A Review of the Effects of Seamounts on Biological Processes

Total Page:16

File Type:pdf, Size:1020Kb

A Review of the Effects of Seamounts on Biological Processes A REVIEW OF THE EFFECTS OF SEAMOUNTS ON BIOLOGICAL PROCESSES George W. Boehlert Southwest Fisheries Center Honolulu Laboratory, National Marine Fisheries Service. NOAA. 2570 Dole St., Honolulu, HI 96822-2396 Amatzia Genin Scripps Institution of Oceanography, A-008, University of California, La Jolla, CA 92093 Abstract. Seamounts interacting with oceanic continental shelf or slope counterparts at similar currents create flow complexities which depend water depths [Hubbs, 19591. In the open ocean, upon current speed, stratification. latitude, and seamounts interact with ocean currents and create seamount morphology. Seamount effects. which variability in the physical flow field. Several include internal wave generation. eddy formation. studies have described these effects on the Gulf local upwelling. and closed circulation patterns Stream [Vastano and Warren, 19761 and the Kuroshio called Taylor columns. have important effects upon [Roden et al.. 1982; Roden. 19871. The physical pelagic and benthic ecosystems over seamounts. effects include local small- and mesosca7.e phe- The biological effects of these current-topography nomena including the shedding of mesoscale eddies interactions are poorly understood. Flow accel- which alter flow patterns for significant dis- eration on upper flanks of seamounts may lead to tances downstream of the seamounts [Royer. 19781. low sedimentation but areas of high standing Biological effects of these physical complexities stocks of benthic fauna, particularly filter feed- are not well understood [Genin and Boehlert 1985; ers. Other effects extend into the water column: Boehlert, 19861. Discovery of seamount fishery nutrient enrichment and enhanced primary produc- [Uchida and Tagami. 19841 and mineral resources tivity occur over some seamounts. Longer observa- [Manheim, 19861, however, has caused increased tional periods will be necessary to understand the interest in seamount oceanography and its effects time-varying nature of such enhanced productivity on biota [Darnitsky et al.. 1984: Genin and Boeh- and the extent to which it remains at the seamount lert. 1985; Uchida et al.. 19861. or is advected away. At higher trophic levels, The effects of sea floor topography on ocean unusual patterns of distribution and abundance currents have been a topic of interest to physical occur at some seamounts. Maintenance of high oceanographers for several decades. This area has standing stocks of seamount-associated micronekton recently been reviewed by Hogg l19801 and was the and demersal fishes suggests that seamounts are topic of a monograph by Kozlov [19831. Semi- locations for high rates of energy transfer. The stationary eddies or Taylor columns above sea- energy driving this biological productivity may mounts have been theoretically predicted and either be generated from in situ processes or be experimentally demonstrated in the laboratory advected from elsewhere and concentrated at the [Taylor. 1917: Huppert and Bryan, 19761 and have seamount; interdisciplinary studies will be neces- been observed over scme seamounts [Darnitsky. 1980; sary to better understand these ecosystems. Owens and Hogg. 1980; Richardson, 19801. Unfortu- nately. oceanographic surveys generally have sta- Introduction tion patterns inappropriate to detect these open- ocean, small-scale or mesoscale phenomena [Roden Seamounts represent a major physical feature of 19861. Still. past theoretical and observational all ocean basins. For marine biota, they may be studies on the physics of topographic effects are considered as islands separated by deep ocean available to serve as a background for biological areas: seamounts were thus the topic of many bio- studies. geographic studies [Wilson and Kaufman. 19871. Many studies have suggested that ecosystems at Biological communities at seamounts, however, may certain banks or seamounts are highly productive differ qualitatively and quantitatively from their [Uda and Ishino 1958; Fedosova. 1974; Zaika and Kovalev. 1984; Tseitlin. 19851. The ideas which explain such high productivity are typically based Copyright 1987 by the American Geophysical Union. upon either local enhancement and subsequent 31 9 320 SEAMOUNT BIOLOGICAL OCEANOGRAPHY 0 100 h E v 200 I I- n W n 300 400 500 Fig. 1. Temperature structure at Kinami-Kasuga Seamount (lat. 21°6'N. long. 143'8'E) along a west-east transect shoving uplifted isotherms aver the summit of the seamount. Note that the vertical scale is 50 times greater than the horizontal scale. (Prom Genin and Boehlert. 