Ep 1576985 A1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of Serotonin in Memory: Interactions with Neurotransmitters and Downstream Signaling
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bushehr University of Medical Sciences Repository Exp Brain Res (2014) 232:723–738 DOI 10.1007/s00221-013-3818-4 REVIEW The role of serotonin in memory: interactions with neurotransmitters and downstream signaling Mohammad Seyedabadi · Gohar Fakhfouri · Vahid Ramezani · Shahram Ejtemaei Mehr · Reza Rahimian Received: 28 April 2013 / Accepted: 20 December 2013 / Published online: 16 January 2014 © Springer-Verlag Berlin Heidelberg 2014 Abstract Serotonin, or 5-hydroxytryptamine (5-HT), is there has been an alteration in the density of serotonergic found to be involved in many physiological or pathophysi- receptors in aging and Alzheimer’s disease, and serotonin ological processes including cognitive function. Seven dis- modulators are found to alter the process of amyloidogen- tinct receptors (5-HT1–7), each with several subpopulations, esis and exert cognitive-enhancing properties. Here, we dis- have been identified for serotonin, which are different in cuss the serotonin-induced modulation of various systems terms of localization and downstream signaling. Because involved in mnesic function including cholinergic, dopa- of the development of selective agonists and antagonists minergic, GABAergic, glutamatergic transmissions as well for these receptors as well as transgenic animal models as amyloidogenesis and intracellular pathways. of cognitive disorders, our understanding of the role of serotonergic transmission in learning and memory has Keywords Serotonin · Memory · Signaling pathways improved in recent years. A large body of evidence indi- cates the interplay between serotonergic transmission and Abbreviations other neurotransmitters including acetylcholine, dopamine, 2PSDT Two-platform spatial discrimination task γ-aminobutyric acid (GABA) and glutamate, in the neu- 3xTg-AD Triple-transgenic mouse model of Alzheimer’s robiological control of learning and memory. -
The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor
Journal of Cancer 2019, Vol. 10 1622 Ivyspring International Publisher Journal of Cancer 2019; 10(7): 1622-1632. doi: 10.7150/jca.27780 Review The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor Xu Wang1,2, Zhi-Bin Wang1,2, Chao Luo1,2,4, Xiao-Yuan Mao1,2, Xi Li1,2, Ji-Ye Yin1,2, Wei Zhang1,2,3, Hong-Hao Zhou1,2,3, Zhao-Qian Liu1,2,3 1. Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; 2. Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China; 3. National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; 4. School of Life Sciences, Central South University, Changsha, Hunan 410078. Corresponding author: Professor Zhao-Qian Liu: Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China. Tel: +86 731 89753845, Fax: +86 731 82354476, E-mail: [email protected]. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.06.10; Accepted: 2019.02.07; Published: 2019.03.03 Abstract Dopamine receptors are belong to the family of G protein-coupled receptor. There are five types of dopamine receptor (DR), including DRD1, DRD2, DRD3, DRD4, and DRD5, which are divided into two major groups: the D1-like receptors (DRD1 and DRD5), and the D2-like receptors (DRD2, DRD3, and DRD4). -
5-HT7 Receptor Neuroprotection Against Excitotoxicity in the Hippocampus,” AFPC, Quebec City, June 2012
5-HT7 Receptor Neuroprotection against Excitotoxicity in the Hippocampus by Seyedeh Maryam Vasefi A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Pharmacy Waterloo, Ontario, Canada, 2014 ©Seyedeh Maryam Vasefi 2014 i AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Introduction and Objectives: The PDGFβ receptor and its ligand, PDGF-BB, are expressed throughout the central nervous system (CNS), including the hippocampas. Several reports confirm that PDGFβ receptors are neuroprotective against N-methyl-D-asparate (NMDA)-induced cell death in hippocampal neurons. NMDA receptor dysfunction is important for the expression of many symptoms of mental health disorders such as schizophrenia. The serotonin (5-HT) type 7 receptor was the most recent of the 5-HT receptor family to be identified and cloned. 5-HT receptors interact with several signaling systems in the CNS including receptors activated by the excitatory neurotransmitter glutamate such as the NMDA receptor. Although there is extensive interest in targeting the 5-HT7 receptor with novel therapeutic compounds, the function and signaling properties of 5-HT7 receptors in neurons remains poorly characterized. Methods: The SH-SY5Y neuroblastoma cell line, primary hippocampal cultures, and hippocampal slices were treated with 5-HT7 receptor agonists and antagonists. Western blotting was used to measure PDGFß receptor expression and phosphorylation as well as NMDA receptor subunit expression and phosphorylation levels. -
