Generating Context-Free Grammars Using Classical Planning

Total Page:16

File Type:pdf, Size:1020Kb

Generating Context-Free Grammars Using Classical Planning Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) Generating Context-Free Grammars using Classical Planning Javier Segovia-Aguas1, Sergio Jimenez´ 2, Anders Jonsson 1 1 Universitat Pompeu Fabra, Barcelona, Spain 2 University of Melbourne, Parkville, Australia [email protected], [email protected], [email protected] Abstract S ! aSa S This paper presents a novel approach for generating S ! bSb /|\ Context-Free Grammars (CFGs) from small sets of S ! a S a /|\ input strings (a single input string in some cases). a S a Our approach is to compile this task into a classical /|\ planning problem whose solutions are sequences b S b of actions that build and validate a CFG compli- | ant with the input strings. In addition, we show that our compilation is suitable for implementing the two canonical tasks for CFGs, string produc- (a) (b) tion and string recognition. Figure 1: (a) Example of a context-free grammar; (b) the corre- sponding parse tree for the string aabbaa. 1 Introduction A formal grammar is a set of symbols and rules that describe symbols in the grammar and (2), a bounded maximum size of how to form the strings of certain formal language. Usually the rules in the grammar (i.e. a maximum number of symbols two tasks are defined over formal grammars: in the right-hand side of the grammar rules). Our approach is compiling this inductive learning task into • Production : Given a formal grammar, generate strings a classical planning task whose solutions are sequences of ac- that belong to the language represented by the grammar. tions that build and validate a CFG compliant with the input • Recognition (also known as parsing): Given a formal strings. The reported empirical results show that our compi- grammar and a string, determine whether the string be- lation can generate CFGs from small amounts of input data longs to the language represented by the grammar. (even a single input string in some cases) using an off-the- Chomsky defined four classes of formal grammars that dif- shelf classical planner. In addition, we show that the com- fer in the form and generative capacity of their rules [Chom- pilation is also suitable for implementing the two canonical sky, 2002]. In this paper we focus on Context-Free Grammars tasks of CFGs, string production and string recognition. (CFGs), where the left-hand side of a grammar rule is always a single non-terminal symbol. This means that the symbols 2 Background on the left-hand side of CFG rules do not appear in the strings This section defines the formalization of CFGs and the plan- that belong to the corresponding language. ning models that we adopt in this work. To illustrate this Figure 1(a) shows an example CFG that contains a single non-terminal symbol, S, and three terminal 2.1 Context-Free Grammars symbols (a, b and , where denotes the empty string). This We define a CFG as a tuple G = hV; v0; Σ;Ri where: CFG defines three production rules that can generate, for in- • V is the finite set of non-terminal symbols, also called stance, the string aabbaa by applying the first rule twice, then variables. Each v 2 V represents a sub-language of the the second rule once and finally, the third rule once again. language defined by the grammar. The parse tree in Figure 1(b) exemplifies the previous rule application and proves that the string aabbaa belongs to the • v0 2 V is the start non-terminal symbol that represents language defined by the grammar. the whole grammar. Learning the entire class of CFGs using only positive ex- • Σ is the finite set of terminal symbols, which are disjoint amples, i.e. strings that belong to the corresponding formal from the set of non-terminal symbols, i.e. V \ Σ 6= ;. language, is not identifiable in the limit [Gold, 1967]. In this The set of terminal symbols is the alphabet of the lan- paper we address the generation of CFGs from positive exam- guage defined by G and can contain the empty string, ples but: (1) for a bounded maximum number of non-terminal which we denote by 2 Σ. 4391 Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) • R : V ! (V [Σ)∗ is the finite set of production rules in cond(a). Each conditional effect C B E 2 cond(a) is com- the grammar. By definition rules r 2 R always contain posed of two sets of literals C 2 L(F ) (the