Universidade De Brasília Faculdade De Ciências Da Saúde

Total Page:16

File Type:pdf, Size:1020Kb

Universidade De Brasília Faculdade De Ciências Da Saúde UNIVERSIDADE DE BRASÍLIA FACULDADE DE CIÊNCIAS DA SAÚDE RODRIGO SOUZA SILVA VALLE DOS REIS AVALIAÇÃO IN SILICO DE FÁRMACOS COMERCIAIS PARA REPOSICIONAMENTO NA TERAPÊUTICA DA TUBERCULOSE BRASÍLIA 2020 Rodrigo Souza Silva Valle Dos Reis AVALIAÇÃO IN SILICO DE FÁRMACOS COMERCIAIS PARA REPOSICIONAMENTO NA TERAPÊUTICA DA TUBERCULOSE Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciências Farmacêuticas da Faculdade de Ciências da Saúde, Universidade de Brasília, como requisito parcial à obtenção do título de Mestre em Ciências Farmacêuticas. Orientador(a): Prof. Dr. Mauricio Homem de Mello BRASÍLIA 2020 Rodrigo Souza Silva Valle Dos Reis AVALIAÇÃO IN SILICO DE FÁRMACOS COMERCIAIS PARA REPOSICIONAMENTO NA TERAPÊUTICA DA TUBERCULOSE Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências da Saúde, Universidade de Brasília, como requisito parcial à obtenção do título de Mestre em Ciências Farmacêuticas. Aprovada em 27 de Agosto de 2020. Banca Examinadora ____________________________________ Prof. Dr. Maurício Homem de Mello – Universidade de Brasília ____________________________________ Profª. Dra. Pérola de Oliveira Magalhães – Universidade de Brasília ____________________________________ Profª. Dra. Márcia Renata Mortari – Universidade de Brasília AGRADECIMENTOS Ao professor Maurício, pela oportunidade de conhecer uma área completamente nova e diferente de tudo o que já havia tido contado na graduação, pela orientação fantástica, sempre disposto a ajudar e a sanar qualquer dúvida e principalmente por me acalmar e motivar, muito mais vezes do que imagina. À minha mãe, dona Lúcia, que sempre acredita em mim e me motiva em tudo o que decido fazer. Às todas as minhas colegas de InSiliTox, pelo companheirismo nos poucos momentos que pudemos interagir pessoalmente, mas principalmente à Adriana e a Giulia, com quem eu aprendi muito e sem as quais esse trabalho teria sido muito mais árduo e sem graça. Aos professores que tive o prazer de participar das aulas durante o programa, muitos os quais já conhecia desde a graduação e que pude reencontrar e descobrir uma didática completamente nova, mais desafiadora e enriquecedora. Aos meus ex-colegas de trabalho da Coordenação de Doenças em Eliminação, por toda parceria e por todo conhecimento que me transmitiram no curto período que estivemos juntos, mas principalmente à Marquinhos e minhas ex-chefes Carmelita e Jean-Marie por acreditarem no meu potencial e me darem uma oportunidade que me fez crescer muito como profissional. À Fundação de Apoio à Pesquisa do Distrito Federal e a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior pelo fomento. “Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less.” Marie Curie Resumo A Tuberculose é uma doença infecciosa causada pela Mycobacterium tuberculosis, agente etiológico que foi descoberto em 1882 por Robert Koch e que até os dias atuais segue como um problema de saúde pública em diversos países, entre eles o Brasil. O reposicionamento de fármacos é um grande aliado na investigação por novas alternativas terapêuticas utilizando-se de substâncias que já passaram por todas as fases do desenvolvimento e já são aplicadas na clínica, reduzindo não só o tempo de pesquisa, mas também seus custos. Devido à grande capacidade computacional dos dias atuais e o vasto conhecimento das estruturas proteicas e seus comportamentos é possível através de uma série de diferentes algoritmos simular o comportamento de um alvo proteico ao contato com um ligante, duas técnicas que se utilizam disso são o Virtual Screening e o Molecular Docking. Neste trabalho submetidos à Virtual Screening 1813 fármacos comerciais, selecionados a partir base de dados integrity, em três alvos protéicos de interesse à terapia da tuberculose, RNA polimerase (alvo da rifampicina), enoil-ACP-redutase (alvo da isoniazida) e MmpL3 (Mycobacterial membrane protein Large 3). Os melhores resultados foram subimetidos à docagem molecular e à comparação com as principais interações com os ligantes originais dos alvos; No total foram encontrados 28 candidatos com potencial atividade de inibição enzimática. Palavras Chave: Mycobacterium tuberculosis; Molecular Docking; Virtual Screening.. Abstract Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, their etiological agent that was discovered in 1882 by Robert Koch and nowadays remains a public health problem in several countries, including Brazil. Drug Repurposing is a great ally in the investigation for new therapeutic alternatives by using drugs that have already gone through all stages of development and are already applied in the clinic, reducing not only research time but also