Quantum Field Theory II

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Field Theory II Quantum Field Theory II GEORGE SIOPSIS Department of Physics and Astronomy The University of Tennessee Knoxville, TN 37996-1200 U.S.A. e-mail: [email protected] Spring 2018 ii Contents 1 Interactions 1 1.1 Scattering theory . 1 1.2 Wick’s theorem . 5 1.3 Feynman diagrams . 15 1.4 Reaction rates . 19 1.5 Unitarity . 22 1.6 Path Integrals . 24 iii iv CONTENTS UNIT 1 Interactions When you include interactions, the plot thickens. Until now, we have only considered free fields, described by a Hamiltonian H = H0, which we were able to diagonalize (find all eigenvalues and corresponding eigenstates). But that is no physics! It is time to do some serious physics. When you include interactions, the Hamiltonian is modified to H = H0 + HI (1.0.1) where HI describes interactions. It is no longer possible to solve the eigenvalue problem for H, except in very few special cases (mostly in two dimensions). The only thing we can do is perturbation theory, assuming HI is small. This does not answer deep questions, such as “what is a proton?”, but it provides a method for very accurate calculations (e.g., the magnetic moment of the electron is known to about 10 significant digits both theoretically and experimentally, and they agree with each other!). Experimental results are obtained primarily through scattering. To compare with them, we need to develop scattering theory. It turns out that this type of processes (scattering) holds all the information of a quantum field theory. 1.1 Scattering theory Recall in quantum mechanics, H = H0 + V (1.1.1) where H0 is the kinetic energy and V the potential. If V has compact support, then at times t ! ±∞, H = H0, because V = 0. Thus, we may define incoming and outgoing states, jini (at t ! −∞) and jouti (at t ! +1), respectively, which are eigenstates of H. We shall attempt to do the same in quantum field theory. Consider a state jini. It evolves in time as e−iHtjini (1.1.2) As t ! −∞, H ! H0 (no interactions), so asymptotically, our state approaches a state in the Hilbert space constructed from H0. Call that state jin,0i. It evolves in time as e−iH0tjin,0i (1.1.3) Then the statement that this is asymptotic to the state jini amounts to e−iHtjini −! e−iH0tjin,0i ; as t ! −∞ (1.1.4) Therefore, jini = lim eiHte−iH0tjin,0i (1.1.5) t→−∞ 2 UNIT 1. INTERACTIONS The operator U(t) ≡ eiH0te−iHt (1.1.6) y (a unitary map, U U = I) maps a state in the Hilbert space of H0 (jin,0i) to a state in the Hilbert space of H (jini) by jini = lim U y(t)jin,0i (1.1.7) t→−∞ −iHI t Notice that if H and H0 commute ([H; H0] = 0), then we may write U(t) = e , where we used (1.0.1). But this rarely happens. Thus, in general, U(t) is a very complicated object. Similarly, in the infinite future, we may map jouti = lim U y(t)jout,0i (1.1.8) t!+1 where jouti (jout,0i) is in the Hilbert space of H (H0). We wish to calculate the amplitude of the process jini −! jouti (1.1.9) i.e., y houtjini = lim hout,0jU(t+)U (t−)jin,0i = hout,0jSjin,0i (1.1.10) t±→±∞ where y S ≡ lim U(t+)U (t−) (1.1.11) t±→±∞ is the S-matrix. S maps in-asymptotes to out-asymptotes (these two Hilbert spaces may, in general, be distinct, but not here). In fact, S contains all the information of the quantum field theory. It is an important object to study. Let us bring it into a more convenient form. To this end, we need to establish some properties of U(t) first. We have dU(t) = iH eiH0te−iHt + eiH0t(−iH)e−iHt dt 0 iH0t −iHt = −ie (H − H0)e iH0t −iHt = −ie HI e iH0t −iH0t iH0t −iHt = −ie HI e e e = −iHI (t)U(t) (1.1.12) Thus U(t) is a true evolution operator with (time-dependent) Hamiltonian HI (t). The latter is ob- tained from HI by evolving with H0. The first-order ODE (1.1.12) together with the initial condition U(0) = I uniquely determine U(t). To solve (1.1.12), convert it into an