Histology of the Blood Vessels the Microscopic Structure of the Wall of the Blood Vessels Including

Total Page:16

File Type:pdf, Size:1020Kb

Histology of the Blood Vessels the Microscopic Structure of the Wall of the Blood Vessels Including + Motivational Corner: Mistakes are proof that you are trying. Objectives: By the end of this lecture, the student should be able to identify and describe Histology of the blood vessels the microscopic structure of the wall of the blood vessels including: a. Elastic arteries. Extra notes: Gray b. Muscular (medium-sized) arteries. Important notes: Red c. Medium-sized veins. d. Blood capillaries. + BLOOD VESSELS Arteries: Veins: - Elastic artery. - Venules. - Muscular (distributing) - Small veins. Blood capillaries. (medium-sized) artery. - Medium-sized veins. - Arterioles. Large veins. STRUCTURE OF BLOOD VESSELS The wall of blood vessel is formed of three concentric layers: Tunica Tunica intima Tunica adventitia (interna) media (externa) + GENERAL STRUCTURE OF BLOOD VESSELS wall of blood vessels Outermost layer NOTE: Composed of connective tissue Intermediate layer Is the innermost layer Tunica: a containing (3 layers) The thickest layer (4 layers) general term for a Composed of: Composed of: VASA VASORUM: membrane and other structures (blood vessels supplying other 1- Smooth muscles. blood vessels) that line and •ENDOTHELIAL CELLS: 2- Elastic fibers. Arteries, supplies TM and TA, Veins = cover •Simple squamous epithelium large veins from the arteries, small veins from anastomosies 3- Type III collagen (reticular •SUBENDOTHELIAL LAYER: fibers). •loose C.T. They are small arterioles in tunica 4- Type I collagen. adventitia and the outer part of tunica media. Tunica Media Tunica Tunica Intima Tunica •INTERNAL ELASTIC LAMINA: fenestrated elastic sheet. They are more prevalent in the NB: Large muscular arteries Adventitia Tunica walls of veins than arteries – why? have external elastic lamina, Venous blood contains less oxygen separating the tunica media and nutrients than arterial blood. from the tunica adventitia + ELASTIC ARTERIES Examples: aorta, common carotid a., subclavian a., common iliac a, pulmonary Trunk. MICROSCOPIC STRUCTURE: - Endothelium. it consists of: A. Fenestrated (openings for nutrition) elastic Much thinner membranes (sheets) than T.M. -Subendothelial (lamellae): C.T. It is the main It is composed of component of T.M. loose C.T. - Internal elastic B. In between, there are: lamina: 1. Smooth muscle cells. Contains vasa T. Media T. T. Intima T. 2.Collagen fibers (type I vasorum → send (not prominent) collagen). T. Adventitia T. branches to the 3. Reticular fibers (type (indistinct) III collagen). outer part of T.M. 4. Elastic fibers. + MUSCULAR ARTERIES (Medium-sized artery) Examples: brachial, ulnar, renal. MICROSCOPIC STRUCTURE: - Endothelium. (Thicker than T. Adventitia or similar in thickness). Loose CT - Subendothelial Components: C.T. layer. A- Smooth muscle cells (SMC): are the predominant component. - Internal elastic lamina: B- In between there are: •Elastic fibers. T. Media T. T. Intima T. •Type III collagen fibers. Is prominent. •Type I collagen fibers. Adventitia T. Displays an C -External elastic lamina: undulating surface. may be identifiable. + VALVES OF VEINS MEDIUM-SIZED VEIN Valve of a vein is composed of Thickness of the wall: thinner than the accompanying artery. 