all their costs. Due to the great computational capacity of today and the vast knowledge of protein structures and their behaviors, it is possible through a series of different computational algorithms to simulate the behavior of a protein target upon their contact with a ligand. Two techniques use this, the Virtual Screening and Molecular Docking. In this work submitted to Virtual Screening 1813 commercial drugs, selected from the Cortellis Integrity database, in three protein targets of interest to tuberculosis therapy, RNA polymerase (target of rifampicin), enoil-ACP-reductase (target of isoniazid) and MmpL3 (Mycobacterial membrane protein Large 3). The best results were subjected to molecular docking and compared to the main interactions with the target's original ligands; In total 28 candidates were found with potential enzyme inhibiting activity. Keywords: Mycobacterium tuberculosis; Molecular Docking; Virtual Screening SUMÁRIO 1. INTRODUÇÃO .......................................................................................... 12 1.1. Caracteríscas gerais do Mycobacterium tuberculosis ........................ 14 1.1. Tratamento farmacológico .................................................................. 16 1.1.1. Esquema Básico de Tratamento da Tuberculose .......................... 18 1.1.1.1. Rifampicina (R) ........................................................................ 19 1.1.1.2. Isoniazida (H) ........................................................................... 22 1.1.1.3. Pirazinamida (Z) ...................................................................... 26 1.1.1.4. Etambutol (E) ........................................................................... 28 1.2. Reposicionamento de Fármacos ........................................................ 29 1.3. Virtual Screening ................................................................................ 32 1.3.1. Bases de dados ............................................................................. 33 1.3.2. Algoritmos de Virtual Screening .................................................... 36 1.3.3. Genetic Optimisation for Ligand Docking – GOLD ........................ 38 1.3.4. Piecewise Linear Potential – PLP e ChemPLP.............................. 39 1.4. Docagem Molecular (Molecular Docking) ........................................... 41 1.4.1. Root-Mean-Square Deviation (RMSD) .......................................... 42 2. OBJETIVOS .............................................................................................. 44 2.1. Objetivo Geral .................................................................................... 44 2.2. Objetivos ............................................................................................ 44 3. MATERIAL E MÉTODO ............................................................................ 45 3.1. Criação do Banco de ligantes ............................................................. 45 3.2. Seleção dos alvos proteicos de M. tuberculosis ................................. 47 3.3. Virtual Screening ................................................................................ 47 3.4. Docagem molecular............................................................................ 49 3.5. Validação ............................................................................................ 49 3.6. Construção dos diagramas 2D para visualização das interações entre ligante e proteína. .................................................................................................. 50 4. RESULTADOS E DISCUSSÃO ................................................................ 51 4.1. Banco de ligantes ............................................................................... 51 4.2. Seleção dos alvos proteicos ............................................................... 51 4.3. Virtual Screening ................................................................................ 55 4.4. Validação ............................................................................................ 59 4.5. Docagem Molecular............................................................................ 61 4.5.1. RNA Polimerase ............................................................................ 61 4.5.2. Enoil ACP redutase ....................................................................... 63 4.5.3. Transportador de ácido micólico MmpL3 ....................................... 65 4.6. Interações ligante-proteína ................................................................. 68 4.6.1. 6CCV – RNA Polimerase .............................................................. 68 4.6.1.1. Coenzima Q10 ........................................................................