1985.) retention of productivity or advection and concen- interactions, which have been summarized in this tration of food produced elsewhere. Some support volume by Roden 119871. Where seamounts act as exists for each of these hypotheses. Differences obstacles to current flow, compression of stream- often exist between the pelagic ecosystems of lines will occur due to flow acceleration. Local waters above seamounts and adjacent. oceanic deflections of isotherms. usually in the form of waters, including nutrient concentrations [Kozlov uplifting, have been observed above several sea- et al.. 19821. chlorophyll [Genin and Boehlert. mounts at different locations and depths [Meincke. 19851. plankton biomass [Bezrukov and Natarov. 1971; Vastano and Warren, 19761. Taylor columns 19761. ichthyoplankton [Nellen. 19731. and micro- represent an interesting phenomenon pertinent to nekton [Boehlert and Seki. 19841. In the case of seamounts; associated theory [Taylor. 1923: advected productivity. however. seamount popula- Huppert and Bryan. 19761 predicts such deflections tions may not be limited by local production, but as a result of the encounter between a current and rather by physical aggregation mechanisms [Isaacs a seamount. Under certain conditions of current, and Schwartzlose. 1965; Darnitsky et al., 19841. stratification. and topography, a closed stream- which have been shown to exist in gyres and near lined anticyclonic vortex, or Taylor column, is reefs and coastal headlands [Alldredge and expected to remain trapped above the aeamount Hamner. 1980; Olson and Backus. 19851. Benthic [Hogg. 1973; Huppert. 19751. Such trapping may ecosystems on seamounts and islands may similarly enhance nutrients shallower in the water column differ from corresponding systems on continental and if the residence time of a water mass above shelves and slopes but have typically been less the seamount is sufficiently long, result in well studied. In many cases, unusual or even enhanced primary productivity and transfer into unique faunas exist [Simpson and Heydorn. 1965; higher trophic levels. In this section we Littler et al.. 19861. In addition. more recent consider evidence for such enhancement and the studies have investigated the relationship of role it plays in different trophic levels. benthic fauna co current speeds and seamount- induced physical variability [Genin et al.. 19861. Nutrients and Primary Productivity In this paper we review the effects of seamounts on biological processes, particularly as they The uplifting of isotherms over seamounts is affect pelagic and benthic ecosystems and fish- distinct and occurs with sufficient frequency to e r i e s p r odu c t ivit y. provide support for Taylor column dynamics. As an example. isotherms Over Minami-Kasuga Seamount in The Pelagic Ecosystem at Seamounts the Mariana Archipelago [Genin and Boehlert. 19851 showed a clear uplift (Fig. 1) which did not reach Much of the impact of seamounts on pelagic the surface. Such upwelling at seamounts. like ecosystems may be traced to current-topography coastal upwelling, will transport nutrients into BOEHLERT AND GENIN 321 the euphotic zone where the primary production is Three chlorophp91 profiles baken within the cold nutrient-limited; an analogous situation exists dome showed a distinctive maximum between 80 and around islands in stratified seas, where increased 100 m depth, whereas the chlorophyll maximum layer tidal mixing may stimulate primary productivity at the four control stations was comparatively [Simpson et al.. 19821. Observations on a variety diffuse (Fig. 2). The causal relationships of seamounts support this contention; Bezrukov and between the localized upwelling and the biological Natarov [I9761 suggested that vertical velocities response are corroborated by the confinement of on the order of 0.00003 to 0.0008 cm-sec-l exist the chlorophyll increase to depths below 80 m. the over various seamounts and that differences in the uppermost edge of the cold dome. The chlorophyll magnitude of upwelling may explain variability in concentrations at shallower depths above the sea- seamount productivity. Vortices associated with mount and at the control stations