condition) and a single non-terminal symbol on the left-hand side. E 2 L(F ) (the effect). Figure 1(a) shows a 1-variable CFG since it defines a single An action a 2 A is applicable in state s if and only if pre(a) ⊆ s, and the resulting set of triggered effects is non-terminal symbol. In this example V = fSg, v0 = S, Σ = fa; b; g, and R = fS ! aSa; S ! bSb; S ! g. [ ∗ eff(s; a) = E; For any two strings e1; e2 2 (V [ Σ) we say that e1 di- CBE2cond(a);C⊆s rectly yields e2, denoted by e1 ) e2, iff there exists a rule α ! β 2 R such that e1 = u1αu2 and e2 = u1βu2 with ∗ i.e. effects whose conditions hold in s. The result of applying u1; u2 2 (V [ Σ) . Furthermore we say e1 yields e2, de- ∗ a in s is a new state θ(s; a) = (s n :eff(s; a)) [ eff(s; a). noted by e1 ) e2, iff 9k ≥ 0 and 9u1; : : : ; uk such that Given a frame Φ = hF; Ai, a classical planning instance e1 = u1 ) u2 ) ::: ) uk = e2. For instance, Fig- is a tuple P = hF; A; I; Gi, where I 2 L(F ) is an initial ure 1(b) shows how the string S yields the string aabbaa. ∗ ∗ state (i.e. jIj = jF j) and G 2 L(F ) is a goal condition. We The language of a CFG, L(G) = fe 2 Σ : v0 ) eg, is consider the fragment of classical planning with conditional the set of strings that contain only terminal symbols and that effects that includes negative conditions and goals. can be yielded from the string that contains only the initial A plan for P is an action sequence π = ha1; : : : ; ani that non-terminal symbol v0. induces a state sequence hs ; s ; : : : ; s i such that s = I Given a CFG G and a string e 2 L(G) that belongs to its 0 1 n 0 and, for each i such that 1 ≤ i ≤ n, ai is applicable in si−1 language, we define a parse tree tG;e as an ordered, rooted and generates the successor state s = θ(s ; a ). The plan tree that determines a concrete syntactic structure of e ac- i i−1 i π solves P if and only if G ⊆ sn, i.e. if the goal condition is cording to the rules in G: satisfied following the application of π in I. • Each node in a parse tree tG;e is either: 2.3 Generalized Planning – An internal node that corresponds to the applica- tion of a rule r 2 R. Our approach for learning CFGs from positive examples is – A leaf node that corresponds to a terminal symbol to model this task as a generalized planning problem that is σ 2 Σ and has no outgoing branches. eventually solved with an off-the-shelf classical planner using the compilation proposed by Jimenez´ and Jonsson (2015). • Edges in a parse tree tG;e connect non-terminal symbols We define a generalized planning problem as a finite to terminal or non-terminal symbols following the rules set of classical planning instances P = fP1;:::;PT g R in G. within the same planning frame Φ. Therefore, P1 = hF; A; I1;G1i;:::;PT = hF; A; IT ;GT i share the same flu- 2.2 Classical Planning with Conditional Effects ents and actions and differ only in the initial state and goals. We use the model of classical planning with conditional ef- Although actions are shared, each action can have differ- fects because conditional effects allow to adapt the execution ent interpretations in different states due to conditional ef- of a sequence of actions to different initial states, as shown in fects. Given a planning frame Φ = hF; Ai, then Γ(Φ) = conformant planning [Palacios and Geffner, 2009]. The sup- fhF; A; I; Gi : I 2 L(F ); jIj = jF j;G 2 L(F )g denotes the port of conditional effects is now a requirement of the Inter- set of all planning instances that can be instantiated from Φ national Planning Competition [Vallati et al., 2015] and most by defining an initial state I and a goal condition G. current classical planners natively cope with conditional ef- A solution Π to a generalized planning problem P is a fects without compiling them away [Helmert, 2006]. generalized plan that solves every individual instance Pt, We use F to denote a set of propositional variables or flu- 1 ≤ t ≤ T . Generalized plans may have diverse forms ents describing a state. A literal l is a valuation of a fluent that range from DS-planners [Winner and Veloso, 2003] and f 2 F , i.e. l = f or l = :f. A set of literals L on F rep- generalized polices [Mart´ın and Geffner, 2004] to finite state resents a partial assignment of values to fluents (WLOG we machines [Bonet et al., 2010; Segovia-Aguas et al., 2016b], assume that L does not assign conflicting values to any flu- AND/OR graphs or CFGs [Ramirez and Geffner, 2016].