Recommended publications
  • Pembrolizumab with Pemetrexed and Platinum Chemotherapy for Untreated Metastatic Non-Squamous Non-Small-Cell Lung Cancer [ID1173]
    Pembrolizumab with pemetrexed and platinum chemotherapy for untreated metastatic non-squamous non-small-cell lung cancer [ID1173] A Single Technology Appraisal Produced by Peninsula Technology Assessment Group (PenTAG) University of Exeter Medical School, South Cloisters, St Luke’s Campus, Heavitree Road, Exeter EX1 2LU Authors Mr Ed Griffin, Research Fellow1 Dr Caroline Farmer, Research Fellow1 Mr David Packman, Postdoctoral Research Associate 1 Dr Elham Nikram, Postdoctoral Research Associate 1 Mr Justin Matthews, Research Fellow 2 Dr Max Barnish, Postdoctoral Research Associate1 Mr Simon Briscoe, Information Specialist1 Dr Nicole Dorey, Consultant Clinical Oncologist3 Dr Adam Dangoor, Consultant Medical Oncologist4 Dr Ruben Mujica Mota, Senior Lecturer1 1 Peninsula Technology Assessment Group (PenTAG), Exeter, UK 2 Health Statistics, PenCLAHRC, University of Exeter Medical School, Exeter, UK 3 Royal Devon and Exeter NHS Foundation Trust, Exeter, UK 4 University Hospitals Bristol NHS Foundation Trust, Bristol, UK Correspondence to E A Griffin, PenTAG, South Cloisters, St Luke's Campus, Heavitree Road, Exeter EX1 2LU. [email protected] 1 Copyright 2018 Queen's Printer and Controller of HMSO. All rights reserved. Date completed 11/09/2018 Source of funding This report was commissioned by the NIHR Systematic Reviews Programme as project number 17/46/14. JM was supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula (NIHR CLAHRC South West Peninsula). Declared competing Dr Nicole Dorey has received educational grants from Amgen, interests of the authors Boehringer Ingelheim, Lilley, Roche, and Teva. Dr Adam Dangoor has received honoraria from Roche and Amgen.
    [Show full text]
  • LGM-Pharma-Regulatory-1527671011
    Pipeline Products List Specialty Portfolio Updated Q2 2018 Updated Q2 2018 See below list of newly approved API’s, samples are readily available for your R&D requirements: Inhalation Ophthalmic Transdermal Sublingual Abaloparatide Defibrotide Sodium Liraglutide Rituximab Abciximab Deforolimus Lixisenatide Rivastigmine Aclidinium Bromide Azelastine HCl Agomelatine Alprazolam Abemaciclib Delafloxacin Lumacaftor Rivastigmine Hydrogen Tartrate Beclomethasone Dipropionate Azithromycin Amlodipine Aripiprazole Acalabrutinib Denosumab Matuzumab Rizatriptan Benzoate Budesonide Besifloxacin HCl Apomorphine Eletriptan HBr Aclidinium Bromide Desmopressin Acetate Meloxicam