varied little seamounts can produce physical structures much throughout the area. These results clearly con- like open-ocean cold core rings. except they trast with data from the second and third surveys remain centered over the seamount. Kozlov et al. in which neither cold dome nor chlorophyll [I9821 describe a "columnar distribution" of tem- increases were detectable along the same tran- perature, salinity. silicate, and phosphate over sects. These observations suggest that varying one of the summits of Milwaukee Seamount in the strength of oncoming currents result in a varying southern Emperor Chain, in which elevated nutrient time scale for presence of the uplifted isotherms. levels corresponding to the values at the seamount Estimates of the time necessary for the formation flanks reach high into
Recommended publications
  • Identity Crisis Or Split Personality? Trans-Ocean Distances and Not Within Individual Regions
    Journal of Biogeography (J. Biogeogr.) (2007) 34, 2001–2008 GUEST Seamounts: identity crisis or split EDITORIAL personality? Craig R. McClain* Monterey Bay Aquarium Research Institute, ABSTRACT 7700 Sandholdt Road, Moss Landing, CA At present, researchers propose that over 14,000 seamounts exist and, like their 95039, USA terrestrial analogues, function like islands. In addition, seamounts are described as oases, biodiversity hotspots, and lush coral/sponge gardens. Here I discuss the extent to which these tenets regarding seamounts may be inappropriate, suffer from a lack of support, and be over-generalizations of a broad range of envi- ronmental types encountered on seamounts. Ultimately, for seamount science to progress, we need to challenge our conventional wisdom on these habitats and the extent to which all seamounts function in a similar manner. *Correspondence: Craig R. McClain, Monterey Bay Aquarium Research Institute, 7700 Keywords Sandholdt Road, Moss Landing, CA, 95039, USA. Biodiversity, conservation, coral, deep sea, ecological oasis, endemism, hotspot, E-mail: [email protected] island biogeography, isolation, seamount. biological communities that support highly unique and INTRODUCTION endemic faunas’. In ‘Toward a strategy for high seas marine There is no such things as mountains and valleys on the deep-sea protected areas’, Gjerde & Breide (2003) notes that ‘Sea- bottom. mounts are areas of high endemic biodiversity with little Mosely (1880), p. 343 overlap in community composition between seamount Less than 100 years after Mosely’s statement, Hubbs (1959) clusters’. contemplated the ‘scientific interests, particularly in respect Alternatively, others suggest that seamounts are unique to zoogeography and speciation’ of recently discovered habitats for reasons not related to their ‘islandness’.
    [Show full text]
  • Cnidaria, Hydrozoa) from the Vema and Valdivia Seamounts (SE Atlantic)
    European Journal of Taxonomy 758: 49–96 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.758.1425 www.europeanjournaloftaxonomy.eu 2021 · Gil M. & Ramil F. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:7CA6D8AC-2312-47F9-8C17-528B94E4C8A7 Hydroids (Cnidaria, Hydrozoa) from the Vema and Valdivia seamounts (SE Atlantic) Marta GIL 1,* & Fran RAMIL 2 1,2 CIM-UVigo – Centro de Investigación Mariña, Facultade de Ciencias do Mar, Universidade de Vigo, Spain. 1 Instituto Español de Oceanografía, Centro Oceanográfi co de Vigo, Spain. * Corresponding author: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:FFF187EB-84CE-4A54-9A01-4E4326B5CD26 2 urn:lsid:zoobank.org:author:67BAF0B6-E4D5-4A2D-8C03-D2D40D522196 Abstract. In this report, we analyse the benthic hydroids collected on the Vema and Valdivia seamounts during a survey conducted in 2015 in the SEAFO Convention Area, focused on mapping and analysing the occurrence and abundance of benthopelagic fi sh and vulnerable marine ecosystem (VMEs) indicators on selected Southeast Atlantic seamounts. A total of 27 hydroid species were identifi ed, of which 22 belong to Leptothecata and only fi ve to Anthoathecata. Monostaechoides gen. nov. was erected within the family Halopterididae to accommodate Plumularia providentiae Jarvis, 1922, and a new species, Monotheca bergstadi sp. nov., is also described. Campanularia africana is recorded for the fi rst time from the Atlantic Ocean, and the Northeast Atlantic species Amphinema biscayana, Stegopoma giganteum and Clytia gigantea are also recorded from the South Atlantic.