Recommended publications
  • Regular Expressions with a Brief Intro to FSM
    Regular Expressions with a brief intro to FSM 15-123 Systems Skills in C and Unix Case for regular expressions • Many web applications require pattern matching – look for <a href> tag for links – Token search • A regular expression – A pattern that defines a class of strings – Special syntax used to represent the class • Eg; *.c - any pattern that ends with .c Formal Languages • Formal language consists of – An alphabet – Formal grammar • Formal grammar defines – Strings that belong to language • Formal languages with formal semantics generates rules for semantic specifications of programming languages Automaton • An automaton ( or automata in plural) is a machine that can recognize valid strings generated by a formal language . • A finite automata is a mathematical model of a finite state machine (FSM), an abstract model under which all modern computers are built. Automaton • A FSM is a machine that consists of a set of finite states and a transition table. • The FSM can be in any one of the states and can transit from one state to another based on a series of rules given by a transition function. Example What does this machine represents? Describe the kind of strings it will accept. Exercise • Draw a FSM that accepts any string with even number of A’s. Assume the alphabet is {A,B} Build a FSM • Stream: “I love cats and more cats and big cats ” • Pattern: “cat” Regular Expressions Regex versus FSM • A regular expressions and FSM’s are equivalent concepts. • Regular expression is a pattern that can be recognized by a FSM. • Regex is an example of how good theory leads to good programs Regular Expression • regex defines a class of patterns – Patterns that ends with a “*” • Regex utilities in unix – grep , awk , sed • Applications – Pattern matching (DNA) – Web searches Regex Engine • A software that can process a string to find regex matches.
    [Show full text]
  • Formal Grammar Specifications of User Interface Processes
    FORMAL GRAMMAR SPECIFICATIONS OF USER INTERFACE PROCESSES by MICHAEL WAYNE BATES ~ Bachelor of Science in Arts and Sciences Oklahoma State University Stillwater, Oklahoma 1982 Submitted to the Faculty of the Graduate College of the Oklahoma State University iri partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1984 I TheSIS \<-)~~I R 32c-lf CO'f· FORMAL GRAMMAR SPECIFICATIONS USER INTER,FACE PROCESSES Thesis Approved: 'Dean of the Gra uate College ii tta9zJ1 1' PREFACE The benefits and drawbacks of using a formal grammar model to specify a user interface has been the primary focus of this study. In particular, the regular grammar and context-free grammar models have been examined for their relative strengths and weaknesses. The earliest motivation for this study was provided by Dr. James R. VanDoren at TMS Inc. This thesis grew out of a discussion about the difficulties of designing an interface that TMS was working on. I would like to express my gratitude to my major ad­ visor, Dr. Mike Folk for his guidance and invaluable help during this study. I would also like to thank Dr. G. E. Hedrick and Dr. J. P. Chandler for serving on my graduate committee. A special thanks goes to my wife, Susan, for her pa­ tience and understanding throughout my graduate studies. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION . II. AN OVERVIEW OF FORMAL LANGUAGE THEORY 6 Introduction 6 Grammars . • . • • r • • 7 Recognizers . 1 1 Summary . • • . 1 6 III. USING FOR~AL GRAMMARS TO SPECIFY USER INTER- FACES . • . • • . 18 Introduction . 18 Definition of a User Interface 1 9 Benefits of a Formal Model 21 Drawbacks of a Formal Model .
