessment undertaken over the Bellevue Gold Project area, RPS Australia West Pty Ltd (RPS) herein provides a summary of the key results and outcomes of the assessment in lieu of the final report which is due in July. Background Bellevue Gold Ltd (Bellevue Gold) is currently undertaking an exploration drilling program within mining tenement M3625 for the Bellevue Gold Project (the Project). The Project is located in the north-eastern Goldfields; approximately 40 km north of the township of Leinster in the Shire of Leonora. The Project is situated on and surrounded by pastoral lands and is located on Yakabindie cattle station. RPS was commissioned by Bellevue Gold to undertake a detailed flora and vegetation assessment over M3625 and part of M3624 to encompass the area where exploration drilling is currently underway and including the potential mining and associated infrastructure footprint (the proposed development area). The survey area, the proposed development area and the PoW 79431 area are shown in Figure A. RPS understands that the Department of Mines, Industry Regulation and Safety (DMIRS) and the Department of Biodiversity Conservation and Attractions (DBCA) have requested additional information regarding the natural values of the PoW area, where in-fill drilling is proposed, in order to adequately assess the PoW application.
    [Show full text]
  • Climate Teleconnections Synchronize Picea Glauca Masting and Fire Disturbance: Evidence for a Fire‐Related Form of Environmental Prediction
    Received: 9 August 2019 | Accepted: 7 October 2019 DOI: 10.1111/1365-2745.13308 RESEARCH ARTICLE Climate teleconnections synchronize Picea glauca masting and fire disturbance: Evidence for a fire‐related form of environmental prediction Davide Ascoli1 | Andrew Hacket‐Pain2 | Jalene M. LaMontagne3 | Adrián Cardil4 | Marco Conedera5 | Janet Maringer5 | Renzo Motta1 | Ian S. Pearse6 | Giorgio Vacchiano7 1Department of Agricultural, Forestry and Food Sciences, University of Torino, Grugliasco, Italy; 2Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK; 3Department of Biological Sciences, DePaul University, Chicago, IL, USA; 4Department of Crops and Forest Sciences, University of Lleida, Lleida, Spain; 5Insubric Ecosystems, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Cadenazzo, Switzerland; 6Fort Collins Science Center, U.S. Geological Survey, Fort Collins, CO, USA and 7Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy Correspondence Davide Ascoli Abstract Email: [email protected] 1. Synchronous pulses of seed masting and natural disturbance have positive feed- Funding information backs on the reproduction of masting species in disturbance-prone ecosystems. Natural Environment Research Council, We test the hypotheses that disturbances and proximate causes of masting are Grant/Award Number: NE/S007857/1; NSF, Grant/Award Number: DEB-1745496 correlated, and that their large-scale synchrony is driven by similar climate tel- econnection patterns at both inter-annual and decadal time scales. Handling Editor: Peter Bellingham 2. Hypotheses were tested on white spruce (Picea glauca), a masting species which surprisingly persists in fire-prone boreal forests while lacking clear fire adap- tations. We built masting, drought and fire indices at regional (Alaska, Yukon, Alberta, Quebec) and sub-continental scales (western North America) spanning the second half of the 20th century.
    [Show full text]
  • Square Kilometre Array Ecological Assessment Commercial-In-Confidence
    AECOM SKA Ecological Assessment A Square Kilometre Array Ecological Assessment Commercial-in-Confidence Appendix A Conservation Categories G:\60327857 - SKA EcologicalSurvey\8. Issued Docs\8.1 Reports\Ecological Assessment\60327857-SKA Ecological Report_Rev0.docx Revision 0 – 28-Nov-2014 Prepared for – Department of Industry – ABN: 74 599 608 295 AECOM SKA Ecological Assessment A-1 Square Kilometre Array Ecological Assessment Commercial-in-Confidence Appendix A Conservation Categories G:\60327857 - SKA EcologicalSurvey\8. Issued Docs\8.1 Reports\Ecological Assessment\60327857-SKA Ecological Report_Rev0.docx Revision 0 – 28-Nov-2014 Prepared for – Department of Industry – ABN: 74 599 608 295 Definitions of Threatened and Priority Flora Species 1 Appendix A – Conservation Categories 1.1 Western Australia Plants and animals that are considered threatened and need to be specially protected because they are under identifiable threat of extinction are listed under the Wildlife Conservation Act (WC Act). These categories are defined in Table 1. Any species identified as Threatened under the WC Act is assigned a threat category using the International Union for Conservation of Nature (IUCN) Red List categories and criteria. Species that have not yet been adequately surveyed to warrant being listed under Schedule 1 or 2 are added to the Priority Flora or Fauna Lists under Priority 1, 2 or 3. Species that are adequately known, are rare but not threatened, or meet criteria for Near Threatened, or that have been recently removed from the threatened list for other than taxonomic reasons, are placed in Priority 4 and require regular monitoring. Conservation Dependent species and ecological communities are placed in Priority 5.