    [Show full text]
  • University of California, San Diego
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Petrogenesis of Intraplate Lavas from Isolated Volcanoes in the Pacific: Implications for the Origin of the Enriched Mantle Source of OIB A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Earth Sciences by Liyan Tian Committee in charge: Professor Paterno Castillo, Chair Professor David Hilton Professor James Hawkins Professor Mark Thiemens Professor Peter Lonsdale 2011 Copyright Liyan Tian, 2011 All rights reserved. The Dissertation of Liyan Tian is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii This dissertation is dedicated to my parents, You Tian and Xiufen Jiang, who taught me to value education. iv TABLE OF CONTENTS SIGNATURE PAGE………………………………………………………………….iii DEDICATION………………………………………………………………………...iv TABLE OF CONTENTS……………………………………………………………...v LIST OF FIGURES………………………………………………………………….vii LIST OF TABLES…………………………………………………………………..viii ACKNOWLEDGEMENTS…………………………………………………………..ix VITA AND PUBLICATIONS………………………………………………………..xii ABSTRACT………………………………………………………………………….xv CHAPTER 1: Introduction…………………………………………………………….1 1.1. Scientific background and objectives of this dissertation………………………...1 1.2. Contents of the dissertation……………………………………………………….4 1.2.1. Chapter 2………………………………………………………………………..4 1.2.2. Chapter 3 and 4…………………………………………………………………6 1.2.3. Chapter 5………………………………………………………………………..7 1.3. Conclusions……………………………………………………………………….8 References……………………………………………………………………………12
    [Show full text]
  • Vulnerable Marine Ecosystems – Processes and Practices in the High Seas Vulnerable Marine Ecosystems Processes and Practices in the High Seas
    ISSN 2070-7010 FAO 595 FISHERIES AND AQUACULTURE TECHNICAL PAPER 595 Vulnerable marine ecosystems – Processes and practices in the high seas Vulnerable marine ecosystems Processes and practices in the high seas This publication, Vulnerable Marine Ecosystems: processes and practices in the high seas, provides regional fisheries management bodies, States, and other interested parties with a summary of existing regional measures to protect vulnerable marine ecosystems from significant adverse impacts caused by deep-sea fisheries using bottom contact gears in the high seas. This publication compiles and summarizes information on the processes and practices of the regional fishery management bodies, with mandates to manage deep-sea fisheries in the high seas, to protect vulnerable marine ecosystems. ISBN 978-92-5-109340-5 ISSN 2070-7010 FAO 9 789251 093405 I5952E/2/03.17 Cover photo credits: Photo descriptions clockwise from top-left: Acanthagorgia spp., Paragorgia arborea, Vase sponges (images courtesy of Fisheries and Oceans, Canada); and Callogorgia spp. (image courtesy of Kirsty Kemp, the Zoological Society of London). FAO FISHERIES AND Vulnerable marine ecosystems AQUACULTURE TECHNICAL Processes and practices in the high seas PAPER 595 Edited by Anthony Thompson FAO Consultant Rome, Italy Jessica Sanders Fisheries Officer FAO Fisheries and Aquaculture Department Rome, Italy Merete Tandstad Fisheries Resources Officer FAO Fisheries and Aquaculture Department Rome, Italy Fabio Carocci Fishery Information Assistant FAO Fisheries and Aquaculture Department Rome, Italy and Jessica Fuller FAO Consultant Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Roadmap to Recovery: a Global Network of Marine Reserves
    © Greenpeace/Åslund Roadmap to Recovery: A global network of marine reserves Callum M. Roberts, Leanne Mason and Julie P. Hawkins Contributing authors: Elizabeth Masden, Gwilym Rowlands, Jenny Storey and Anna Swift Environment Department, University of York, York, YO10 5DD, UK Correspondence to: [email protected] 3 4 Roadmap to Recovery: A global network of marine reserves content 1. Summary 7 2. Introduction 9 3. Aims of this report 11 4. Life on the high seas 11 4.1 The pelagic realm 11 4.2 The deep sea 13 5. History of exploitation of the high seas 16 6. Present status and threats to life on the high seas 17 6.1 Fishing 17 6.2 Global warming 18 6.3 Disposal of CO2 18 6.4 Oil and mineral exploitation 18 6.5 Bioprospecting 20 6.6 Noise 20 7. Designing a global marine reserve network for the high seas 20 7.1 Marine reserves and why they are needed 20 7.2 Will marine reserves protect species on the high seas? 21 7.3 Identifying candidate sites for protection 23 7.4 The grid 25 8. Principles of marine reserve networking 25 8.1 Site selection 25 8.2 Networking and connectivity 26 8.3 Level of replication 26 8.4 Spacing of marine reserves 26 8.5 Size of marine reserves 26 8.6 Coverage of marine reserves 27 9. Procedure used for computer-assisted design of a network 28 of marine reserves 9.1 Features and targets used for Marxan analyses 29 Oceanographic Features 29 Physical features 29 Biological data 29 Expert consultation 31 10.