    [Show full text]
  • Algorithm for Analysis and Translation of Sentence Phrases
    Masaryk University Faculty}w¡¢£¤¥¦§¨ of Informatics!"#$%&'()+,-./012345<yA| Algorithm for Analysis and Translation of Sentence Phrases Bachelor’s thesis Roman Lacko Brno, 2014 Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Roman Lacko Advisor: RNDr. David Sehnal ii Acknowledgement I would like to thank my family and friends for their support. Special thanks go to my supervisor, RNDr. David Sehnal, for his attitude and advice, which was of invaluable help while writing this thesis; and my friend František Silváši for his help with the revision of this text. iii Abstract This thesis proposes a library with an algorithm capable of translating objects described by natural language phrases into their formal representations in an object model. The solution is not restricted by a specific language nor target model. It features a bottom-up chart parser capable of parsing any context-free grammar. Final translation of parse trees is carried out by the interpreter that uses rewrite rules provided by the target application. These rules can be extended by custom actions, which increases the usability of the library. This functionality is demonstrated by an additional application that translates description of motifs in English to objects of the MotiveQuery language. iv Keywords Natural language, syntax analysis, chart parsing,
    [Show full text]
  • Finite-State Automata and Algorithms
    Finite-State Automata and Algorithms Bernd Kiefer, [email protected] Many thanks to Anette Frank for the slides MSc. Computational Linguistics Course, SS 2009 Overview . Finite-state automata (FSA) – What for? – Recap: Chomsky hierarchy of grammars and languages – FSA, regular languages and regular expressions – Appropriate problem classes and applications . Finite-state automata and algorithms – Regular expressions and FSA – Deterministic (DFSA) vs. non-deterministic (NFSA) finite-state automata – Determinization: from NFSA to DFSA – Minimization of DFSA . Extensions: finite-state transducers and FST operations Finite-state automata: What for? Chomsky Hierarchy of Hierarchy of Grammars and Languages Automata . Regular languages . Regular PS grammar (Type-3) Finite-state automata . Context-free languages . Context-free PS grammar (Type-2) Push-down automata . Context-sensitive languages . Tree adjoining grammars (Type-1) Linear bounded automata . Type-0 languages . General PS grammars Turing machine computationally more complex less efficient Finite-state automata model regular languages Regular describe/specify expressions describe/specify Finite describe/specify Regular automata recognize languages executable! Finite-state MACHINE Finite-state automata model regular languages Regular describe/specify expressions describe/specify Regular Finite describe/specify Regular grammars automata recognize/generate languages executable! executable! • properties of regular languages • appropriate problem classes Finite-state • algorithms for FSA MACHINE Languages, formal languages and grammars . Alphabet Σ : finite set of symbols Σ . String : sequence x1 ... xn of symbols xi from the alphabet – Special case: empty string ε . Language over Σ : the set of strings that can be generated from Σ – Sigma star Σ* : set of all possible strings over the alphabet Σ Σ = {a, b} Σ* = {ε, a, b, aa, ab, ba, bb, aaa, aab, ...} – Sigma plus Σ+ : Σ+ = Σ* -{ε} Strings – Special languages: ∅ = {} (empty language) ≠ {ε} (language of empty string) .
    [Show full text]
  • Using Contextual Representations to Efficiently Learn Context-Free
    JournalofMachineLearningResearch11(2010)2707-2744 Submitted 12/09; Revised 9/10; Published 10/10 Using Contextual Representations to Efficiently Learn Context-Free Languages Alexander Clark [email protected] Department of Computer Science, Royal Holloway, University of London Egham, Surrey, TW20 0EX United Kingdom Remi´ Eyraud [email protected] Amaury Habrard [email protected] Laboratoire d’Informatique Fondamentale de Marseille CNRS UMR 6166, Aix-Marseille Universite´ 39, rue Fred´ eric´ Joliot-Curie, 13453 Marseille cedex 13, France Editor: Fernando Pereira Abstract We present a polynomial update time algorithm for the inductive inference of a large class of context-free languages using the paradigm of positive data and a membership oracle. We achieve this result by moving to a novel representation, called Contextual Binary Feature Grammars (CBFGs), which are capable of representing richly structured context-free languages as well as some context sensitive languages. These representations explicitly model the lattice structure of the distribution of a set of substrings and can be inferred using a generalisation of distributional learning. This formalism is an attempt to bridge the gap between simple learnable classes and the sorts of highly expressive representations necessary for linguistic representation: it allows the learnability of a large class of context-free languages, that includes all regular languages and those context-free languages that satisfy two simple constraints. The formalism and the algorithm seem well suited to natural language and in particular to the modeling of first language acquisition. Pre- liminary experimental results confirm the effectiveness of this approach. Keywords: grammatical inference, context-free language, positive data only, membership queries 1.