2 leaflets Each leaflet has a thin fold of the T. Intima. usually forms Thinner than Thicker than valves. T. Adventitia T. Media COMPONENTS: NO internal Rich in vasa ■Endothelium Consists of: vasorum ■Core of C.T. T. Media T. T. Intima T. elastic • Fewer SMCs. T. Adventitia T. lamina • Types I & III Collagen fibers. + BLOOD CAPILLARIES Diameter: usually 8-10 µm. MICROSCOPIC STRUCTURE: Types of blood capillaries: 1. Single layer of squamous endothelial cells. 2. Basal lamina: surrounds the external Fenestrated blood surface of the endothelial cells. 3. Pericytes: (protective cells) Continuous blood Capillaries Sinusoidal blood capillaries A- with diaphragms capillaries ■ Have processes. B- without diaphragms ■ Share the basal lamina of the endothelial cells. Pericytes around here + TYPES OF BLOOD CAPILLARIES: CONTINUOUS BLOOD FENESTRATED BLOOD FENESTRATED BLOOD SINUSOIDAL CAPILLARIES CAPILLARIES CAPILLARIES WITH CAPILLARIES DIAMETER: IRREGULAR DIAPHRAGMS WITHOUT DIAPHRAGMS (30-40 µM). (DICONTINUOUS) MICROSCOPIC No pores or The walls of their The walls of their - Their endothelial cells fenestrae in their endothelial cells endothelial cells have fenestrae (wide) STRUCTURE: without diaphragms. walls. have pores have pores - They possess (fenestrae). (fenestrae). discontinuous endothelial NO GAPS cells. - They possess These pores are These pores are discontinuous basal covered by NOT covered by lamina. diaphragm. diaphragm. - Macrophages may be (diaphragm acts like a located in or along the valve) outside of the endothelial wall. (Reticular fibers hold the cells together) DISTRIBUTION: In muscles, In intestine, In renal glomerulus. Red bone marrow, nervous T., C.T. pancreas liver (to discharge and endocrine macrophages and dead cells etc), glands. spleen and certain endocrine glands. + + MCQs 1- Which of the following is a distinct structure found 5- At what level of the vascular tree does gas specifically in the liver, spleen, and bone marrow? exchange occur? a. Continuous capillaries a. Capillary b. Fenestrated capillaries b. Arteriole c. Sinusoidal capillaries c. Venule d. AV anastomoses d. Elastic artery e. Venous sinus e. Muscular artery 2- What do you call the simple squamous epithelium that 6- Which layer in an artery is primarily smooth D - lines the blood vessels? muscle? 8 a. Epithelioid tissue C - a. Tunica intima 7 b. Mesothelium b. Tunica media B - c. Endothelium c. Tunica externa 6 A - d. Transitional d. All of the above 5 A - e. Pseudostratified e. None of the above 4 D - 3- What is a thoroughfare which is a an intermediate 7- Which of the following constitutes the 3 C - between an arteriole and capillary? microvascular bed of a tissue? 2 C - a. Metcapillary a. Capillaries 1 b. Metartery b. Capillaries and arterioles c. Metvenule c. Capillaries, arterioles, and post capillary venules d. Metarteriole d. Capillaries, arterioles, post capillary venules, and veins e. None of the above e. Capillaries, arterioles, post capillary venules, veins, and arteries 4- In which structure are things moved across the Done by: Thanks for checking epithelium via pinocytotic vesicles? 8-What is a direct route between arteries and veins Areeb AlOgaiel our work, Good a. Continuous capillaries called? luck! b. Fenestrated capillaries a. Continuous capillaries Edited by: c. Sinusoidal capillaries b. Fenestrated capillaries Shadn Alomran d. AV anastomoses --Team histology. c. Sinusoidal capillaries e. Venous sinus d. AV anastomoses Team leaders: e. Venous sinus Areeb AlOgaiel 5- At what level of the vascular tree does gas exchange occur? Hazim Bajri a. Capillary b. Arteriole For any question or suggestion: c. Venule [email protected] d. Elastic artery e. Muscular artery .
