AGU Presentation

Total Page:16

File Type:pdf, Size:1020Kb

AGU Presentation Roadmap for Future Lunar Science & Exploration • Founded Beatenberg Int’l Conference1994, Hamburg 1995 ( Charter) ILEWG • Sponsored and members appointed by agencies, with support by experts Charter • To develop an International Strategy for the Exploration of the Moon • Forum and mechanism for communication and co-ordination • To implement international co-operation and report to COSPAR and agencies • ICEUM Int’l Conferences on Exploration & Utilisation of the Moon Beatenberg 94, Kyoto 96 , Moscow 98, ESTEC 2000, Hawaii Nov 03, Udaipur Nov 04, Toronto Sept 05, Beijing 23-27 July 06 • COSPAR: Washington 92, Hamburg 94, Nagoya 98, Warsaw 00, Houston 02, Paris 04, Beijing July 06 • EGS/EGU lunar sessions: Vienna 97, Nice 98, The Hague 99, Nice 00-04, Vienna 05-06 • International Academy of Astronautics/IAF International Astronautical Congress (Bremen 03, Vancouver 04, Fukuoka 05, Valencia 1-7 Oct 06) • Website: http://sci.esa.int/ilewg International Lunar Robotic Exploration Programme • Muses-A Hiten Lunar Navigation (ISAS) 1990 • Clementine (US, BMDO) Multi-band Imaging, technology demonstration 1994 • Lunar Prospector (US, NASA Discovery) Neutron, gamma ray low res mapping 1998 • SMART-1 (ESA Technology Mission, geochemistry, high resolution) 2003 • SELENE (J, ISAS/NASDA) Ambitious orbiter instruments for science 2007 • Chang’e 1 orbiter (CNSA, China) 2007 • Chandrayaan-1 (ISRO, India) + ranger Lunar Orbiter, launch PSLV 2007 • US Lunar Reconnaissance Orbiter + LCROSS Impactor 2008 • Lunar A (J, ISAS Science) 2 penetrators with seismometers + equator camera >2009 • Soft landers and technology test beds (US, Japan, China, Europe, India) > 2010 • Lunar Sample Returns > 2012 • Http://sci.esa.int/ilewg/ Lunar outposts for exploration on the Moon • Search for evidence of the origin of the Earth-Moon system • Determine the history of asteroid and comet impacts on Earth • Obtain evidence of the Sun’s history and its effects on Earth through time • Search for samples from the Early Earth • Determine the form, amount, and origin of lunar ice • Expand life on the Moon, and exploit local resources • Human exploration enhanced by robots Exploration architecture • A proving ground: Learn to explore the way we will ultimately explore further • Transportation systems synergy with SunEarth-L2 and Mars requirements • Extended robotic & human presence on the Moon : cultural milestone • New technology and system level engineering demonstration – Remote sensing miniaturised instruments – Surface geophysical and geochemistry package – Instrument deployment and robotic arm – Close mobility, nano-rover, sampling , drilling – Regional mobility: rover, navigation • Robotic laboratory – Mecha-electronics-sensors,Tele control, Telepresence, – Virtual reality, Autonomy, Navigation, AI robots • In-Situ Utilisation of lunar resources – Regolith, Oxygen, glasses, metals utilisation – Long term: He 3 extraction • Establishment of permanent lunar infrastructure – Life sciences laboratories & Life support systems – Large astronomical facilities • Environmental protection aspects with humans and planetary protection validation for Mars Science and engineering for human exploration Man/robotics synergies, Life support systems Low gravity physiology laboratory, Telemedecine Psychology, Social and Multi-cultural Laboratory Architecture design and operations of lunar base Infrastructures: communication, transport, construction, exploitation Commercial and sustained development • Illumination, Peaks of eternal light • Radiation hazards • Resources: O, Metals, glasses, C, H, He 3, • Polar ice in Permanent shadows • Construction and shielding material • In Situ Resource Utilisation factories • Life Support Systems SMART-1 