Rocuronium Bromide Adalimumab Difluprednate Memantine Hydrochloride Rolapitant Flunisolide Bimatoprost Clonidine Epinephrine Aflibercept Dinoprost Tromethamine Micafungin Romidepsin Fluticasone Furoate Brimonidine Tartrate Dextromethorphan Ergotamine Tartrate Agomelatine Dolasetron Mesylate Mitomycin C Romosozumab Fluticasone Propionate Bromfenac Sodium Diclofenac Levocetrizine DiHCl Albiglutide Donepezil Hydrochloride Mometasone Furoate Rotigotine Formoterol Fumarate Cyclosporine Donepezil Meclizine Alectinib Dorzolamide Hydrochloride Montelukast Sodium Rucaparib Iloprost Dexamethasone Valerate Estradiol Melatonin Alemtuzumab Doxercalciferol Moxifloxacin Hydrochloride Sacubitril Alirocumab Doxorubicin Hydrochloride Mycophenolate Mofetil Salmeterol Xinafoate Indacaterol Maleate Difluprednate Fingolimod Meloxicam Amphotericin B Dulaglutide Naldemedine Secukinumab Levalbuterol Dorzolamide
    [Show full text]
  • The National Drugs List
    ^ ^ ^ ^ ^[ ^ The National Drugs List Of Syrian Arab Republic Sexth Edition 2006 ! " # "$ % &'() " # * +$, -. / & 0 /+12 3 4" 5 "$ . "$ 67"5,) 0 " /! !2 4? @ % 88 9 3: " # "$ ;+<=2 – G# H H2 I) – 6( – 65 : A B C "5 : , D )* . J!* HK"3 H"$ T ) 4 B K<) +$ LMA N O 3 4P<B &Q / RS ) H< C4VH /430 / 1988 V W* < C A GQ ") 4V / 1000 / C4VH /820 / 2001 V XX K<# C ,V /500 / 1992 V "!X V /946 / 2004 V Z < C V /914 / 2003 V ) < ] +$, [2 / ,) @# @ S%Q2 J"= [ &<\ @ +$ LMA 1 O \ . S X '( ^ & M_ `AB @ &' 3 4" + @ V= 4 )\ " : N " # "$ 6 ) G" 3Q + a C G /<"B d3: C K7 e , fM 4 Q b"$ " < $\ c"7: 5) G . HHH3Q J # Hg ' V"h 6< G* H5 !" # $%" & $' ,* ( )* + 2 ا اوا ادو +% 5 j 2 i1 6 B J' 6<X " 6"[ i2 "$ "< * i3 10 6 i4 11 6! ^ i5 13 6<X "!# * i6 15 7 G!, 6 - k 24"$d dl ?K V *4V h 63[46 ' i8 19 Adl 20 "( 2 i9 20 G Q) 6 i10 20 a 6 m[, 6 i11 21 ?K V $n i12 21 "% * i13 23 b+ 6 i14 23 oe C * i15 24 !, 2 6\ i16 25 C V pq * i17 26 ( S 6) 1, ++ &"r i19 3 +% 27 G 6 ""% i19 28 ^ Ks 2 i20 31 % Ks 2 i21 32 s * i22 35 " " * i23 37 "$ * i24 38 6" i25 39 V t h Gu* v!* 2 i26 39 ( 2 i27 40 B w< Ks 2 i28 40 d C &"r i29 42 "' 6 i30 42 " * i31 42 ":< * i32 5 ./ 0" -33 4 : ANAESTHETICS $ 1 2 -1 :GENERAL ANAESTHETICS AND OXYGEN 4 $1 2 2- ATRACURIUM BESYLATE DROPERIDOL ETHER FENTANYL HALOTHANE ISOFLURANE KETAMINE HCL NITROUS OXIDE OXYGEN PROPOFOL REMIFENTANIL SEVOFLURANE SUFENTANIL THIOPENTAL :LOCAL ANAESTHETICS !67$1 2 -5 AMYLEINE HCL=AMYLOCAINE ARTICAINE BENZOCAINE BUPIVACAINE CINCHOCAINE LIDOCAINE MEPIVACAINE OXETHAZAINE PRAMOXINE PRILOCAINE PREOPERATIVE MEDICATION & SEDATION FOR 9*: ;< " 2 -8 : : SHORT -TERM PROCEDURES ATROPINE DIAZEPAM INJ.