    [Show full text]
  • List of Attachments-Yaringa Quarry
    List of Attachments-Yaringa Quarry The following are a list of attachments associated with the Yaringa Works Approval – Attachment 1-Yaringa Quarry Vertices co-ordinates – Attachment 2-Yaringa Quarry Proposed Premises Map – Attachment 3A-Yaringa Quarry Estimated road building production program – Attachment 3B-Yaringa Clearing Area – Attachment 3-Key Plant and Equipment Nov 2016 – Attachment 3-Process Flowchart – Attachment 3-Proposed layout of machinery on site (approximate may change depending on site requirements and conditions) – Attachment 3-Yaringa Stockpile Layout Plan – Attachment 7-Nearest sensitive receiver from project area – Attachment 7-Siting and location Yaringa Quarry – Attachment 7-Yaringa Quarry Proximity to Hamelin Pool and Shark Bay – Attachment 10-Fee Calculator Outputs – Attachment 11-Yaringa Quarry PEIA and EMP – Biological Survey Page 1 of 1 Vertices Longitude Latitude 0 114.31174 -25.9992 1 114.31171 -25.9996 2 114.30988 -25.9995 3 114.30854 -25.9994 4 114.30905 -25.9983 5 114.31068 -26.0005 6 114.31068 -26.0025 7 114.30816 -26.0024 8 114.30814 -26.0002 9 114.30866 -26.0016 10 114.30932 -26.0016 11 114.3093 -26.002 12 114.30869 -26.0019 13 114.31456 -25.9999 14 114.31539 -26.0008 15 114.31516 -26.0009 16 114.31469 -26.0006 17 114.3144 -26.0003 18 114.31409 -26.0001 19 114.31384 -26.0011 20 114.31349 -26.0011 21 114.31216 -25.9998 22 114.31432 -25.9987 23 114.31541 -25.9983 24 114.31723 -25.9988 25 114.31651 -26.0004 26 114.30813 -26.0002 27 114.31724 -26.0007 28 114.31656 -26.0008 29 114.31579 -26.0012 30 114.31539
    [Show full text]
  • DRAFT 25/10/90; Plant List Updated Oct. 1992; Notes Added June 2021
    DRAFT 25/10/90; plant list updated Oct. 1992; notes added June 2021. PRELIMINARY REPORT ON THE CONSERVATION VALUES OF OPEN COUNTRY PADDOCK, BOOLARDY STATION Allan H. Burbidge and J.K. Rolfe INTRODUCTION Boolardy Station is situated about 150 km north of Yalgoo and 140 km west-north-west of Cue, in the Shire of Murchison, Western Australia. Open Country Paddock (about 16 000 ha) is in the south-east corner of the station, at 27o05'S, 116o50'E. The most prominent named feature is Coolamooka Hill, near the eastern boundary of the paddock. There are no conservation reserves in this region, although there are some small reserves set aside for various other purposes. Previous biological data for the station consist of broad scale vegetation mapping and land system mapping. Beard (1976) mapped the entire Murchison region at 1: 1 000 000. The Open Country Paddock area was mapped as supporting mulga woodlands and shrublands. More detailed mapping of land system units for rangeland assessment purposes has been carried out more recently at a scale of 1: 40 000 (Payne and Curry in prep.). Seven land systems were identified in open Country Paddock (Fig. 1). Apart from these studies, no detailed biological survey work appears to have been done in the area. Open Country Paddock has been only lightly grazed by domestic stock because of the presence of Kite-leaf Poison (Gastrolobium laytonii) and a lack of fresh water. Because of this and the generally good condition of the paddock and presence of a wide range of plant species, P.J.
