Seasonal Changes and Biological Classification of Irish Coastal

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Changes and Biological Classification of Irish Coastal Seasonal changes and biological classification of Irish coastal lagoons. G. A. Oliver PhD 2005 Seasonal changes and biological classification of Irish coastal lagoons Geoffrey Alan Oliver A thesis is submitted to University College Dublin for the degree of PhD. The research was funded by the National Parks and Wildlife Service of the Irish Government. Head of Department: Dr. Tom Bolger Supervisors: Dr. Bret Danilowicz Dr. Tasman Crowe Department of Zoology, Faculty of Science, University College, Belfield, Dublin 4. February 2005. i Table of Contents List of Tables ................................................................................................................iii List of Figures ............................................................................................................... iv Abstract ............................................................................................................................. vi Acknowledgements ......................................................................................................... vii 1. General Introduction ...................................................................................................... 1 1.1 Background .............................................................................................................. 2 1.2 Seasonal changes (Chapter 2) .................................................................................. 7 1.3 Classification of lagoons (Chapter 3) .................................................................... 10 1.4 Irish lagoons in a European context (Chapter 4). .................................................. 12 2. Seasonal changes in fauna and flora of Irish coastal lagoons ..................................... 14 2.1 Introduction ........................................................................................................... 15 2.2 Methods ................................................................................................................. 18 2.3 Study sites .............................................................................................................. 22 2.4. Results .................................................................................................................. 26 2.5. Discussion ............................................................................................................. 52 2.6 Conclusions ........................................................................................................... 70 3. Biological classification of Irish coastal lagoons ........................................................ 72 3.1 Introduction ........................................................................................................... 72 3.2 Methods ................................................................................................................. 75 3.3 Study Sites ............................................................................................................. 80 3.4 Results ................................................................................................................... 83 3.5 Discussion ............................................................................................................ 105 3.6 Conclusions ......................................................................................................... 114 4. Irish lagoons in a European context. ......................................................................... 118 4.1 Introduction ......................................................................................................... 119 4.2 Coastal lagoons World-wide ............................................................................... 121 4.3 Irish coastal lagoons ............................................................................................ 125 4.4 Fauna and Flora ................................................................................................... 133 4.5 Geographic variation in lagoon fauna and flora .................................................. 146 4.6 Conservation Status of Irish lagoons ................................................................... 150 4.7 Management ........................................................................................................ 153 4.8 Monitoring ........................................................................................................... 164 5. General discussion ..................................................................................................... 179 5.1 Seasonal changes in flora and fauna in Irish coastal lagoons. ............................. 180 5.2 Biological classification of Irish coastal lagoons ................................................ 181 5.3 Irish coastal lagoons in a European context ........................................................ 184 5.4 Management ........................................................................................................ 194 5.5 Monitoring ........................................................................................................... 198 5.6 Conclusions and recommendations ..................................................................... 200 References and Bibliography ........................................................................................ 204 ii List of Tables Table 2.3.1 Size, lagoon type, normal salinity range and substrate of the 4 lagoons selected for survey. .................................................................................................. 23 Table 2.4.1 Salinity range, fauna and flora recorded in four lagoons selected for survey on the west coast of Ireland. 