    [Show full text]
  • An Overview of the Role of Hdacs in Cancer Immunotherapy
    International Journal of Molecular Sciences Review Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy Debarati Banik, Sara Moufarrij and Alejandro Villagra * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, 800 22nd St NW, Suite 8880, Washington, DC 20052, USA; [email protected] (D.B.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +(202)-994-9547 Received: 22 March 2019; Accepted: 28 April 2019; Published: 7 May 2019 Abstract: Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Abuse-Proof Solid Pharmaceutical Composition
    (19) TZZ¥¥ ¥_T (11) EP 3 329 939 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 06.06.2018 Bulletin 2018/23 A61K 47/02 (2006.01) A61K 47/36 (2006.01) A61K 9/16 (2006.01) A61K 31/485 (2006.01) (2006.01) (21) Application number: 17204525.4 A61K 31/192 (22) Date of filing: 29.11.2017 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • BOSCHETTI, Silvia GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO I-38060 Aldeno (TN) (IT) PL PT RO RS SE SI SK SM TR • ROSSI, Massimiliano Designated Extension States: I-38121 Trento (IT) BA ME • BENFENATI, Diego Designated Validation States: I-38052 Caldonazzo (TN) (IT) MA MD • POJER, Alessandro I-38092 Altavalle (TN) (IT) (30) Priority: 02.12.2016 IT 201600122469 (74) Representative: Allaix, Roberto (71) Applicant: E-Pharma Trento S.p.A. PGA S.p.A. 38123 Trento (IT) Via Mascheroni, 31 20145 Milano (IT) (54) ABUSE-PROOF SOLID PHARMACEUTICAL COMPOSITION (57) The present invention relates to an abuse-proof solid pharmaceutical composition comprising an active ingre- dient with potential for abuse, silica in an amount of from 10 mg to 1000 mg, guar flour in an amount of from 100 mg to 300 mg, and a water soluble diluent in an amount of from 500 mg to 5000 mg. EP 3 329 939 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 329 939 A1 Description FIELD OF THE INVENTION 5 [0001] The present invention relates to an abuse-proof solid pharmaceutical composition, in particular a solid phar- maceutical composition, such as, for example a granulate or a tablet, capable of solubilizing in a glass of water (about 100 ml), but of forming a not injectable gel and/or viscous solution if added to the amount of water contained in a hypodermic syringe (about 10 ml).
    [Show full text]
  • Chidamide, a Histone Deacetylase Inhibitor, Induces Growth Arrest and Apoptosis in Multiple Myeloma Cells in a Caspase‑Dependent Manner
    ONCOLOGY LETTERS 18: 411-419, 2019 Chidamide, a histone deacetylase inhibitor, induces growth arrest and apoptosis in multiple myeloma cells in a caspase‑dependent manner XIANG-GUI YUAN*, YU-RONG HUANG*, TENG YU, HUA-WEI JIANG, YANG XU and XIAO-YING ZHAO Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China Received August 1, 2018; Accepted March 29, 2019 DOI: 10.3892/ol.2019.10301 Abstract. Chidamide, a novel histone deacetylase (HDAC) Introduction inhibitor, induces antitumor effects in various types of cancer. The present study aimed to evaluate the cytotoxic effect of Multiple myeloma (MM) is the second most frequent hemato- chidamide on multiple myeloma and the underlying mecha- logical neoplasm in the USA in 2018 (1) and is characterized nisms involved. Viability of multiple myeloma cells upon by the infiltration of clonal plasma cells in the bone marrow, chidamide treatment was determined by the Cell Counting secretion of monoclonal immunoglobulins and end organ Kit-8 assay. Apoptosis induction and cell cycle alteration were damage (2). Over the last decade, the introduction of protea- detected by flow cytometry. Specific apoptosis-associated some inhibitors [bortezomib (BTZ) and carfilzomib] and proteins and cell cycle proteins were evaluated by western immunomodulatory drugs (thalidomide and lenalidomide), blot analysis. Chidamide suppressed cell viability in a time- combined with autologous stem cell transplantation, have and dose-dependent manner. Chidamide treatment markedly significantly improved the prognosis of patients with MM. suppressed the expression of type I HDACs and further The 5-year overall survival (OS) rate of patients diagnosed induced the acetylation of histones H3 and H4.