view of pole • Interplanetary market trade and economy • Exploitation and environment protection • Rocket fuel production and infrastructure •Advanced Launch /access to space •Orbital Infrastructure •Crew Exploration Vehicle •Transport/ communication •Habitable Descent / Ascent Vehicle •Surface Power Generation •In-Situ Fuel Production •Robotic outposts and rovers •Habitation Modules •Workshop •Scientific Laboratories •Greenhouse / Agriculture Module •Medical Centre •Pressurized Rover •Advanced EVA Suit •Life Support Systems Bring and expand life on the Moon: ILEWG roadmap ILEWG ROAD MAP TO THE MOON VILLAGE, MARS AND BEYOND (Europe, robotic, life sciences/Manned) • MOON TECHNOLOGIES MARS • 2003 SMART-1 System Studies, technologies roadmap Mars Express+ MER • 2004 Technology devt, design architecture • 2005 Life sciences/ human studies on ISS Mars Reconnaissance Orbiter • 2007 Selene Soyuz launcher at Kourou • 2007 Chang’e 1 Phoenix polar lander scout • 2007 Chandrayaan-1 ISS testbed for human exploration, • 2008 US Lunar Reconnaissance Orbiter • 2009 Lunar –A (TBC) MSL Setting an International Lunar robotic village and Mars robotic outpost • 2010 US RLEP2 South Polar Lander, • 2011 Selene-B, Polar landers, rovers, ice explorers, ExoMars + scouts • 2012 Chang’e 2 lander Astrobiology/Life sciences on the Moon Network science • 2013 ExoMoon polar lander Infrastructures, energy, ISRU Mars Orbiter+telecom • 2014 CEV Crew Exploration Vehicle • 2015 Astrobiology lab Lunar Robotic Global Village Scouts • 2016 Lunar Polar Sample Return Demonstration (for MSR and EMCRV) Human Moon/Mars Exploration 2017 Chang’E 3 sample return Human mission to the Moon (CH?) Astrobiology Field Lab? • 2018 US human on Moon Infrastructures, energy, ISRU • 2019 Early Earth Sample Return? European on Moon • 2020 Lab, green house Mars Robotic Global Village • 2022 EMCRV European Moon Crew Rescue Vehicle • 2024 Long Term Lunar Base Mars Sample Return? • >2030 Human mission to NEO/Phobos Human mission to Mars (85 papers) th (abstract deadline 20 June) (http://sci.esa.int/ilewg/) • 1. Science and Exploration of the Moon: Open questions and New Approaches • 2. Results from previous missions and SMART-1 • 3. Status of Ongoing and Future Missions • 4. Next Steps for Robotic Landers, Rovers and Outposts • 5. Agencies Plans and International Prospects for Utilization and Human Exploration • 6. Outreach for Public and Youth • International Programme Committee: Wu Ji, Ouyang Ziyuan, Liu Qiang, Bernard Foing • Hao Xifan, Ye Shuhua (China), Hitoshi Mizutani, Takizawa Yoshisada, Manabu Kato, Kohtaro Matsumoto (Japan), Bernard Foing, Scott Hovland (ESA), Jean-Pierre Swings (B), Ralf Jaumann (DLR,D), Simonetta di Pippo (ASI,I), Francois Spiero, Jean-Jacques Favier (CNES,F), Erik Galimov, Sasha Basilevsky (Russia), Narendra Bhandari, J.N. Goswami (India), Mark Borkovski, Jim Garvin (NASA), Carle Pieters, Michael Duke, Stephen Saunders, Steve Durst, Larry Taylor, Geoffrey Taylor (USA), Robert Richards, Chris Sallaberger (Canada). International Lunar Missions & Astrobiology Bernard H. FOING* & ILEWG SELENE Apollo • Cometary and meteoritic record • Search for organics in regolith and polar ices • Search for Earth samples • Extinct/extant life in polar ices • Fossils of organics & ancient life from Early Earth samples • Validation of life detection technologies • Planetary protection issues • Expanding life beyond Earth • Cosmology telescopes (liquid mirror telescopes) • Dark matter gravitational lensing transit telescopes • High energy telescopes • Far infra red submm telescopes in polar sites • Interferometers and exoplanet mappers • VLF detection of exoplanet radio magnetospheres • SETI from far side • Telescopes in Earth-Moon or Sun-Earth L2 libration points • Bacteria and extremes of life: Survival, replication, mutation