Recommended publications
  • Chapter 20 *Lecture Powerpoint the Circulatory System: Blood Vessels and Circulation
    Chapter 20 *Lecture PowerPoint The Circulatory System: Blood Vessels and Circulation *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • The route taken by the blood after it leaves the heart was a point of much confusion for many centuries – Chinese emperor Huang Ti (2697–2597 BC) believed that blood flowed in a complete circuit around the body and back to the heart – Roman physician Galen (129–c. 199) thought blood flowed back and forth like air; the liver created blood out of nutrients and organs consumed it – English physician William Harvey (1578–1657) did experimentation on circulation in snakes; birth of experimental physiology – After microscope was invented, blood and capillaries were discovered by van Leeuwenhoek and Malpighi 20-2 General Anatomy of the Blood Vessels • Expected Learning Outcomes – Describe the structure of a blood vessel. – Describe the different types of arteries, capillaries, and veins. – Trace the general route usually taken by the blood from the heart and back again. – Describe some variations on this route. 20-3 General Anatomy of the Blood Vessels Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Capillaries Artery: Tunica interna Tunica media Tunica externa Nerve Vein Figure 20.1a (a) 1 mm © The McGraw-Hill Companies, Inc./Dennis Strete, photographer • Arteries carry blood away from heart • Veins
    [Show full text]
  • The Circulatory System
    Lec. 3 General Histology Instructor: Assist. Prof. Rasha A. Azeez The circulatory system The circulatory system provides a means of conveying nutrients and oxygen to and wastes out of the internal cells that make-up our bodies. There are two major components of the circulatory system. A. The cardiovascular system 1. Arteries, 2. Arterioles, 3. Capillaries, 4. Veins 5.Venules 6. Heart. B. The lymph vascular system 1. Blind ended lymphatic capillaries that collect lymph fluid from tissues. 2. Larger lymphatic vessels that connect with one and other and finally empty collected lymph into large veins in the neck where the lymphatic and cardiovascular systems merge. The cardiovascular system 1. Arterial system: There are three main types of arteries: o Elastic arteries o Muscular arteries o Arterioles o Elastic arteries These arteries that receive blood directly from the heart; includes the Aorta and the pulmonary artery; they need to be elastic because when the heart contracts, and ejects blood into these arteries, the walls need to stretch to accommodate the blood surge. The walls of these arteries have lots of elastin. a- Tunica intima is made up of an epithelium, which is a single layer of flattened epithelial cells, together with a supporting layer of elastin rich collagen. This layer also has fibroblasts and 'myointimal cells' that accumulate lipid with ageing, and the intima layer thickens, one of the first signs of atherosclerosis. a- Tunica media is broad and elastic with concentric fenestrated sheets of elastin, and collagen and only relatively few smooth muscle fibers. b- Tunica adventitia - has small vasa vasorum "a network of small blood vessels is present in the adventitia" as the large arteries need their own blood supply.
    [Show full text]
  • Cardiovascular System 9
    Chapter Cardiovascular System 9 Learning Outcomes On completion of this chapter, you will be able to: 1. State the description and primary functions of the organs/structures of the car- diovascular system. 2. Explain the circulation of blood through the chambers of the heart. 3. Identify and locate the commonly used sites for taking a pulse. 4. Explain blood pressure. 5. Recognize terminology included in the ICD-10-CM. 6. Analyze, build, spell, and pronounce medical words. 7. Comprehend the drugs highlighted in this chapter. 8. Describe diagnostic and laboratory tests related to the cardiovascular system. 9. Identify and define selected abbreviations. 10. Apply your acquired knowledge of medical terms by successfully completing the Practical Application exercise. 255 Anatomy and Physiology The cardiovascular (CV) system, also called the circulatory system, circulates blood to all parts of the body by the action of the heart. This process provides the body’s cells with oxygen and nutritive ele- ments and removes waste materials and carbon dioxide. The heart, a muscular pump, is the central organ of the system. It beats approximately 100,000 times each day, pumping roughly 8,000 liters of blood, enough to fill about 8,500 quart-sized milk cartons. Arteries, veins, and capillaries comprise the network of vessels that transport blood (fluid consisting of blood cells and plasma) throughout the body. Blood flows through the heart, to the lungs, back to the heart, and on to the various body parts. Table 9.1 provides an at-a-glance look at the cardiovascular system. Figure 9.1 shows a schematic overview of the cardiovascular system.