    [Show full text]
  • QUESTION BANK SOLUTION Unit 1 Introduction to Finite Automata
    FLAT 10CS56 QUESTION BANK SOLUTION Unit 1 Introduction to Finite Automata 1. Obtain DFAs to accept strings of a’s and b’s having exactly one a.(5m )(Jun-Jul 10) 2. Obtain a DFA to accept strings of a’s and b’s having even number of a’s and b’s.( 5m )(Jun-Jul 10) L = {Œ,aabb,abab,baba,baab,bbaa,aabbaa,---------} 3. Give Applications of Finite Automata. (5m )(Jun-Jul 10) String Processing Consider finding all occurrences of a short string (pattern string) within a long string (text string). This can be done by processing the text through a DFA: the DFA for all strings that end with the pattern string. Each time the accept state is reached, the current position in the text is output. Finite-State Machines A finite-state machine is an FA together with actions on the arcs. Statecharts Statecharts model tasks as a set of states and actions. They extend FA diagrams. Lexical Analysis Dept of CSE, SJBIT 1 FLAT 10CS56 In compiling a program, the first step is lexical analysis. This isolates keywords, identifiers etc., while eliminating irrelevant symbols. A token is a category, for example “identifier”, “relation operator” or specific keyword. 4. Define DFA, NFA & Language? (5m)( Jun-Jul 10) Deterministic finite automaton (DFA)—also known as deterministic finite state machine—is a finite state machine that accepts/rejects finite strings of symbols and only produces a unique computation (or run) of the automaton for each input string. 'Deterministic' refers to the uniqueness of the computation. Nondeterministic finite automaton (NFA) or nondeterministic finite state machine is a finite state machine where from each state and a given input symbol the automaton may jump into several possible next states.
    [Show full text]
  • Efficient Combinator Parsing for Natural-Language
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-1-2006 Efficient combinator parsing for natural-language. Rahmatullah Hafiz University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Hafiz, Rahmatullah, "Efficient combinator parsing for natural-language." (2006). Electronic Theses and Dissertations. 7137. https://scholar.uwindsor.ca/etd/7137 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Efficient Combinator Parsing for Natural-Language by Rahmatullah Hafiz A Thesis Submitted to the Faculty of Graduate Studies and Research through Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Computer Science at
    [Show full text]
  • Lecture 13-14. Finite State Automata and Regular Languages. the Chomsky Hierarchy and Type 3 Grammars
    Ling 726: Mathematical Linguistics, Lecture 13-14 Finite State Automata and Languages V. Borschev and B. Partee, October 31- Nov 1, 2006 Lecture 13-14. Finite state automata and regular languages. The Chomsky hierarchy and Type 3 grammars. 1. Languages and grammars in mathematical linguistics. Strings and languages.........................................................1 1.1. Languages and grammars. ..................................................................................................................................1 1.2. Basic notions: strings over an alphabet and languages .......................................................................................1 2. Finite automata. ........................................................................................................................................................2 3. Regular languages.....................................................................................................................................................4 4. Pumping Theorem for fal‘s........................................................................................................................................5 5. Type 3 grammars and their relation to fsa. ...............................................................................................................5 6. Properties of regular languages..................................................................................................................................6 Homework 13. ...............................................................................................................................................................7
    [Show full text]
  • Evaluating Grammar Formalisms for Applications
    EVALUATING GRAMMAR FORMALISMS FOR APPLICATIONS TO NATURAL LANGUAGE PROCESSING AND BIOLOGICAL SEQUENCE ANALYSIS David Chiang A DISSERTATION in Computer and Information Science Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2004 COPYRIGHT David Wei Chiang 2004 JMJ Acknowledgments I would like to thank my adviser Aravind Joshi, a wise teacher he is, and Ken Dill at UCSF for his inspiring guidance. Thanks also to my dissertation committee, Fernando Pereira, Jean Gallier, Sampath Kannan, and Giorgio Satta for their careful reading and feedback; and other faculty con- nected with Penn whose advice has been valuable to me: Mark Steedman, Mitch Marcus, Martha Palmer, and David Searls. Among the grad students and postdocs I have interacted with at Penn, I am particularly in- debted to Dan Bikel, Mark Dras, and William Schuler. My collaborations with them and countless discussions taught me half of what I know about computational linguistics. The other half no doubt comes from the rest, including Mike Collins, Dan Gildea, Julia Hockenmaier, Seth Kulick, Alexan- dra Kinyon, Tom Morton, Anoop Sarkar, and Fei Xia. I thank Hoa Trang Dang and my sister Lillian for their loving support, and my parents, who have given me more than I could possibly thank them for. The research described in this thesis was supported in part by the following grants: ARO DAAG5591-0228, NSF SBR-89-20230, and NSF ITR EIA-02-05456. v ABSTRACT EVALUATING GRAMMAR FORMALISMS FOR APPLICATIONS TO NATURAL LANGUAGE PROCESSING AND BIOLOGICAL SEQUENCE ANALYSIS David Chiang Supervisor: Aravind K.