and evolution • Extraterrestrial botanics: Growing plants on the Moon • Animals: physiology and ethology on another planet • Closed Ecological Life Support Systems • Greenhouses, Local Food Production • Living off the land • Support to human exploration • Permanent human presence • Biospheres on the Moon • Planetary and environment protection issues • Protection of Earth life Bernard H. FOING*, Scott HOVLAND**, On behalf of European Lunar Lander WG *Chief Scientist, ESA SCI-S, SMART-1 Project Scientist, Executive director ILEWG, ** ESA HME Human Spaceflight Microgravoty and Exploration Directorate 1) Precise Landing on the Moon 2) Preparation of future exploration 3) Geochemical study of polar regions 4) Ice Search/characterisation • Moon surface science and exploration • Polar or Non-polar: short lived or RHU • Small network elements as part of international missions • Lander station element – Technology survival, operations – Geophysical network – Life sciences/environment • Rover element – Close range mobility 50 m – Regional mobility 1-10 km – Vertical mobility (ground penetrating sensors, moles, drill) • Additional probes? To access to permanent dark (nanorover, harpoon, impactor) • Orbiter and relay infrastructures – Small orbiter with HRSC camera and data relay – Exchange/support other international orbiters (LRO, etc..) • Deployable long life ELP European Lunar Geophysics package including laser reflectometer, Seismometer (IPG), Geodesy and laser , Heat flux (DLR, Berlin), Magnetometer (TBD), Electronics (ETH) • Lander instruments: Pan Cam + descent , Gas Analysis Package, Gas Chromatograph Mass Spectrometer, permittivity, susceptibility, • Life science experiments : radiation studies, environment studies, Melissa, plants on the Moon, planetary protection studies • Close proximity Rover: Electromagnetic sounder, Ground penetrating radar, Neutron spectrometer, APX , Close up camera • Regional rover with Robotic arm (PAW like), mole with borehole or drill, Active seismic,
Recommended publications
  • Exomoon Habitability Constrained by Illumination and Tidal Heating
    submitted to Astrobiology: April 6, 2012 accepted by Astrobiology: September 8, 2012 published in Astrobiology: January 24, 2013 this updated draft: October 30, 2013 doi:10.1089/ast.2012.0859 Exomoon habitability constrained by illumination and tidal heating René HellerI , Rory BarnesII,III I Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany, [email protected] II Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195, [email protected] III NASA Astrobiology Institute – Virtual Planetary Laboratory Lead Team, USA Abstract The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge”. We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons.
    [Show full text]
  • Design of Low-Altitude Martian Orbits Using Frequency Analysis A
    Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noullez, K. Tsiganis To cite this version: A. Noullez, K. Tsiganis. Design of Low-Altitude Martian Orbits using Frequency Analysis. Advances in Space Research, Elsevier, 2021, 67, pp.477-495. 10.1016/j.asr.2020.10.032. hal-03007909 HAL Id: hal-03007909 https://hal.archives-ouvertes.fr/hal-03007909 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noulleza,∗, K. Tsiganisb aUniversit´eC^oted'Azur, Observatoire de la C^oted'Azur, CNRS, Laboratoire Lagrange, bd. de l'Observatoire, C.S. 34229, 06304 Nice Cedex 4, France bSection of Astrophysics Astronomy & Mechanics, Department of Physics, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece Abstract Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies | or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies | are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony's Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors.