Neuronal Nicotinic Receptors
NEURONAL NICOTINIC RECEPTORS Dr Christopher G V Sharples and preparations lend themselves to physiological and pharmacological investigations, and there followed a Professor Susan Wonnacott period of intense study of the properties of nAChR- mediating transmission at these sites. nAChRs at the Department of Biology and Biochemistry, muscle endplate and in sympathetic ganglia could be University of Bath, Bath BA2 7AY, UK distinguished by their respective preferences for C10 and C6 polymethylene bistrimethylammonium Susan Wonnacott is Professor of compounds, notably decamethonium and Neuroscience and Christopher Sharples is a hexamethonium,5 providing the first hint of diversity post-doctoral research officer within the among nAChRs. Department of Biology and Biochemistry at Biochemical approaches to elucidate the structure the University of Bath. Their research and function of the nAChR protein in the 1970’s were focuses on understanding the molecular and facilitated by the abundance of nicotinic synapses cellular events underlying the effects of akin to the muscle endplate, in electric organs of the acute and chronic nicotinic receptor electric ray,Torpedo , and eel, Electrophorus . High stimulation. This is with the goal of affinity snakea -toxins, principallyaa -bungarotoxin ( - Bgt), enabled the nAChR protein to be purified, and elucidating the structure, function and subsequently resolved into 4 different subunits regulation of neuronal nicotinic receptors. designateda ,bg , and d .6 An additional subunit, e , was subsequently identified in adult muscle. In the early 1980’s, these subunits were cloned and sequenced, The nicotinic acetylcholine receptor (nAChR) arguably and the era of the molecular analysis of the nAChR has the longest history of experimental study of any commenced. -
Monoamine Oxidase Inhibitors: Promising Therapeutic Agents for Alzheimer's Disease (Review)
MOLECULAR MEDICINE REPORTS 9: 1533-1541, 2014 Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer's disease (Review) ZHIYOU CAI Department of Neurology, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, P.R. China Received July 2, 2013; Accepted February 10, 2014 DOI: 10.3892/mmr.2014.2040 Abstract. Activated monoamine oxidase (MAO) has a critical 6. MAO activation contributes to cognitive impairment in role in the pathogenesis of Alzheimer's disease (AD), including patients with AD the formation of amyloid plaques from amyloid β peptide (Aβ) 7. Activated MAO contributes to the formation of amyloid production and accumulation, formation of neurofibrillary plaques tangles, and cognitive impairment via the destruction of cholin- 8. Is activated MAO associated with the formation of ergic neurons and disorder of the cholinergic system. Several neurofibrillary tangles? studies have indicated that MAO inhibitors improve cognitive 9. Evidence for the neuroprotective effect of MAO inhibitors deficits and reverse Aβ pathology by modulating proteolytic in AD cleavage of amyloid precursor protein and decreasing Aβ 10. Conclusions and outlook protein fragments. Thus, MAO inhibitors may be considered as promising therapeutic agents for AD. 1. Introduction Monoamine oxidase (MAO) catalyzes the oxidative deamina- Contents tion of biogenic and xenobiotic amines and has an important role in the metabolism of neuroactive and vasoactive amines in 1. Introduction the central nervous system (CNS) and peripheral tissues. The 2. Monoamine oxidase (MAO) enzyme preferentially degrades benzylamine and phenylethyl- 3. Involvement of MAO in neurodegeneration amine and targets a wide variety of specific neurotransmitters 4. -
Identification of Key Pathways and Genes in Dementia Via Integrated Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440371; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of Key Pathways and Genes in Dementia via Integrated Bioinformatics Analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440371; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract To provide a better understanding of dementia at the molecular level, this study aimed to identify the genes and key pathways associated with dementia by using integrated bioinformatics analysis. Based on the expression profiling by high throughput sequencing dataset GSE153960 derived from the Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) between patients with dementia and healthy controls were identified. With DEGs, we performed a series of functional enrichment analyses. Then, a protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network was constructed, analyzed and visualized, with which the hub genes miRNAs and TFs nodes were screened out. Finally, validation of hub genes was performed by using receiver operating characteristic curve (ROC) analysis. -