2002-3. ....................................................................... 26 Table 2.4.2 Dominant faunal species recorded in each of the four lagoons selected for seasonal sampling. ................................................................................................... 27 Table 2.4.3. Comparison of percentage differences in pair-wise comparisons of seasons using true count data and abundance scales from visual estimates. ........................ 29 Table 2.4.4 Percentage of pair-wise comparisons of seasons that are significantly different from each other at four coastal lagoons in Ireland, 2002-3. ..................... 30 Table 2.4.5 Pair-wise comparisons of faunal abundance by season in L. Gill ................ 32 Table 2.4.6 Average abundance of dominant faunal taxa at all stations combined in 5 seasons in Lough Gill. 2002-3 (SIMPER analysis). ................................................ 33 Table 2.4.7 Pair-wise comparisons of faunal abundance by season in L. Murree .......... 37 Table 2.4.8 Pair-wise comparisons of seasonal differences in presence and absence of faunal taxa in L. Murree 2002-3 .............................................................................. 38 Table 2.4.9 Average abundance of dominant faunal taxa at 4 stations combined in June 02 and March 03 in L. an Aibhnin (SIMPER analysis). ......................................... 41 Table 2.4.10 Average abundance of dominant ground cover at 4 stations combined in Sept 03 and Jun 02 in L. Athola (SIMPER analysis). ............................................. 45 Table 2.4.11 Average abundance of dominant ground cover at 4 stations combined in Sept 03 and Jun 03 in L. Athola (SIMPER analysis). ............................................. 45 Table 3.3.1. Location, code number, year of survey and size of the 60 sites used for classification of Irish coastal lagoons. ..................................................................... 80 Table 3.4.1 Analyses used for classification of Irish coastal lagoons, 2002-3. ............... 83 Table 4.3.1. Size, location, salinity and year of survey of sites identified as coastal lagoons in the Republic of Ireland, 2004 ............................................................... 126 Table 4.3.2 Inventory of coastal lagoons in Northern Ireland, with location, size and mean salinity. ......................................................................................................... 128 Table 4.3.3 Morphological lagoon types in the Republic of Ireland. ............................ 130 Table 4.4.1 Irish coastal lagoon types based on biological classification (Chapter 2) .. 133 Table 4.4.2 Proposed list of lagoonal specialist flora and fauna for Ireland ................. 136 Table 4.6.1 List of European countries for which information is currently available. .. 151 iii List of Figures Figure 2.3.1 Location map of the 4 lagoons selected for seasonal sampling, 2002-3 ..... 22 Figure 2.4.1 MDS Plot of seasonal variations in faunal abundance at 4 stations in Lough Gill. 2002-3. ............................................................................................................. 32 Figure 2.4.2. Seasonal changes of 4 of the dominant faunal taxa in Lough Gill. 2002-334 Figure 2.4.3 Plot resulting from multidimensional scaling of seasonal differences in faunal presence and absence at four stations in Lough Gill 2002-3. ....................... 34 Figure 2.4.4 Seasonal changes based on presence/absence of Limnephilus, Hydracarina, Ephemeroptera and Bufo calamita in Lough Gill, 2002-3 ...................................... 35 Figure 2.4.5 MDS Plot resulting from multidimensional scaling of floral presence and absence at 4 stations in Lough Gill. ........................................................................
Recommended publications
  • 451Research- a Highly Attractive Location
    IRELAND A Highly Attractive Location for Hosting Digital Assets 360° Research Report SPECIAL REPORT OCTOBER 2013 451 RESEARCH: SPECIAL REPORT © 2013 451 RESEARCH, LLC AND/OR ITS AFFILIATES. ALL RIGHTS RESERVED. ABOUT 451 RESEARCH 451 Research is a leading global analyst and data company focused on the business of enterprise IT innovation. Clients of the company — at end-user, service-provider, vendor and investor organizations — rely on 451 Research’s insight through a range of syndicated research and advisory services to support both strategic and tactical decision-making. ABOUT 451 ADVISORS 451 Advisors provides consulting services to enterprises, service providers and IT vendors, enabling them to successfully navigate the Digital Infrastructure evolution. There is a global sea change under way in IT. Digital infrastructure – the totality of datacenter facilities, IT assets, and service providers employed by enterprises to deliver business value – is being transformed. IT demand is skyrocketing, while tolerance for inefficiency is plummeting. Traditional lines between facilities and IT are blurring. The edge-to-core landscape is simultaneously erupting and being reshaped. Enterprises of all sizes need to adapt to remain competitive – and even to survive. Third-party service providers are playing an increasingly flexible and vital role, enabled by advancements in technology and the evolution of business models. IT vendors and service providers need to understand this changing landscape to remain relevant and capitalize on new opportunities. 451 Advisors addresses the gap between traditional research and management consulting through unique methodologies, proprietary tools, and a complementary base of independent analyst insight and data-driven market intelligence. 451 Research leverages a team of seasoned consulting professionals with the expertise and experience to address the strategic, planning and research challenges associated with the Digital Infrastructure evolution.