integral equation, Z t 0 Z t dU(t ) 0 0 0 0 0 dt = −i dt HI (t )U(t ) 0 dt 0 Z t 0 0 0 U(t) = I − i dt HI (t )U(t ) (1.1.13) 0 and then use iteration, Z t 0 0 0 U0(t) = I ;Un(t) = I − i dt HI (t )Un−1(t )(n ≥ 1) (1.1.14) 0 1.1 Scattering theory 3 We obtain U0(t) = I Z t 0 0 U1(t) = I − i dt HI (t ) 0 Z t Z t Z t1 0 0 2 U2(t) = I − i dt HI (t ) + (−i) dt1 dt2HI (t1)HI (t2) (1.1.15) 0 0 0 etc.. This may be brought into a more compact form. Look at the second-order term. In it, t ≥ t1 ≥ t2 ≥ 0. The two-dimensional integral is over a triangle in the (t1; t2) plane, which is half of the square 0 ≤ t1; t2 ≤ t. The other half gives the same answer, but with t1 and t2 interchanged. It follows that the two-dimensional integral can be written in terms of a time-ordered product as Z t Z t1 1 Z t Z t dt1 dt2HI (t1)HI (t2) = dt1 dt2T [HI (t1)HI (t2)] (1.1.16) 0 0 2 0 0 For the nth term, we similarly obtain Z t Z tn−1 1 Z t Z t dt1 ··· dtnHI (t1) ··· HI (tn) = dt1 ··· dtnT [HI (t1) ··· HI (tn)] (1.1.17) 0 0 n! 0 0 It follows that 1 X (−i)n Z t Z t U(t) = T dt ··· dt H (t ) ··· H (t ) n! 1 n I 1 I n n=0 0 0 h −i R t dt0H (t0)i = T e 0 I (1.1.18) which is Dyson’s formula. Next, define the generalized evolution operator R t2 0 0 y h −i dt HI (t )i U(t1; t2) ≡ U (t1)U(t2) = T e t1 (1.1.19) It is easily seen from its definition that it has the following properties 0 0 00 00 y 0 0 y 0 0 U(t; t )U(t ; t ) = U(t; t ) ;U (t; t ) = U(t ; t) ;U (t; t )U(t; t ) = I (1.1.20) The S-matrix can be written as h R +1 i −i dtHI (t) S = lim U(t+; t−) = T e −∞ (1.1.21) t±→±∞ Various important properties of the S-matrix follow. • The S-matrix is unitary, y S S = I (1.1.22) This may look like a trivial statement (direct consequence of the unitarity of U(t+; t−)), but we need to take limits t± ! ±∞, and that may spoil unitarity, unless the range of S is the entire Hilbert space. The latter is a consequence of the requirement that probability be conserved: everything that comes in should go out. There are cases where this is not true and particles may be trapped into bound states. The S-matrix has a way to address these issues. For the most part, we shall assume that no trapping occurs and the S-matrix is unitary. • S commutes with the free Hamiltonian H0, [S; H0] = 0 (1.1.23) i.e., a scattering process conserves unperturbed energy. 4 UNIT 1. INTERACTIONS Proof. eiH0 Se−iH0 = lim eiH0 eit−H0 e−it−H eit+H e−it+H0 e−iH0 t±→±∞ = lim eiH0(t−+)e−iH(t−+)eiH(t++)eiH0(t−−) t±→±∞ y = lim U(t− + )U (t+ + ) t±→±∞ But as t± ! ±∞, adding an makes no difference, so eiH0 Se−iH0 = S (1.1.24) Expanding in , at first order we obtain the desired result (1.1.23). • S is Lorentz-invariant. Proof. The Lagrangian density (a Lorentz-invariant quantity) can be split as L = L0 + LI (1.1.25) If LI contains no time derivatives, then Z 3 HI = − d xLI (1.1.26) Therefore, using (1.1.21), h −i R 1 dtH (t)i h i R d4xL i S = T e −∞ I = T e I (1.1.27) which is manifestly Lorentz-invariant. The integral is over the entire space-time. It should be noted that time-ordering does not spoil Lorentz invariance. Indeed, time-ordering is frame-dependent only for spacelike separations, and fields commute at spacelike separations (causality). • Corollary: By Lorentz invariance, it follows from (1.1.23) that S commutes with the unper- turbed four-momentum, µ [S;P0 ] = 0 (1.1.28) This implies momentum conservation in scattering. 0 0 Indeed, consider an incoming (outgoing) state of free particles with momenta p1; p2;::: (p1; p2;::: ), i.e., 0 0 jin,0i = j~p1; ~p2;::: i ; jout,0i = j~p1; ~p2;::: i (1.1.29) (notation as in eqs. (1.1.7) and (1.1.8)). These are eigenstates of unperturbed momentum µ µ µ µ 0µ 0µ P0 jin,0i = (p1 + p2 + ::: )jin,0i ;P0 jout,0i = (p1 + p2 + ::: )jout,0i (1.1.30) It follows that µ X µ X 0µ 0 = hout,0j[S;P0 ]jin,0i = pi − pi houtjini and so X µ X 0µ pi = pi (1.1.31) i.e., momentum is conserved.