    [Show full text]
  • First Stop on the Interstellar Journey: the Solar Gravity Lens Focus
    1 DRAFT 16 May 2017 First Stop on the Interstellar Journey: The Solar Gravity Lens Focus Louis Friedman *1, Slava G. Turyshev2 1 Executive Director Emeritus, The Planetary Society 2 Jet Propulsion Laboratory, California Institute of Technology Abstract Whether or not Starshoti proves practical, it has focused attention on the technologies required for practical interstellar flight. They are: external energy (not in-space propulsion), sails (to be propelled by the external energy) and ultra-light spacecraft (so that the propulsion energy provides the largest possible increase in velocity). Much development is required in all three of these areas. The spacecraft technologies, nano- spacecraft and sails, can be developed through increasingly capable spacecraft that will be able of going further and faster through the interstellar medium. The external energy source (laser power in the Starshot concept) necessary for any flight beyond the solar system (>~100,000 AU) will be developed independently of the spacecraft. The solar gravity lens focus is a line beginning at approximately 547 AU from the Sun along the line defined by the identified exo-planet and the Sunii. An image of the exo-planet requires a coronagraph and telescope on the spacecraft, and an ability for the spacecraft to move around the focal line as it flies along it. The image is created in the “Einstein Ring” and extends several kilometers around the focal line – the spacecraft will have to collect pixels by maneuvering in the imageiii. This can be done over many years as the spacecraft flies along the focal line. The magnification by the solar gravity lens is a factor of 100 billion, permitting kilometer scale resolution of an exo-planet that might be even tens of light-years distant.
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • Alactic Observer
    alactic Observer G John J. McCarthy Observatory Volume 14, No. 2 February 2021 International Space Station transit of the Moon Composite image: Marc Polansky February Astronomy Calendar and Space Exploration Almanac Bel'kovich (Long 90° E) Hercules (L) and Atlas (R) Posidonius Taurus-Littrow Six-Day-Old Moon mosaic Apollo 17 captured with an antique telescope built by John Benjamin Dancer. Dancer is credited with being the first to photograph the Moon in Tranquility Base England in February 1852 Apollo 11 Apollo 11 and 17 landing sites are visible in the images, as well as Mare Nectaris, one of the older impact basins on Mare Nectaris the Moon Altai Scarp Photos: Bill Cloutier 1 John J. McCarthy Observatory In This Issue Page Out the Window on Your Left ........................................................................3 Valentine Dome ..............................................................................................4 Rocket Trivia ..................................................................................................5 Mars Time (Landing of Perseverance) ...........................................................7 Destination: Jezero Crater ...............................................................................9 Revisiting an Exoplanet Discovery ...............................................................11 Moon Rock in the White House....................................................................13 Solar Beaming Project ..................................................................................14
    [Show full text]
  • The Subsurface Habitability of Small, Icy Exomoons J
    A&A 636, A50 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937035 & © ESO 2020 Astrophysics The subsurface habitability of small, icy exomoons J. N. K. Y. Tjoa1,?, M. Mueller1,2,3, and F. F. S. van der Tak1,2 1 Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands 3 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands Received 1 November 2019 / Accepted 8 March 2020 ABSTRACT Context. Assuming our Solar System as typical, exomoons may outnumber exoplanets. If their habitability fraction is similar, they would thus constitute the largest portion of habitable real estate in the Universe. Icy moons in our Solar System, such as Europa and Enceladus, have already been shown to possess liquid water, a prerequisite for life on Earth. Aims. We intend to investigate under what thermal and orbital circumstances small, icy moons may sustain subsurface oceans and thus be “subsurface habitable”. We pay specific attention to tidal heating, which may keep a moon liquid far beyond the conservative habitable zone. Methods. We made use of a phenomenological approach to tidal heating. We computed the orbit averaged flux from both stellar and planetary (both thermal and reflected stellar) illumination. We then calculated subsurface temperatures depending on illumination and thermal conduction to the surface through the ice shell and an insulating layer of regolith. We adopted a conduction only model, ignoring volcanism and ice shell convection as an outlet for internal heat.