    [Show full text]
  • A Life Cycle Assessment Approach on Swedish and Irish Beef Production
    Life Cycle Analysis – HT161 December 2016 A life cycle assessment approach on Swedish and Irish beef production Group 1 - Emma Lidell, Elvira Molin, Arash Sajadi & Emily Theokritoff 0 AG2800 Life cycle assessment Lidell, Molin, Sajadi, Theokritoff Summary This life CyCle assessment has been ConduCted to identify and Compare the environmental impacts arising from the Swedish and Irish beef produCtion systems. It is a Cradle to gate study with the funCtional unit of 1 kg of dressed weight. Several proCesses suCh as the slaughterhouse and retail in both Ireland and Sweden have been excluded since they are similar and CanCel each other out. The focus of the study has been on feed, farming and transportation during the beef production. Since this is an attributional LCA, data ColleCtion mainly Consists of average data from different online sources. Smaller differenCes in the Composition of feed were found for the two systems while a major difference between the two production systems is the lifespan of the Cattle. Based on studied literature, the average lifespan for Cattle in Sweden is 45 months while the Irish Cattle lifespan is 18 months. The impaCt Categories that have been assessed are: Climate Change, eutrophiCation, acidifiCation, land oCcupation and land transformation. In all the assessed impact categories, the Swedish beef produCtion system has a higher environmental impact than the Irish beef produCtion system, mainly due to the higher lifespan of the cattle. AcidifiCation, whiCh is the most signifiCant impact Category when analising the normalised results, differs greatly between the two systems. The Swedish beef system emits almost double the amount (1.3 kg) of SO2 Eq for 1 kg of dressed weight Compared to the Irish beef system (0.7 kg SO2 Eq/FU).
    [Show full text]
  • UCC Library and UCC Researchers Have Made This Item Openly Available
    UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks! Title The historic record of cold spells in Ireland Author(s) Hickey, Kieran R. Publication date 2011 Original citation HICKEY, K. 2011. The historic record of cold spells in Ireland. Irish Geography, 44, 303-321. Type of publication Article (peer-reviewed) Link to publisher's http://irishgeography.ie/index.php/irishgeography/article/view/48 version http://dx.doi.org/10.2014/igj.v44i2.48 Access to the full text of the published version may require a subscription. Rights © 2011 Geographical Society of Ireland http://creativecommons.org/licenses/by/3.0/ Item downloaded http://hdl.handle.net/10468/2526 from Downloaded on 2021-10-04T01:15:21Z Irish Geography Vol. 44, Nos. 2Á3, JulyÁNovember 2011, 303Á321 The historic record of cold spells in Ireland Kieran Hickey* Department of Geography, National University of Ireland, Galway This paper assesses the long historical climatological record of cold spells in Ireland stretching back to the 1st millennium BC. Over this time period cold spells in Ireland can be linked to solar output variations and volcanic activity both in Iceland and elsewhere. This provides a context for an exploration of the two most recent cold spells which affected Ireland in 2009Á2010 and in late 2010 and were the two worst weather disasters in recent Irish history. These latter events are examined in this context and the role of the Arctic Oscillation (AO) and declining Arctic sea-ice levels are also considered. These recent events with detailed instrumental temperature records also enable a re-evaluation of the historic records of cold spells in Ireland.
    [Show full text]
  • Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
    Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al.