Recommended publications
  • Quantum Field Theory with No Zero-Point Energy
    Published for SISSA by Springer Received: March 16, 2018 Revised: May 20, 2018 Accepted: May 27, 2018 Published: May 30, 2018 JHEP05(2018)191 Quantum field theory with no zero-point energy John R. Klauder Department of Physics, University of Florida, Gainesville, FL 32611-8440, U.S.A. Department of Mathematics, University of Florida, Gainesville, FL 32611-8440, U.S.A. E-mail: [email protected] Abstract: Traditional quantum field theory can lead to enormous zero-point energy, which markedly disagrees with experiment. Unfortunately, this situation is built into con- ventional canonical quantization procedures. For identical classical theories, an alternative quantization procedure, called affine field quantization, leads to the desirable feature of having a vanishing zero-point energy. This procedure has been applied to renormalizable and nonrenormalizable covariant scalar fields, fermion fields, as well as general relativity. Simpler models are offered as an introduction to affine field quantization. Keywords: Nonperturbative Effects, Renormalization Regularization and Renormalons, Models of Quantum Gravity ArXiv ePrint: 1803.05823 Open Access, c The Authors. 3 https://doi.org/10.1007/JHEP05(2018)191 Article funded by SCOAP . Contents 1 Introduction 1 2 Nonrenormalizable models exposed 2 3 Ultralocal scalar model: a nonrenormalizable example 3 4 Additional studies using affine variables 5 JHEP05(2018)191 1 Introduction The source of zero-point energy for a free scalar field is readily canceled by normal order- ing of the Hamiltonian operator, which leaves every term with an annihilation operator. Unfortunately, for a non-free scalar field, say with a quartic potential term, normal order- ing cannot eliminate the zero-point energy since there is always a term composed only of creation operators.
    [Show full text]
  • Perturbation Theory and Exact Solutions
    PERTURBATION THEORY AND EXACT SOLUTIONS by J J. LODDER R|nhtdnn Report 76~96 DISSIPATIVE MOTION PERTURBATION THEORY AND EXACT SOLUTIONS J J. LODOER ASSOCIATIE EURATOM-FOM Jun»»76 FOM-INST1TUUT VOOR PLASMAFYSICA RUNHUIZEN - JUTPHAAS - NEDERLAND DISSIPATIVE MOTION PERTURBATION THEORY AND EXACT SOLUTIONS by JJ LODDER R^nhuizen Report 76-95 Thisworkwat performed at part of th«r«Mvchprogmmncof thcHMCiattofiafrccmentof EnratoniOTd th« Stichting voor FundtmenteelOiutereoek der Matctk" (FOM) wtihnnmcWMppoft from the Nederhmdie Organiutic voor Zuiver Wetemchap- pcigk Onderzoek (ZWO) and Evntom It it abo pabHtfMd w a the* of Ac Univenrty of Utrecht CONTENTS page SUMMARY iii I. INTRODUCTION 1 II. GENERALIZED FUNCTIONS DEFINED ON DISCONTINUOUS TEST FUNC­ TIONS AND THEIR FOURIER, LAPLACE, AND HILBERT TRANSFORMS 1. Introduction 4 2. Discontinuous test functions 5 3. Differentiation 7 4. Powers of x. The partie finie 10 5. Fourier transforms 16 6. Laplace transforms 20 7. Hubert transforms 20 8. Dispersion relations 21 III. PERTURBATION THEORY 1. Introduction 24 2. Arbitrary potential, momentum coupling 24 3. Dissipative equation of motion 31 4. Expectation values 32 5. Matrix elements, transition probabilities 33 6. Harmonic oscillator 36 7. Classical mechanics and quantum corrections 36 8. Discussion of the Pu strength function 38 IV. EXACTLY SOLVABLE MODELS FOR DISSIPATIVE MOTION 1. Introduction 40 2. General quadratic Kami1tonians 41 3. Differential equations 46 4. Classical mechanics and quantum corrections 49 5. Equation of motion for observables 51 V. SPECIAL QUADRATIC HAMILTONIANS 1. Introduction 53 2. Hamiltcnians with coordinate coupling 53 3. Double coordinate coupled Hamiltonians 62 4. Symmetric Hamiltonians 63 i page VI. DISCUSSION 1. Introduction 66 ?.