    [Show full text]
  • A Geophysical and Geologic Study of Nagata Seamount, Northern Line Islands*
    J. Geomag. Geoelectr., 34, 283-305, 1982 A Geophysical and Geologic Study of Nagata Seamount, Northern Line Islands* W. W. SAGER, G. T. DAMS, B. H. KEATING, and J. A. PHILPOTTS Hawaii Institute of Geophysics, University of Hawaii, 2525 Correa Road, Honolulu, Hawaii, U. S. A. (Rece25 Correa Road, Honolulu, Hawaii, U. S. A. Nagata Seamount, located in the northern Line Islands at 12.5N, 167.0W, was surveyed and dredged by the Hawaii Institute of Geophysics in the fall of 1979. The seamount is 3.7 km in height, approximately 45 km at maximum width, and has an estimatedvolume of 590 km3 Analysisof dredgerocks indicatesthat the seamount consists of alkali basalts and hyaloclastitebreccias. Both acoustic reflectionrecords and magnetic modelingstudies indicate that the seamount is draped with a large volume of volcaniclastic debris about its base. At sometime in its history Nagata Seamountmay have been at or near sea level. The bulk of the seamount is made up of lavas of normal magnetic polarity; however, the uppermost 1,000 m consists of reverselypolarized rock. The virtual geomagneticpole determined from the seamount falls at 61.6N, 4.0E not far from the averageCretaceous Pacific seamount pole. Rock magnetism studies of the dredged basalts indicate a stable magnetization. Three dimensional gravity modeling determined an average density of 2.5 g/cm3 for the seamount. This value of the density agrees with other similar data from Pacific and Atlantic seamounts; although, unlike some other seamounts studied gravi- tationally, no large density variations were revealed on Nagata Seamount. K/Ar radiometricages of 70 Ma and 86 Ma wereobtained from the dredged basaltsin agreementwith the paleomagneticpole.
    [Show full text]
  • 33. Rock Magnetic Studies of Serpentinite Seamounts in the Mariana and Izu-Bonin Regions1
    Fryer, P., Pearce, J. A., Stokking, L. B., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 125 33. ROCK MAGNETIC STUDIES OF SERPENTINITE SEAMOUNTS IN THE MARIANA AND IZU-BONIN REGIONS1 L. B. Stokking,2 D. L. Merrill,2 R. B. Haston,3 J. R. Ali,4 and K. L. Saboda5 ABSTRACT During Leg 125, scientists drilled two serpentinite seamounts: Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc. Grain densities of the serpentinized peridotites range from 2.44 to 3.02 g/cm3. The NRM intensity of the serpentinized peridotites ranges from 0.01 to 0.59 A/m and that of serpentine sediments ranges from 0.01 to 0.43 A/m. Volume susceptibilities of serpentinized peridotites range from 0.05 × I0"3 S1 to 9.78 × I0"3 S1 and from 0.12 × I0"3 to 4.34 × 10~3 S1 in the sediments. Koenigsberger ratios, a measure of the relative contributions of remanent vs. induced magnetization to the magnetic anomaly, vary from 0.09 to 80.93 in the serpentinites and from 0.06 to 4.74 in the sediments. The AF demagnetization behavior of the serpentinized peridotites shows that a single component of remanence (probably a chemical remanence carried by secondary magnetite) can be isolated in many samples that have a median destructive field less than 9.5 mT. Multiple remanence components are observed in other samples. Serpentine sediments exhibit similar behavior. Comparison of the AF demagnetization of saturation isothermal remanence and NRM suggests that the serpentinized peridotites contain both single-domain and multidomain magnetite particles.