The Genetics of Bipolar Disorder
Molecular Psychiatry (2008) 13, 742–771 & 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00 www.nature.com/mp FEATURE REVIEW The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions A Serretti and L Mandelli Institute of Psychiatry, University of Bologna, Bologna, Italy Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome ‘hot regions’ for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF. -
SZDB: a Database for Schizophrenia Genetic Research
Schizophrenia Bulletin vol. 43 no. 2 pp. 459–471, 2017 doi:10.1093/schbul/sbw102 Advance Access publication July 22, 2016 SZDB: A Database for Schizophrenia Genetic Research Yong Wu1,2, Yong-Gang Yao1–4, and Xiong-Jian Luo*,1,2,4 1Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China; 2Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; 3CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China 4YGY and XJL are co-corresponding authors who jointly directed this work. *To whom correspondence should be addressed; Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; tel: +86-871-68125413, fax: +86-871-68125413, e-mail: [email protected] Schizophrenia (SZ) is a debilitating brain disorder with a Introduction complex genetic architecture. Genetic studies, especially Schizophrenia (SZ) is a severe mental disorder charac- recent genome-wide association studies (GWAS), have terized by abnormal perceptions, incoherent or illogi- identified multiple variants (loci) conferring risk to SZ. cal thoughts, and disorganized speech and behavior. It However, how to efficiently extract meaningful biological affects approximately 0.5%–1% of the world populations1 information from bulk genetic findings of SZ remains a and is one of the leading causes of disability worldwide.2–4 major challenge. There is a pressing -
Alzheimer Dementia: Starting, Stopping Drug Therapy
REVIEW CME CREDIT LUKE D. KIM, MD, FACP, CMD RONAN M. FACTORA, MD, FACP, AGSF Assistant Professor of Medicine, Cleveland Clinic Lerner Assistant Professor of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, College of Medicine of Case Western Reserve University, Cleveland, OH; Center for Geriatric Medicine, Medicine Cleveland, OH; Center for Geriatric Medicine, Medicine Institute, Cleveland Clinic Institute, Cleveland Clinic Alzheimer dementia: Starting, stopping drug therapy ABSTRACT lzheimer disease is the most common A form of dementia. In 2016, an estimated Alzheimer disease is the most common type of dementia. 5.2 million Americans age 65 and older had Two classes of cognition-enhancing drugs are approved Alzheimer disease. The prevalence is project- to treat the symptoms, and both have provided modest ed to increase to 13.8 million by 2050, includ- benefi t in clinical trials. Psychotropic drugs are sometimes ing 7 million people age 85 and older.1 used off-label to treat behavioral symptoms of Alzheimer Although no cure for dementia exists, sev- disease. All these medications should be continuously eral cognition-enhancing drugs have been ap- evaluated for clinical effi cacy and, when appropriate, proved by the US Food and Drug Administra- discontinued if the primary benefi t—preservation of cog- tion (FDA) to treat the symptoms of Alzheimer nitive and functional status and a reduction in behaviors dementia. The purpose of these drugs is to associated with dementia—is no longer being achieved. stabilize cognitive and functional status, with a secondary benefi t of potentially reducing be- KEY POINTS havioral problems associated with dementia. -
Cholinergic Treatments with Emphasis on M1 Muscarinic Agonists As Potential Disease-Modifying Agents for Alzheimer’S Disease
Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics Cholinergic Treatments with Emphasis on M1 Muscarinic Agonists as Potential Disease-Modifying Agents for Alzheimer’s Disease Abraham Fisher Israel Institute for Biological Research, P. O. Box 19, Ness-Ziona 74100, Israel Summary: The only prescribed drugs for treatment of Alzhei- formation of -amyloid plaques, and tangles containing hyper- mer’s disease (AD) are acetylcholinesterase inhibitors (e.g., phosphorylated tau proteins) are apparently linked. Such link- donepezil, rivastigmine, galantamine, and tacrine) and meman- ages may have therapeutic implications, and this review is an tine, an NMDA antagonist. These drugs ameliorate mainly the attempt to analyze these versus the advantages and drawbacks symptoms of AD, such as cognitive impairments, rather than of some cholinergic compounds, such as acetylcholinesterase halting or preventing the causal neuropathology. There is cur- inhibitors, M1 muscarinic agonists, M2 antagonists, and nico- rently no cure for AD and there is no way to stop its progres- tinic agonists. Among the reviewed treatments, M1 selective sion, yet there are numerous therapeutic approaches directed agonists emerge, in particular, as potential disease modifiers. against various pathological hallmarks of AD that are exten- Key Words: Alzheimer’s, cholinergic, -amyloid, tau, acetyl- sively being pursued. In this context, the three major hallmark cholinesterase inhibitors, M1 muscarinic, nicotinic, agonists, characteristics of AD (i.e., the CNS cholinergic hypofunction, M2 muscarinic antagonists. INTRODUCTION (␣-APPs) that is neurotrophic and neuroprotective. In an alternate pathway, -secretase (BACE1) cleaves APP Alzheimer’s disease (AD) is a progressive, neurode- releasing a large secreted derivative sAPP andaC- generative disease that is a major health problem in terminal fragment C99 that can be further cleaved by modern societies. -
Treating Dementia with Cholinesterase Inhibitors Patient Information - Older Persons Mental Health
Treating Dementia with Cholinesterase Inhibitors Patient information - Older Persons Mental Health www.cdhb.health.nz/patientinfo Dementia is a progressive disease of the brain in which brain cells die and are not replaced. It results in impaired memory, thinking and behaviour. In recent years a number of medications for dementia have become available in New Zealand, includ- ing cholinesterase inhibitors, which are discussed below. For more information, please contact your GP or specialist. Other useful sources of information are Alzhei- mer’s Canterbury (314 Worcester St, Christchurch, phone (03) 379 2590) and the website www.alzheimers.org.nz click on “your Alzheimer’s organisation” to take you to Canterbury. Cholinesterase Cholinesterase Treating Dementia with with Dementia Treating Inhibitors Older Older Persons Mental Health How do cholinesterase inhibitors work? Cholinesterase inhibitors are designed to enhance memory and other brain functions by influencing chemical activity in the brain. Acetylcholine is a chemical messenger in the brain that is thought to be important for the function of brain cells involved in memory, thought and judgement. Acetylcholine is released by one brain cell to transmit a message to another. Once a message is received, various enzymes, including some called cholinesterases, break down the chemical messenger for reuse. In the brain affected by dementia, the cells that produce acetylcholine are damaged or destroyed, resulting in lower levels of the chemical messenger. A cholinesterase inhibitor is designed to reduce the activity of the cholinesterases, thereby slowing down the breakdown of acetylcholine. By maintaining levels of acetylcholine, the drug may help compensate for the loss of functioning brain cells. -
Crystal Structure of Dopamine Receptor D4 Bound to the Subtype Selective Ligand, L745870 Ye Zhou1,2, Can Cao1, Lingli He1, Xianping Wang1, Xuejun Cai Zhang1,2*
RESEARCH ARTICLE Crystal structure of dopamine receptor D4 bound to the subtype selective ligand, L745870 Ye Zhou1,2, Can Cao1, Lingli He1, Xianping Wang1, Xuejun Cai Zhang1,2* 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; 2University of Chinese Academy of Sciences, Beijing, China Abstract Multiple subtypes of dopamine receptors within the GPCR superfamily regulate neurological processes through various downstream signaling pathways. A crucial question about the dopamine receptor family is what structural features determine the subtype-selectivity of potential drugs. Here, we report the 3.5-angstrom crystal structure of mouse dopamine receptor D4 (DRD4) complexed with a subtype-selective antagonist, L745870. Our structure reveals a secondary binding pocket extended from the orthosteric ligand-binding pocket to a DRD4-specific crevice located between transmembrane helices 2 and 3. Additional mutagenesis studies suggest that the antagonist L745870 prevents DRD4 activation by blocking the relative movement between transmembrane helices 2 and 3. These results expand our knowledge of the molecular basis for the physiological functions of DRD4 and assist new drug design. Introduction Dopamine and its receptors play fundamental roles in controlling neurological processes including motor control, cognition, learning, and emotions (Beaulieu and Gainetdinov, 2011). Dopaminergic *For correspondence: dysfunction is associated with the