    [Show full text]
  • Second Quantization
    Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0.
    [Show full text]
  • The Very Basic: QF Methods and Many Body Perturbation Theory
    The very basic: QF methods and many body perturbation theory Georg Kresse, Felix Hummel Faculty of Physics, Universität Wien Funded by the Austrian FWF SFB ViCoM FOR 1346 Outline Intro 2nd PT Diag. Introduction DFT and why not only DFT Many-body Perturbation Theory Particle/hole picture, Gell-Man – Low theorem Wick theorem, and Linked cluster theorem Derivation of Goldstone diagrams Derivation of Feynman diagrams Reading Szabo and Ostlun, Modern Quantum Chemistry (McGraw-Hill, 1989) Shavitt and Bartlett, Many-body methods in chemistry and physics (Cambridge University Press, 2009) Lancaster, Blundell, Stephen, Quantum field theory for the gifted amateur (Oxford University Press, 2014) 9/23/2015 2 Schrödinger’s Inheritance „Ab initio“↔ parameter free ↔ Many electron Schrödinger equation is an exponentially complex problem linear partial differential equation with non polynomial (NP) complexity (NP hard) 1 N N N N 1 H el(r ,...,r ) V ne (r ) 1 n ri i 2 i1 i1 i1 ji | ri rj | el H Ψ(r1,...,rn ) EΨ(r1,...,rn ) 9/23/2015 Ab initio calculations for solids 3 Schrödinger’s Curse: ψ(r1, r2, r3,…) One electron: 3D-grid 10x10x10 16 Kbyte Three electrons: 9D-grid 109 16 Gbye Five electrons: 15D-grid 1030 16.000 Terrabyte W. Kohn One electron five electrons five 3D sets 1923 Vienna 1940 Canada (Kindert.) 1950 Carnegien Mellon 1984 Santa Barabara 1998 Nobel Preis 9/23/2015 Efficient many body techniques for condensed matter 4 Kohn Sham Density functional and Hartree-Fock one electron theory Solve a one-particle Schrödinger equation
    [Show full text]
  • Quantization of Relativistic Free Fields
    Life can only be understood backwards, but it must be lived forwards. S. Kierkegaard (1813-1855) 7 Quantization of Relativistic Free Fields In Chapter 2 we have shown that quantum mechanics of the N-body Schr¨odinger equation can be replaced by a Schr¨odinger field theory, where the fields are oper- ators satisfying canonical equal-time commutation rules. They were given in Sec- tions 2.8 and 2.10 for bosons and fermions, respectively. A great advantage of this reformulation of Schr¨odinger theory was that the field quantization leads automati- cally to symmetric or antisymmetric N-body wave functions, which in Schr¨odinger theory must be imposed from the outside in order to explain atomic spectra and Bose-Einstein condensation. Here we shall generalize the procedure to relativistic particles by quantizing the free relativistic fields of the previous section following the above general rules. For each field φ(x, t) in a classical Lagrangian L(t), we define a canonical field momentum as the functional derivative (2.156) δL(t) π(x, t)= px(t)= . (7.1) δφ˙(x, t) The fields are now turned into field operators by imposing the canonical equal-time commutation rules (2.143): [φ(x, t),φ(x′, t)] = 0, (7.2) [π(x, t), π(x′, t)] = 0, (7.3) [π(x, t),φ(x′, t)] = iδ(3)(x x′). (7.4) − − For fermions, one postulates corresponding anticommutation rules. In these equations we have omitted the hat on top of the field operators, and we shall do so from now on, for brevity, since most field expressions will contain quantized fields.