    [Show full text]
  • The Circulatory System
    TheThe CirculatoryCirculatory SystemSystem Xue Hui DepartmentDepartment ofof HistologyHistology && EmbryologyEmbryology TheThe CirculatoryCirculatory SystemSystem Cardiovascular system (blood vascular system) Heart Artery Capillary Vein Lymphatic vascular system Lymphatic capillary Lymphatic vessel Lymphatic duct II GeneralGeneral structurestructure ofof thethe bloodblood vesselsvessels Tunica intima Tunica media Tunica adventitia Drawing of a medium-sized muscular artery, showing its layers. II GeneralGeneral structurestructure ofof thethe bloodblood vesselsvessels IIII ArteryArtery Large artery Medium-sized artery Small artery Arteriole II Artery LargeLarge arteryartery Structure Tunica intima Tunica media 40-70 layers of elastic lamina Smooth muscle cells, collagenous fibers Tunica adventitia Function Carry the blood from the heart to the middle arteries Tunica Tunica intima intima Tunica Tunica media media Tunica Tunica adventitia adventitia Transverse sections showing part of a large elastic artery showing a well developed tunica media containing several elastic laminas. II Artery MediumMedium--sizedsized arteryartery Structure Tunica intima: clear internal elastic membrane Tunica media: 10-40 layers of smooth muscle cells Tunica adventitia: external elastic membrane Function Regulate the distribution of the blood to various parts of the body Tunica Internal intima elastic membrane Tunica media External elastic membrane Tunica adventitia II Artery SmallSmall arteryartery Structure characteristic Diameter:0.3-1mm Tunica intima: clear
    [Show full text]
  • Infliximab, a TNF-Α Inhibitor, Reduces 24-H Ambulatory
    Journal of Human Hypertension (2014) 28, 165–169 & 2014 Macmillan Publishers Limited All rights reserved 0950-9240/14 www.nature.com/jhh ORIGINAL ARTICLE Infliximab, a TNF-a inhibitor, reduces 24-h ambulatory blood pressure in rheumatoid arthritis patients S Yoshida1, T Takeuchi1, T Kotani1, N Yamamoto1, K Hata1, K Nagai1, T Shoda1,STakai2, S Makino1 and T Hanafusa1 Tumour necrosis factor-alpha (TNF-a) is an important mediator in the pathogenesis of rheumatoid arthritis (RA) and hypertension. TNF-a inhibitors improve clinical symptoms and inhibit joint destruction in RA, but their effect on blood pressure (BP) has not been fully investigated. We measured 24-h BP using an ambulatory BP monitor in 16 RA patients treated with a TNF-a inhibitor, infliximab, to investigate its influence on BP and its association with the regulatory factors of BP and renin-angiotensin-aldosterone and sympathetic nervous systems. Infliximab significantly reduced the 24-h systolic BP (SBP) from 127.4±21.8 to 120.1±23.4 mm Hg (Po0.0001). Particularly, morning BP (0600–0800 h) decreased from 129.7±19.7 to 116.9±13.4 mm Hg (Po0.0001), and daytime BP decreased from 131.8±15.1 to 122.5±13.7 mm Hg (Po0.0001). Infliximab significantly reduced the plasma level of norepinephrine and plasma renin activity (PRA) (from 347.5±180.7 to 283.0±181.8 pg ml À 1 and 2.6±2.7 to 2.1±2.9 ng ml À 1 h À 1, respectively) but did not significantly reduce the plasma levels of dopamine and epinephrine.