    [Show full text]
  • Lunar Trajectories
    Transportation for Exploration: New Thoughts About Orbital Dynamics Ed Belbruno Innovative Orbital Design, Inc & Courant Insitiute(NYU) January 4, 2012 NASA FISO 1 Evolution of Astrodynamics Conic; Stable (Hohmann, 20s) (Hohmann transfers, Gravity assist(Voyager, Galileo)) Nonlinear; Stable (Apollo, 60s) Nonlinear; Unstable (ISEE-3, 70s) (Transfer to and from halo orbits, no utilization of fuel savings via dynamics – Farquhar …) Nonlinear; Unstable; Low Energy/Fuel (Hiten, 91) (First use of utilization of chaotic dynamics/manifolds to achieve new approach to space travel for ballistic capture(EB, 86, 91) and for the study of halo orbit dynamics (Llibre-Simo, 85 – Genesis, 2001) Weak Stability Boundary Theory (EB 86) 2 Hohmann Transfer Conic, Stable – 2-body 3 Figure Eight(Apollo) Nonlinear, Stable – 3-body 4 ISEEC-3 Nonlinear-Unstable – 4 body 5 Ballistic Capture Transfers Weak Stability Boundary Theory(EB 86) • Way to transfer to the Moon, and other bodies, where no DeltaV is needed for capture • New methodology to trajectory design • Thought in 1985 to be impossible 6 Background • Capture Problem Earth -> Moon (LEO -> LLO) • Hohmann Transfer: Fast (3days), Fuel Hog (Need to slow down! 1 km/s to be captured – large maneuver ) Risky Used in Apollo 7 Idea of Achieving Ballistic Capture • Sneak up on Moon - very carefully (next figure A-B-C-D) • Like a surfer catching a wave • Want to ride the „gravity transition(weak stability) boundary‟ between the Earth-Moon-Sun 8 Top – Lagrange points Bottom – Sneaking up on Moon 9 Ballistic capture is chaotic (chaos – leaf blowing in wind) 10 • WSB – generalization of Lagrange points • Forces(GM, GE, CF) balance while spacecraft moving wrt Earth-Moon (L-points – forces balance for spacecraft fixed wrt Earth-Moon) • Get a multi-dimensional region about Moon.
    [Show full text]
  • Journal of Geophysical Research: Planets
    Journal of Geophysical Research: Planets RESEARCH ARTICLE A Geophysical Perspective on the Bulk Composition of Mars 10.1002/2017JE005371 A. Khan1 , C. Liebske2,A.Rozel1, A. Rivoldini3, F. Nimmo4 , J. A. D. Connolly2 , A.-C. Plesa5 , Key Points: 1 • We constrain the bulk composition and D. Giardini of Mars using geophysical data to 1 2 an Fe/Si (wt) of 1.61 =−1.67 and a Institute of Geophysics, ETH Zürich, Zurich, Switzerland, Institute of Geochemistry and Petrology, ETH Zürich, Zurich, molar Mg# of 0.745–0.751 Switzerland, 3Royal Observatory of Belgium, Brussels, Belgium, 4Department of Earth and Planetary Sciences, University • The results indicate a large liquid core of California, Santa Cruz, CA, USA, 5German Aerospace Center (DLR), Berlin, Germany (1,640–1,740 km in radius) containing 13.5–16 wt% S and excludes a transition to a lower mantle • We use the inversion results in Abstract We invert the Martian tidal response and mean mass and moment of inertia for chemical tandem with geodynamic simulations composition, thermal state, and interior structure. The inversion combines phase equilibrium computations to identify plausible geodynamic with a laboratory-based viscoelastic dissipation model. The rheological model, which is based on scenarios and parameters measurements of anhydrous and melt-free olivine, is both temperature and grain size sensitive and imposes strong constraints on interior structure. The bottom of the lithosphere, defined as the location Supporting Information: where the conductive geotherm meets the mantle adiabat, occurs deep within the upper mantle • Supporting Information S1 (∼200–400 km depth) resulting in apparent upper mantle low-velocity zones.
    [Show full text]
  • Abstracts of the 50Th DDA Meeting (Boulder, CO)
    Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011).