    [Show full text]
  • Ecological Aspects of the Ascidian Community Along the Israeli Coasts
    Ecological aspects of the ascidian community along the Israeli coasts THESIS SUBMITTED FOR THE DEGREE “DOCTOR OF PHILOSOPHY” BY Noa Shenkar SUBMITTED TO THE SENATE OF TEL-AVIV UNIVERSITY February 2008 This work was carried out under the supervision of Prof. Yossi Loya This work is dedicated with enormous love to Dror & little Ido תודות Acknowledgments I would like to express my gratitude to many people who helped me during this research. לפרופ' יוסי לויה שזכיתי להיות תלמידתו ולימד אותי מלבד אקולוגיה וביולוגיה ימית גם דבר או שניים על איך להיות בן - אדם. לחברי הועדה המלווה: פרופ' הודי בניהו, פרופ' יאיר אחיטוב ופרופ' אלי גפן שתמכו וייעצו ודלתם תמיד היתה פתוחה בפני . לד"ר אסתי וינטר שלימדה אותי לראות את הטוב בכל דבר . לפרופ' לב פישלזון שהתמזל מזלי להיות שכנתו ולימד אותי מהי זואולוגיה. To my colleagues abroad: To Charlie & Gretchen Lambert for their enthusiasm and love to ascidians. To Patricia Mather (née Kott) for her advice and support. To Elsa Vàzquez Otero, Rosana Moreira da Rocha and Françoise Monniot for teaching me ascidian taxonomy with great love and care. To Xavier Turon for his constructive remarks and to Amy Driskell for helping me with the PCR game. לחברי מעבדתי שליוו אותי לאורך השנים ועזרו בכל עת, ובמיוחד לעומרי בורנשטיין, אלן דניאל, מיה ויזל, עידו מזרחי, רועי סגל, רן סולם ומיכה רוזנפלד. לחברי מעבדת בניהו, יעל זלדמן, מתי הלפרין, ענבל גינסבורג ועידו סלע שתמיד יצאו בשמחה למשימות דיגום איצטלנים מולחברי עבדתו של פרופ' מיכה אילן על החברה והעוגיות . לד"ר איציק בריקנר על החתכים ההיסטולוגים המופלאים, ורדה ווכסלר על הגרפיקה, נעמי פז על העריכה וההגהה, אלכס שלגמן על העזרה הלבבית עם האוספים, וענת גלזר מחברת החשמל.
    [Show full text]
  • Irish Climate Futures: Data for Decision-Making Report No
    EPA Research Report 277 Irish Climate Futures: Data for Decision-making Report No. 277 Authors: Conor Murphy, Claran Broderick, Tom K.R. Matthews, Simon Noone and Ciara Ryan Irish Climate Futures: Data for Decision-making Identified Pressures Authors: Conor Murphy, Ciaran Broderick, Tom K.R. Matthews, The realisation of a climate-resilient Ireland over the coming decades depends on decisions taken at all scales to adapt to climate change. Good decisions depend on the type and quality of information used Simon Noone and Ciara Ryan to inform planning. Building resilience requires the diversification of the types of information used to understand past and future climate variability and change, and improved insight into the plausible range of changing conditions that will need to be addressed. Informed Policy The need to adapt to climate change means that there is a demand from a variety of different users and sectors for actionable climate information. For instance, in the Irish context, guidance is provided for sectors and local authorities in developing and implementing adaptation plans. In particular, climate information is required to (1) assess the current adaptation baseline, which involves identifying extremes in the historical record and examining the vulnerabilities and impacts of these; (2) assess future climate risks; and (3) identify, assess and prioritise adaptation options. A key challenge to undertaking these tasks is identifying the kinds of climate data that are required for the development and implementation of adaptation planning. This challenge is explored and aspects are addressed as part of this research. Outputs from this work have been used to inform the Citizen’s Assembly deliberations on climate change, the National Adaptation Framework and the Oireachtas Joint Committee on Climate Action.