    [Show full text]
  • Joint Geological Survey/University of Cape Town MARINE GEOSCIENCE UNIT TECHNICAL ^REPORT NO. 13 PROGRESS REPORTS for the YEARS 1
    Joint Geological Survey/University of Cape Town MARINE GEOSCIENCE UNIT TECHNICAL ^REPORT NO. 13 PROGRESS REPORTS FOR THE YEARS 1981-1982 Marine Geoscience Group Department of Geology University of Cape Town December 1982 NGU-Tfc—Kh JOINT GEOLOGICAL SURVEY/UNIVERSITY OF CAPE TOWN MARINE GEOSCIENCE UNIT TECHNICAL REPORT NO. 13 PROGRESS REPORTS FOR THE YEARS 1981-1982 Marine Geoscience Group Department of Geology University of Cape Town December 1982 The Joint Geological Survey/University of Cape Town Marine Geoscience Unit is jointly funded by the two parent organizations to promote marine geoscientific activity in South Africa. The Geological Survey Director, Mr L.N.J. Engelbrecht, and the University Research Committee are thanked for their continued generous financial and technical support for this work. The Unit was established in 1975 by the amalgamation of the Marine Geology Programme (funded by SANCOR until 1972) and the Marine Geophysical Unit. Financial ?nd technical assistance from the South African National Committee for Oceanographic Research, and the National Research Institute for Oceanology (Stellenbosch) are also gratefully acknowledged. It is the policy of the Geological Survey and the University of Cape Town that the data obtained may be presented in the form of theses for higher degrees and that completed projects shall be published without delay in appropriate media. The data and conclusions contained in this report are made available for the information of the international scientific community with tl~e request that they be not published in any manner without written permission. CONTENTS Page INTRODUCTION by R.V.Dingle i PRELIMINARY REPORT ON THE BATHYMETRY OF PART OF 1 THE TRANSKEI BASIN by S.H.
    [Show full text]
  • High Seas Deep-Sea Fishing Grounds in the South East Atlantic Ocean 51
    50 Worldwide review of bottom fisheries in the high seas MAP 1 High seas deep-sea fishing grounds in the South East Atlantic Ocean 51 South East Atlantic Ocean FAO Statistical Area 47 (and a portion of 34) GEOGRAPHIC DESCRIPTION OF THE REGION Angola, Namibia and South Africa are the three countries bordering the South East Atlantic Region (FAO Statistical Area 47) along the African coast. This region extends from the Central Atlantic in the north at 6°S to the Southern Ocean in the south at 50°S. The western limit of the South East Atlantic is the 20°W meridian, which means that the southern Mid-Atlantic Ridge is within the region, at around 15°W, and extends over the entire region from north to south. Other important bottom topographic features in this region are the Walvis Ridge and the Valdivia Bank, joining the exclusive economic zone (EEZ) of Tristan da Cunha on the northern part of the Namibian continental shelf at around 18°S, and in the southern part, the Meteor Rise and the Agulhas Ridge. These are the areas largely targeted in the deep-sea bottom fisheries in the region, together with associated or isolated seamounts areas such as Ewing and Molloy Seamounts, Vema Seamount and those in SEAFO Subdivision A1 (SEAFO, 2007a). It is important to note that in the South East Atlantic, the continental shelf along the coasts does not extend beyond the EEZs of the coastal states. MANAGEMENT REGIME APPLICABLE TO DEEP-SEA BOTTOM FISHERIES IN THE HIGH SEAS Regional Fisheries Management Organization/Arrangement The South East Atlantic Fisheries Organisation (SEAFO) was established in 2003 with the entry into force of the Convention on the conservation and management of fisheries resources in the South East Atlantic Ocean.