    [Show full text]
  • Volume 5 Pt 3
    Conservation Science W. Aust. 7 (1) : 153–178 (2008) Flora and Vegetation of the banded iron formations of the Yilgarn Craton: the Weld Range ADRIENNE S MARKEY AND STEVEN J DILLON Science Division, Department of Environment and Conservation, Wildlife Research Centre, PO Box 51, Wanneroo WA 6946. Email: [email protected] ABSTRACT A survey of the flora and floristic communities of the Weld Range, in the Murchison region of Western Australia, was undertaken using classification and ordination analysis of quadrat data. A total of 239 taxa (species, subspecies and varieties) and five hybrids of vascular plants were collected and identified from within the survey area. Of these, 229 taxa were native and 10 species were introduced. Eight priority species were located in this survey, six of these being new records for the Weld Range. Although no species endemic to the Weld Range were located in this survey, new populations of three priority listed taxa were identified which represent significant range extensions for these taxa of conservation significance. Eight floristic community types (six types, two of these subdivided into two subtypes each) were identified and described for the Weld Range, with the primary division in the classification separating a dolerite-associated floristic community from those on banded iron formation. Floristic communities occurring on BIF were found to be associated with topographic relief, underlying geology and soil chemistry. There did not appear to be any restricted communities within the landform, but some communities may be geographically restricted to the Weld Range. Because these communities on the Weld Range are so closely associated with topography and substrate, they are vulnerable to impact from mineral exploration and open cast mining.
    [Show full text]
  • Clearing Permit Decision Report
    Clearing Permit Decision Report 1. Application details 1.1. Permit application details Permit application No.: 6760/1 Permit type: Purpose Permit 1.2. Proponent details Proponent’s name: HBJ Minerals Pty Ltd 1.3. Property details Property: Mining Lease 25/357 Local Government Area: City of Kalgoorlie-Boulder Colloquial name: Cannon Gold Project 1.4. Application Clearing Area (ha) No. Trees Method of Clearing For the purpose of: 40 Mechanical Removal Mineral Exploration, Mineral Production and Associated Activities 1.5. Decision on application Decision on Permit Application: Grant Decision Date: 12 November 2015 2. Site Information 2.1. Existing environment and information 2.1.1. Description of the native vegetation under application Vegetation Description Beard vegetation associations have been mapped for the whole of Western Australia. One Beard vegetation association has been mapped within the application area (GIS Database): Beard vegetation association 468: Medium woodland, salmon gum and goldfields blackbutt. A level one flora and vegetation study incorporating a desktop assessment and a field component was undertaken in August 2015 by Botanica Consulting (2015). This survey identified ten broad vegetation types within the study area: Eucalypt Woodland CLP-EW1: Low woodland of Eucalyptus salmonophloia over heath of Eremophila scoparia and dwarf scrub of Atriplex vesicaria / Sclerolaena diacantha; CLP-EW2: Forest of Eucalyptus lesouefii over low scrub of Eremophila scoparia and dwarf scrub of Cratystylis conocephala ; CLP-EW3: Low
    [Show full text]
  • Flora Survey on Hiltaba Station and Gawler Ranges National Park
    Flora Survey on Hiltaba Station and Gawler Ranges National Park Hiltaba Pastoral Lease and Gawler Ranges National Park, South Australia Survey conducted: 12 to 22 Nov 2012 Report submitted: 22 May 2013 P.J. Lang, J. Kellermann, G.H. Bell & H.B. Cross with contributions from C.J. Brodie, H.P. Vonow & M. Waycott SA Department of Environment, Water and Natural Resources Vascular plants, macrofungi, lichens, and bryophytes Bush Blitz – Flora Survey on Hiltaba Station and Gawler Ranges NP, November 2012 Report submitted to Bush Blitz, Australian Biological Resources Study: 22 May 2013. Published online on http://data.environment.sa.gov.au/: 25 Nov. 2016. ISBN 978-1-922027-49-8 (pdf) © Department of Environment, Water and Natural Resouces, South Australia, 2013. With the exception of the Piping Shrike emblem, images, and other material or devices protected by a trademark and subject to review by the Government of South Australia at all times, this report is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. All other rights are reserved. This report should be cited as: Lang, P.J.1, Kellermann, J.1, 2, Bell, G.H.1 & Cross, H.B.1, 2, 3 (2013). Flora survey on Hiltaba Station and Gawler Ranges National Park: vascular plants, macrofungi, lichens, and bryophytes. Report for Bush Blitz, Australian Biological Resources Study, Canberra. (Department of Environment, Water and Natural Resources, South Australia: Adelaide). Authors’ addresses: 1State Herbarium of South Australia, Department of Environment, Water and Natural Resources (DEWNR), GPO Box 1047, Adelaide, SA 5001, Australia.
    [Show full text]