    [Show full text]
  • Sabatino-Etal-NH2016-Modelling
    Nat Hazards DOI 10.1007/s11069-016-2506-7 ORIGINAL PAPER Modelling sea level surges in the Firth of Clyde, a fjordic embayment in south-west Scotland 1 2 Alessandro D. Sabatino • Rory B. O’Hara Murray • 3 1 1 Alan Hills • Douglas C. Speirs • Michael R. Heath Received: 14 January 2016 / Accepted: 24 July 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Storm surges are an abnormal enhancement of the water level in response to weather perturbations. They have the capacity to cause damaging flooding of coastal regions, especially when they coincide with astronomical high spring tides. Some areas of the UK have suffered particularly damaging surge events, and the Firth of Clyde is a region with high risk due to its location and morphology. Here, we use a three-dimensional high spatial resolution hydrodynamic model to simulate the local bathymetric and morpho- logical enhancement of surge in the Clyde, and disaggregate the effects of far-field atmospheric pressure distribution and local scale wind forcing of surges. A climatological analysis, based on 30 years of data from Millport tide gauges, is also discussed. The results suggest that floods are not only caused by extreme surge events, but also by the coupling of spring high tides with moderate surges. Water level is also enhanced by a funnelling effect due to the bathymetry and the morphology of fjordic sealochs and the River Clyde Estuary. In a world of rising sea level, studying the propagation and the climatology of surges and high water events is fundamental.
    [Show full text]
  • Life History, Ecology and Conservation of European
    LIFE HISTORY, ECOLOGY AND CONSERVATION OF EUROPEAN SEAHORSES Janelle Marie Renelle Curtis Department of Biology McGill University Montréal Québec August 2004 "Who knows what admirable virtue offishes may be below low-water-mark, bearing up against a hard destiny, not admired by that fellow creature who alone can appreciate if!" Henry David Thoreau A thesis submitted to McGill University in partial fulfillment ofthe requirements of the degree of Doctor of Philosophy © Janelle Marie Renelle Curtis 2004 Library and Bibliothèque et 1+1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Your file Votre référence ISBN: 0-494-12826-7 Our file Notre référence ISBN: 0-494-12826-7 NOTICE: AVIS: The author has granted a non­ L'auteur a accordé une licence non exclusive exclusive license allowing Library permettant à la Bibliothèque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans loan, distribute and sell th es es le monde, à des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, électronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in et des droits moraux qui protège cette thèse.
    [Show full text]
  • Climate Change in Ireland
    Climate change in Ireland- recent trends in temperature and precipitation Laura McElwain and John Sweeney Department of Geography, National University of Ireland, Maynooth ABSTRACT This paper presents an assessment of indicators of climate change in Ireland over the past century. Trends are examined in order to determine the magnitude and direction of ongoing climate change. Although detection of a trend is difficult due to the influence of the North Atlantic Ocean, it is concluded that Irish cli- mate is following similar trajectories to those predicted by global climate mod- els. Climatic variables investigated included the key temperature and precipita- tion data series from the Irish synoptic station network. Analysis of the Irish mean temperature records indicates an increase similar to global trends, particu- larly with reference to early-twentieth century wanning and, more importantly, rapid warming in the 1990s. Similarly, analysis of precipitation change support the findings of the United Kingdom Climate Impacts Programme (UKCIPS) with evidence of a trend towards winter increases in the north-west of the coun- try and summer decreases in the south-east. Secondary climate indicators such as frequency of 'hot' and 'cold' days were found to reveal more variable trends. Key index words: climate change, trends, precipitation, trajectories. Introduction An increase in global surface temperature of 0.6 + 0.2°C has occurred since the late- nineteenth century (IPCC, 2001). Most of this warming has occurred during two main periods: 1910-1945 and 1976 to the present. During the present episode of rapid wanning, temperatures have increased at a rate of 0.15°C per decade (Jones et al., 2001).