    [Show full text]
  • Spotlight 2Jasper Seamount
    or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any articlepermitted only photocopy by is of machine, reposting, this means or collective or other redistirbution This article has This been published in MOUNTAINS IN THE SEA Jasper Seamount SPOTLIGHT 2 30°26.40'N, 122°44.40'W Oceanography By Jasper G. Konter, Hubert Staudigel, and Jeffrey Gee , Volume 23, Number 1, a quarterly journal of The 23, Number 1, a quarterly , Volume Jasper Seamount is a submarine volcano D1 Dredge OBS -500 -1500 -2700 -3900 in the Fieberling-Guadalupe seamount -900 -2100 -3300 mbsl trail, located off the coast of Baja California, Mexico. It rises from the 4000-m-deep seafloor to a summit depth of 700 m (Figure 1). Detailed geophys- 30°30'N ical, geochemical, and geological studies D1 O there provide an in-depth geological D9 D2 ceanography understanding of a seamount that D14 D15 D11 00 0 approaches our knowledge of subaerial S -1 ociety. ociety. volcanoes. Active-source seismic experi- D12 D3 D18 © D4 00 ments at Jasper Seamount resulted in 30°25'N 0 The 2010 by D6 -2 00 the first seismic velocity models of an 0 D13 -3 intraplate seamount (Hammer et al., D19 O 1994). Marine gravity and magnetics D5 ceanography surveys, combined with analyses of D8 O ceanography ceanography the physical properties, geochemistry, S ociety. ociety. and geochronology of dredge samples, A enabled scientists to develop a detailed 122°45'W 122°40'W reproduction, systemmatic Republication, article for use and research.
    [Show full text]
  • Implications for Seamount Paleopoles Jeff Gee, Hubert Staudigel, Lisa Tauxe, Thomas Pick
    Magnetization of the La Palma Seamount Series: Implications for Seamount Paleopoles Jeff Gee, Hubert Staudigel, Lisa Tauxe, Thomas Pick To cite this version: Jeff Gee, Hubert Staudigel, Lisa Tauxe, Thomas Pick. Magnetization of the La Palma Seamount Series: Implications for Seamount Paleopoles. Journal of Geophysical Research, American Geophysical Union, 1993, 98767, pp.11743-11754. 10.1029/93JB00932. insu-01864349 HAL Id: insu-01864349 https://hal-insu.archives-ouvertes.fr/insu-01864349 Submitted on 29 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. B7, PAGES 11,743-11,767, JULY 10, 1993 Magnetizationof the La Palma SeamountSeries: Implicationsfor SeamountPaleopoles JEFFGF_11,1 HtmERT STAUDIGI•L, 2 LISA TAUX•, 3 AND THOMAS PICK ScrippsImtitutlon of Oceanography,La Jolla, California YVES GALLET Institutde Physiquedu G?obede Paris Paleopolesdetermined from seamountmagnetic anomalies constitute the major data sourcefor the Pacific apparentpolar wander path, but relatively little is known about the processesof remanence acquisitionin seamounts.Since magneticanomalies reflect both natural remanence(NRM) and the inducedfield, it is importantfirst to assesswhether the NRM is likely to representan original field directionand secondto constrainthe magnitudeof the inducedcomponent.
    [Show full text]
  • Mount Vema-H.S.)
    Friday, August 7, 2020 Not for Sale. The Sanctity of Seamount Treasures (Mount Vema-H.S.) - 12 November 2019 Greenpeace Germany oceans campaigner Thilo Maack encounters a Tristan Rock Lobster (Jasus tristani) on one of Mount Vema’s summits. Credit © Richard Barnden / Greenpeace The Mount Vema seamount is 1000km out to sea in the southeast Atlantic Ocean. It is out of reach except by industrial fishing fleets or passing ships. But finding a lobster cage there has alarmed Greenpeace which has reiterated that seamounts must be protected from being exploited. This week Greenpeace reported that its ship, Arctic Sunrise, visited the area as part of the “Protect the Oceans” tour, a year-long pole-to-pole expedition. On board are a group of activists, divers and scientists who took the opportunity to explore the secrets of the Vema seamount which rises from the seabed at 4600m to just 26m below the surface of the ocean. Indian ocean seamounts Seamounts are not exactly a secret to the commercial fishing fleets of South Africa and Namibia. Some 25 years have passed since the first seamounts were discovered in the south west Indian ocean. Then in 2010, a South African-led exploration of eight seamounts including Atlantis, “Middle of What” and Coral was successfully concluded. This was made possible by the United Nations, the International Union for the Conservation of Nature (IUCN), and the Global Environmental Facility. There was also support from the Norwegians who provided the research ship. Fish finds On board the Fridtjof Nansen, amongst the group of scientists, was a phytoplankton specialist, researchers, marine biologists and seamount specialist Dr Alex Rogers from the Zoological Society of London.
    [Show full text]