    [Show full text]
  • Hyperaldosteronism: How Current Concepts Are Transforming the Diagnostic and Therapeutic Paradigm
    Kidney360 Publish Ahead of Print, published on July 23, 2020 as doi:10.34067/KID.0000922020 Hyperaldosteronism: How Current Concepts Are Transforming the Diagnostic and Therapeutic Paradigm Michael R Lattanzio(1), Matthew R Weir(2) (1) Division of Nephrology, Department of Medicine, The Chester County Hospital/University of Pennsylvania Health System (2) Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD Correspondence: Matthew R Weir University of Maryland Medical Center Division of Nephrology 22 S. Greene St. Room N3W143 Baltimore, Maryland 21201 [email protected] 1 Copyright 2020 by American Society of Nephrology. Abbreviations PA=Primary Hyperaldosteronism CVD=Cardiovascular Disease PAPY=Primary Aldosteronism Prevalence in Hypertension APA=Aldosterone-Producing Adenoma BAH=Bilateral Adrenal Hyperplasia ARR=Aldosterone Renin Ratio AF=Atrial Fibrillation OSA=Obstructive Sleep Apnea OR=Odds Ratio AHI=Apnea Hypopnea Index ABP=Ambulatory Blood Pressure AVS=Adrenal Vein Sampling CT=Computerized Tomography MRI=Magnetic Resonance Imaging SIT=Sodium Infusion Test FST=Fludrocortisone Suppression Test CCT=Captopril Challenge Test PAC=Plasma Aldosterone Concentration PRA=Plasma Renin Activity MRA=Mineralocorticoid Receptor Antagonist MR=Mineralocorticoid Receptor 2 Abstract Nearly seven decades have elapsed since the clinical and biochemical features of Primary Hyperaldosteronism (PA) were described by Conn. PA is now widely recognized as the most common form of secondary hypertension. PA has a strong correlation with cardiovascular disease and failure to recognize and/or properly diagnose this condition has profound health consequences. With proper identification and management, PA has the potential to be surgically cured in a proportion of affected individuals. The diagnostic pursuit for PA is not a simplistic endeavor, particularly since an enhanced understanding of the disease process is continually redefining the diagnostic and treatment algorithm.
    [Show full text]
  • Brain Imaging
    Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Radiopharmaceuticals and Contrast Media – Oxford Clinical Policy
    UnitedHealthcare® Oxford Clinical Policy Radiopharmaceuticals and Contrast Media Policy Number: RADIOLOGY 034.19 T0 Effective Date: January 1, 2021 Instructions for Use Table of Contents Page Related Policies Coverage Rationale ....................................................................... 1 • Cardiology Procedures Requiring Prior Definitions .................................................................................... 10 Authorization for eviCore Healthcare Arrangement Prior Authorization Requirements .............................................. 10 • Radiation Therapy Procedures Requiring Prior Applicable Codes ........................................................................ 10 Authorization for eviCore Healthcare Arrangement Description of Services ............................................................... 13 • Radiology Procedures Requiring Prior Authorization References ................................................................................... 13 for eviCore Healthcare Arrangement Policy History/Revision Information ........................................... 14 Instructions for Use ..................................................................... 14 Coverage Rationale eviCore healthcare administers claims on behalf of Oxford Health Plans for the following services that may be billed in conjunction with radiopharmaceuticals and/or contrast media: • Radiology Services: Refer to Radiology Procedures Requiring Prior Authorization for eviCore Healthcare Arrangement for additional information.
    [Show full text]