    [Show full text]
  • Formal Language (3A)
    Formal Language (3A) ● Regular Language Young Won Lim 6/9/18 Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to [email protected]. This document was produced by using LibreOffice and Octave. Young Won Lim 6/9/18 Formal Language a formal language is a set of strings of symbols together with a set of rules that are specific to it. https://en.wikipedia.org/wiki/Formal_language Young Won Lim Regular Language (3A) 3 6/9/18 Alphabet and Words The alphabet of a formal language is the set of symbols, letters, or tokens from which the strings of the language may be formed. The strings formed from this alphabet are called words the words that belong to a particular formal language are sometimes called well-formed words or well-formed formulas. https://en.wikipedia.org/wiki/Formal_language Young Won Lim Regular Language (3A) 4 6/9/18 Formal Language A formal language (formation rule) is often defined by means of a formal grammar such as a regular grammar or context-free grammar, https://en.wikipedia.org/wiki/Formal_language Young Won Lim Regular Language (3A) 5 6/9/18 Formal Language and Natural Language The field of formal language theory studies primarily the purely syntactical aspects of such languages— that is, their internal structural patterns.
    [Show full text]
  • Computational Linguistics: Formal Grammar, History and Future of CL
    Computational Linguistics: Formal Grammar, History and Future of CL Raffaella Bernardi KRDB, Free University of Bozen-Bolzano P.zza Domenicani, Room: 2.28, e-mail: [email protected] Contents First Last Prev Next J Contents 1 Generative Power ......................................... 5 1.1 Hierarchy of Grammars and Languages ................ 6 2 Chomsky Hierarchy of Languages ............................ 8 3 Where do Natural Languages fit? ............................ 9 3.1 NLs are not Regular Languages ....................... 9 3.2 NLs are not Regular Languages (Cont’d) ............... 10 3.3 Dissenting Views .................................... 11 3.4 Are NL Context Free (CF)? .......................... 12 3.5 Nested and Crossing Dependencies .................... 14 3.6 English & Copy Language ............................ 15 3.7 Cross-serial dependencies in Dutch .................... 16 3.8 Cross-serial dependencies Swiss German ............... 17 4 Mildly Context Free Grammars ............................. 18 5 Mildly Context-sensitive Languages (MSC) ................... 19 6 Where do the different Formal Grammars stand? .............. 20 6.1 Dependency Grammar ............................... 21 6.2 Categorial Grammar and CTL ........................ 22 Contents First Last Prev Next J 6.3 Tree Adjoining Grammars............................ 23 7 Complexity Issue .......................................... 24 7.1 Input length ........................................ 25 7.2 Complexity of a Problem ............................ 26 7.3 Complexity
    [Show full text]
  • 080 Formal Grammars.Pdf
    CS143 Handout 08 Summer 2012 June 29th, 2012 Formal Grammars Handout written by Maggie Johnson and Julie Zelenski. What is a grammar? A grammar is a powerful tool for describing and analyzing languages. It is a set of rules by which valid sentences in a language are constructed. Here’s a trivial example of English grammar: sentence –> <subject> <verb-phrase> <object> subject –> This | Computers | I verb-phrase –> <adverb> <verb> | <verb> adverb –> never verb –> is | run | am | tell object –> the <noun> | a <noun> | <noun> noun –> university | world | cheese | lies Using the above rules or productions, we can derive simple sentences such as these: This is a university. Computers run the world. I am the cheese. I never tell lies. Here is a leftmost derivation of the first sentence using these productions. sentence –> <subject> <verb-phrase> <object> –> This <verb-phrase> <object> –> This <verb> <object> –> This is <object> –> This is a <noun> –> This is a university In addition to several reasonable sentences, we can also derive nonsense like "Computers run cheese" and "This am a lies". These sentences don't make semantic sense, but they are syntactically correct because they are of the sequence of subject, verb-phrase, and object. Formal grammars are a tool for syntax, not semantics. We worry about semantics at a later point in the compiling process. In the syntax analysis phase, we verify structure, not meaning. 2 Vocabulary We need to review some definitions before we can proceed: grammar a set of rules by which valid sentences in a language are constructed. nonterminal a grammar symbol that can be replaced/expanded to a sequence of symbols.
    [Show full text]