    [Show full text]
  • STATE of BIODIVERSITY in the MEDITERRANEAN (2-3 P
    UNEP(DEC)/MED WG.231/18 17 April 2003 ENGLISH MEDITERRANEAN ACTION PLAN Meeting of the MED POL National Coordinators Sangemini, Italy, 27 - 30 May 2003 STRATEGIC ACTION PROGRAMME GUIDELINES DEVELOPMENT OF ECOLOGICAL STATUS AND STRESS REDUCTION INDICATORS FOR THE MEDITERRANEAN REGION In cooperation with UNEP Athens, 2003 TABLE OF CONTENTS Pages 1. INTRODUCTION ......................................................................................................... 1 2. AIMS OF THE REPORT .............................................................................................. 2 3. STATE OF BIODIVERSITY IN THE MEDITERRANEAN............................................. 2 Species Diversity................................................................................................................. 2 Ecosystems/Communities .................................................................................................. 3 Pelagic ............................................................................................................................... 3 Benthic ............................................................................................................................... 4 4. ECOSYSTEM CHANGES DUE TO ANTHROPOGENIC IMPACT............................... 6 Microbial contamination...................................................................................................... 6 Industrial pollution .............................................................................................................. 6 Oil
    [Show full text]
  • Lot 1 Box of Irish Railway Interest Photographs Etc. Estimate
    Purcell Auctioneers - Specialist Auction Of Irish Interest Books with dedicated section for Irish Railwayana Literature & Ephemera - Starts 13 Mar 2019 Lot 1 Box of Irish Railway Interest Photographs etc. Estimate: 40 - 60 Fees: 20% inc VAT for absentee bids, telephone bids and bidding in person 23.69% inc VAT for Live Bidding and Autobids Lot 2 Box of Irish Railway Interest Ephemera Estimate: 40 - 60 Fees: 20% inc VAT for absentee bids, telephone bids and bidding in person 23.69% inc VAT for Live Bidding and Autobids Lot 3 Box of Irish Railway Interest Ephemera Estimate: 30 - 50 Fees: 20% inc VAT for absentee bids, telephone bids and bidding in person 23.69% inc VAT for Live Bidding and Autobids Lot 4 Large Box of Mostly Non-Irish Railway Interest Books etc. Estimate: 20 - 40 Fees: 20% inc VAT for absentee bids, telephone bids and bidding in person 23.69% inc VAT for Live Bidding and Autobids Lot 5 Two Boxes of CIE Interest Ephemera, Ledgers etc. Estimate: 60 - 100 Fees: 20% inc VAT for absentee bids, telephone bids and bidding in person 23.69% inc VAT for Live Bidding and Autobids Lot 6 Irish Railwayana Scrap Book, tickets, correspondence, notices etc. Estimate: 50 - 100 Fees: 20% inc VAT for absentee bids, telephone bids and bidding in person 23.69% inc VAT for Live Bidding and Autobids Lot 7 Irish Railwayana Scrap Book, tickets, correspondence, notices etc. Estimate: 50 - 100 Fees: 20% inc VAT for absentee bids, telephone bids and bidding in person 23.69% inc VAT for Live Bidding and Autobids Lot 8 Irish Railwayana Scrap Book, County Donegal Railways, Northern Ireland Railways, Great Northern Railway Co.
    [Show full text]
  • Late-Glacial to Holocene Climate Variability in Western Ireland
    LATE-GLACIAL TO HOLOCENE CLIMATE VARIABILITY IN WESTERN IRELAND A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Geological Sciences University of Saskatchewan Saskatoon Aaron F. Diefendorf © Aaron F. Diefendorf, Spring 2005. All Rights Reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I, Aaron F. Diefendorf, agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by myself or Dr. William P. Patterson and in my absence and Dr. Pattersonʼs absence, by the Head of the Department of Geolgoical Sciences or the Dean of the College of Graduate Studies. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to myself and to the University of Saskatchewan in any use which may be made of any material in my thesis titled Late-Glacial to Holocene Climate Variability in Western Ireland. Requests for permission to copy or to make any use of material in this thesis in whole or part shall be addressed to Aaron F. Diefendorf or to: Head of the Department of Geological Sciences University of Saskatchewan Saskatoon, Saskatchewan S7N 5E2 Canada UNIVERSITY OF SASKATCHEWAN College of Graduate Studies and Research ABSTRACT Submitted in partial fulfillment of the requirements of the DEGREE OF MASTER of SCIENCE by Aaron F.
    [Show full text]