    [Show full text]
  • Histological Study of the Elastic Artery, Muscular Artery, and Their Junction in Neonate Dog
    Winter & Spring 2016, Volume 13, Number 1 Histological Study of the Elastic Artery, Muscular Artery, and Their Junction in Neonate Dog Fatemeh Ramezani Nowrozani1* 1. Department of Anatomical Sciences, School of Veterinary Medicine, Kazerun Branch, Islamic Azad Univercity, Kazerun, Iran. Citation: Ramezani Nowrozani F. Histological study of the elastic artery, muscular artery, and their junction in neonate dog. Anatomical Sciences. 2016; 13(1):33-38. Dr. Fatemeh Ramezani Nowrozani is the assistant professor of anatomy, histology and embryology in the department of anatomical science at Kazerun Branch, Islamic Azad Univercity, Kazerun, Iran. She was graduated with a DVM and PhD from the College of Veterinary Medicine at Shiraz University. Since 2008, she has advised DVM students at Kazerun Branch, Islamic Azad Univercity anatomy, histology and embryology. Article info: A B S T R A C T Received: 12 Jan. 2015 Accepted: 02 Oct. 2015 Introduction: We did this study because there were a few studies about aorto-branch junction. Available Online: 01 Jan 2016 Methods: Four light microscope and electron microscope study, the abdominal aorta, renal artery, and the adjoining right and left renal arteries were dissected out from 4 neonate dogs. Results: Based on the results, there is only one cell type in the tunica intima of endothelium in both arteries. In abdominal aorta, there were open connective tissue spaces, containing elastic fibers between the internal elastic membrane and endothelium. In renal artery, endothelial cells were attached directly to the internal elastic membrane. In the abdominal aorta tunica media, layers of smooth muscle cells alternating with elastic lamellae were observed, but in renal artery, the smooth muscle cells were close to each other and a small quantity of collagen and elastic fibers were found between them.
    [Show full text]
  • Anatomy Review: Blood Vessel Structure & Function
    Anatomy Review: Blood Vessel Structure & Function Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction • The blood vessels of the body form a closed delivery system that begins and ends at the heart. Page 2. Goals • To describe the general structure of blood vessel walls. • To compare and contrast the types of blood vessels. • To relate the blood pressure in the various parts of the vascular system to differences in blood vessel structure. Page 3. General Structure of Blood Vessel Walls • All blood vessels, except the very smallest, have three distinct layers or tunics. The tunics surround the central blood-containing space - the lumen. 1. Tunica Intima (Tunica Interna) - The innermost tunic. It is in intimate contact with the blood in the lumen. It includes the endothelium that lines the lumen of all vessels, forming a smooth, friction reducing lining. 2. Tunica Media - The middle layer. Consists mostly of circularly-arranged smooth muscle cells and sheets of elastin. The muscle cells contract and relax, whereas the elastin allows vessels to stretch and recoil. 3. Tunica Adventitia (Tunica Externa) - The outermost layer. Composed of loosely woven collagen fibers that protect the blood vessel and anchor it to surrounding structures. Page 4. Comparison of Arteries, Capillaries, and Veins • Let's compare and contrast the three types of blood vessels: arteries, capillaries, and veins. • Label the artery, capillary and vein. Also label the layers of each. • Arteries are vessels that transport blood away from the heart. Because they are exposed to the highest pressures of any vessels, they have the thickest tunica media.