    [Show full text]
  • VOWOX^ >OMRXYVYQSO] PY\ >\KTOM^Y\C .O]SQX PY\ 6 XK
    !" #$! %&#! & ' ($ ! # "" !" ($ ' ) ' ! ## * # ! '! ! " !" !#$! !&#! & ' ! & !+ ,&! &-&# ! !.,/0! & ! 1 !* && 2 ! $# ! " ! ! # #! !2 #2! ! "2 $ & ' ! * !#$! %&#! & ' + ! )'#$! + ! + # #& &$# !&#! -&# !#$! -&# ! ) & $ !) %$% $ % &$ ) &&' * $% $ ,$ + ' $$ % &+ !$ && 6 !"##$ % & $ ' ) ! & $'/ $& $ ($ % & ) % $ % ( & & $ ! * $ + (* ,$ +) & %+($ $$ R(& $+ (+ $ '- % (* ,$ $ $ 6 ) & ' + ) & * $$%& . $ 7)' * $ *$ 6 ) & $ & )+$&( )% * $ ( %& $ % ( & ,$ +) & & + $ &+& $%' *(! $ $6 / 0& & $ 11#' & $&)&+& ! 6 ) & ,$ +) & % $ $+ ) & $ % ( &*&&% $! 6 ) $ %& % & $ R ! *&& & ( & + $$ & & +& 2& + ,$' 0& +! ) & 2& + $& & + ! !$'' $ )$& & + & &% ! % ) 3( * ) + $ $ $! *% *+ $ + & $ +' 4 &+! ) & $* * !% $ & $ R& $($& &$ &$& *)$ +$ )$ ) (% & $ )$& & +' $ % $ & $ 3 *4 #$! + ! + !&.40* 456 & # $ !& 3 *5 !& " $'##$! 78* 3 *6 #$! + ! + !&.60* %&+ ):&R& *! ) (+ ! & % 6 $ ' ) (+ ' % / $! $& &&$ &! & $ + % $ $$ ,$ +) & 2& $ $ ) & $%& $ ) + ' % & ( &'$ (!& $* * & ) * % & $ &$& &$$ & & $ & * $ !$ )% % 8 $' $%$ & & ! ( ) # %) & $ $+' * )+- $ 4 $ ) ) ,$ % ! $! % ( 4## + * ) && + 6) &* &$%$ & & & &3 )) (+ &% $& & +' *#6) & )&$$ & & ' ) .$ ) - ( & %! * $$& ( ) % ' $& !% 6 & % ) ;
    [Show full text]
  • Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
    chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples.
    [Show full text]
  • Simon Porter , Will Grundy
    Post-Capture Evolution of Potentially Habitable Exomoons Simon Porter1,2, Will Grundy1 1Lowell Observatory, Flagstaff, Arizona 2School of Earth and Space Exploration, Arizona State University [email protected] and spin vector were initially pointed at random di- Table 1: Relative fraction of end states for fully Abstract !"# $%& " '(" !"# $%& # '(# rections on the sky. The exoplanets had a ran- evolved exomoon systems dom obliquity < 5 deg and was at a stellarcentric The satellites of extrasolar planets (exomoons) Star Planet Moon Survived Retrograde Separated Impacted distance such that the equilibrium temperature was have been recently proposed as astrobiological tar- Earth 43% 52% 21% 35% equal to Earth. The simulations were run until they Jupiter Mars 44% 45% 18% 37% gets. Triton has been proposed to have been cap- 5 either reached an eccentricity below 10 or the pe- Titan 42% 47% 21% 36% tured through a momentum-exchange reaction [1], − Sun Earth 52% 44% 17% 30% riapse went below the Roche limit (impact) or the and it is possible that a similar event could allow Neptune Mars 44% 45% 18% 36% apoapse exceeded the Hill radius. Stars used were Titan 45% 47% 19% 35% a giant planet to capture a formerly binary terres- Earth 65% 47% 3% 31% the Sun (G2), a main-sequence F0 (1.7 MSun), trial planet or planetesimal. We therefore attempt to Jupiter Mars 59% 46% 4% 35% and a main-sequence M0 (0.47 MSun). Exoplan- Titan 61% 48% 3% 34% model the dynamical evolution of a terrestrial planet !"# $%& " !"# $%& " ' F0 ets used had the mass of either Jupiter or Neptune, Earth 77% 44% 4% 18% captured into orbit around a giant planet in the hab- and exomoons with the mass of Earth, Mars, and Neptune Mars 67% 44% 4% 28% itable zone of a star.
    [Show full text]