    [Show full text]
  • Blood Vessels: Part A
    Chapter 19 The Cardiovascular System: Blood Vessels: Part A Blood Vessels • Delivery system of dynamic structures that begins and ends at heart – Arteries: carry blood away from heart; oxygenated except for pulmonary circulation and umbilical vessels of fetus – Capillaries: contact tissue cells; directly serve cellular needs – Veins: carry blood toward heart Structure of Blood Vessel Walls • Lumen – Central blood-containing space • Three wall layers in arteries and veins – Tunica intima, tunica media, and tunica externa • Capillaries – Endothelium with sparse basal lamina Tunics • Tunica intima – Endothelium lines lumen of all vessels • Continuous with endocardium • Slick surface reduces friction – Subendothelial layer in vessels larger than 1 mm; connective tissue basement membrane Tunics • Tunica media – Smooth muscle and sheets of elastin – Sympathetic vasomotor nerve fibers control vasoconstriction and vasodilation of vessels • Influence blood flow and blood pressure Tunics • Tunica externa (tunica adventitia) – Collagen fibers protect and reinforce; anchor to surrounding structures – Contains nerve fibers, lymphatic vessels – Vasa vasorum of larger vessels nourishes external layer Blood Vessels • Vessels vary in length, diameter, wall thickness, tissue makeup • See figure 19.2 for interaction with lymphatic vessels Arterial System: Elastic Arteries • Large thick-walled arteries with elastin in all three tunics • Aorta and its major branches • Large lumen offers low resistance • Inactive in vasoconstriction • Act as pressure reservoirs—expand
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Blood and Lymph Vascular Systems
    BLOOD AND LYMPH VASCULAR SYSTEMS BLOOD TRANSFUSIONS Objectives Functions of vessels Layers in vascular walls Classification of vessels Components of vascular walls Control of blood flow in microvasculature Variation in microvasculature Blood barriers Lymphatic system Introduction Multicellular Organisms Need 3 Mechanisms --------------------------------------------------------------- 1. Distribute oxygen, nutrients, and hormones CARDIOVASCULAR SYSTEM 2. Collect waste 3. Transport waste to excretory organs CARDIOVASCULAR SYSTEM Cardiovascular System Component function Heart - Produce blood pressure (systole) Elastic arteries - Conduct blood and maintain pressure during diastole Muscular arteries - Distribute blood, maintain pressure Arterioles - Peripheral resistance and distribute blood Capillaries - Exchange nutrients and waste Venules - Collect blood from capillaries (Edema) Veins - Transmit blood to large veins Reservoir Larger veins - receive lymph and return blood to Heart, blood reservoir Cardiovascular System Heart produces blood pressure (systole) ARTERIOLES – PERIPHERAL RESISTANCE Vessels are structurally adapted to physical and metabolic requirements. Vessels are structurally adapted to physical and metabolic requirements. Cardiovascular System Elastic arteries- conduct blood and maintain pressure during diastole Cardiovascular System Muscular Arteries - distribute blood, maintain pressure Arterioles - peripheral resistance and distribute blood Capillaries - exchange nutrients and waste Venules - collect blood from capillaries
    [Show full text]
  • Why Is Plasma Renin Activity Lower in Populations of African Origin?
    Journal of Human Hypertension (2001) 15, 17–25 2001 Macmillan Publishers Ltd All rights reserved 0950-9240/01 $15.00 www.nature.com/jhh REVIEW ARTICLE Why is plasma renin activity lower in populations of African origin? GA Sagnella Blood Pressure Unit, St George’s Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK Plasma renin activity is significantly lower in black the molecular level suggests that the lower PRA may people compared with whites independent of age and arise from gene variation in the renal epithelial sodium blood pressure status. The lower PRA appears to be due channel. The functional significance of the lower PRA in to a reduction in the rate of secretion of renin but the relation to the different pattern of cardiovascular and exact mechanistic events underlying such differences in renal disease between blacks and whites remains renin release between blacks and whites are still not unclear. Moreover, direct investigations of pre-treat- fully understood. Nevertheless, given the paramount ment renin status in hypertensive blacks in relation to importance of the renin-angiotensin system in the con- blood pressure response have demonstrated that the trol of sodium balance, a most likely explanation is that pre-treatment PRA is not a good index of subsequent the lower renin is a consequence of differences in renal blood pressure response to pharmacological treatment. sodium handling between blacks and whites. The lower Nevertheless, the blood pressure reduction to short PRA does not reflect differences in dietary sodium term sodium restriction is greater in blacks compared intake but the evidence available suggests that the low with whites and, in the black subjects, the greater PRA could be part of the corrective mechanisms reduction in blood pressure to sodium restriction designed to maintain sodium balance in the presence appears to be related, at least in part, to the decreased of an increased tendency for sodium retention in black responsiveness of the renin-angiotensin system.
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]