    [Show full text]
  • Combinatorics of Boson Normal Ordering and Some Applications
    Combinatorics of boson normal ordering and some applications Pawe lB lasiak PhD Dissertation 2005 Institute of Nuclear Physics of Polish Academy of Sciences, Krak´ow and Universit´ePierre et Marie Curie, Paris — To my parents — CONTENTS Preface ................................... v 1. Introduction .............................. 1 2. Preliminaries .............................. 4 2.1 Conventions . 4 2.2 Occupation number representation: Boson operators . 5 2.3 Normal ordering . 6 2.4 X and D representation . 9 3. Generic example. Stirling and Bell numbers. ........... 11 4. Normal Ordering of Boson Expressions ............... 18 4.1 Introduction . 18 4.2 General boson strings . 20 4.3 Iterated homogeneous polynomials in boson operators . 23 4.4 Iterated boson string . 26 4.5 Generating functions . 27 4.6 Negative excess . 29 4.7 Special cases . 32 4.7.1 Case (a†)rasn ...................... 32 4.7.2 Generalized Kerr Hamiltonian . 41 5. Monomiality principle and normal ordering ............ 44 5.1 Introduction . 44 5.2 Monomiality principle . 45 5.2.1 Definition and general properties . 45 5.2.2 Monomiality principle representations: Sheffer-type poly- nomials . 47 Contents iv 5.2.3 Monomiality vs Fock space representations . 49 5.3 Normal ordering via monomiality . 49 5.4 Sheffer-type polynomials and normal ordering: Examples . 53 5.4.1 Examples . 53 5.4.2 Sheffer polynomials and normal ordering . 54 5.4.3 Combinatorial examples . 56 6. Miscellany: Applications ....................... 58 6.1 Deformed bosons . 58 6.2 Generalized coherent states . 65 6.3 Substitution theorem . 75 7. Conclusions ............................... 78 A. Coherent states ............................ 80 B. Formal power series. Umbral calculus ............... 83 PREFACE The subject of this thesis is the investigation of the combinatorial structures arising in the boson normal ordering problem.
    [Show full text]
  • Combinatorics of Boson Normal Ordering and Some Applications
    Combinatorics of boson normal ordering and some applications Pawel Blasiak PhD Dissertation 2005 arXiv:quant-ph/0507206v2 22 Jul 2005 Institute of Nuclear Physics of Polish Academy of Sciences, Krak´ow and Universit´ePierre et Marie Curie, Paris — To my parents — CONTENTS Preface ................................... v 1. Introduction .............................. 1 2. Preliminaries .............................. 4 2.1 Conventions ............................ 4 2.2 Occupation number representation: Boson operators . ... 5 2.3 Normalordering.......................... 6 2.4 X and D representation ..................... 9 3. Generic example. Stirling and Bell numbers. ........... 11 4. Normal Ordering of Boson Expressions ............... 18 4.1 Introduction............................ 18 4.2 Generalbosonstrings. 20 4.3 Iterated homogeneous polynomials in boson operators . ... 23 4.4 Iteratedbosonstring . 26 4.5 Generatingfunctions . 27 4.6 Negativeexcess .......................... 29 4.7 Specialcases............................ 32 r s n 4.7.1 Case (a†) a ...................... 32 4.7.2 Generalized Kerr Hamiltonian . 41 5. Monomiality principle and normal ordering ............ 44 5.1 Introduction............................ 44 5.2 Monomialityprinciple . 45 5.2.1 Definitionandgeneralproperties . 45 5.2.2 Monomiality principle representations: Sheffer-type polynomials 47 5.2.3 Monomiality vs Fock space representations . 49 Contents iv 5.3 Normalorderingviamonomiality . 49 5.4 Sheffer-type polynomials and normal ordering: Examples ... 53 5.4.1
    [Show full text]
  • Canonical Quantization C6, HT 2016
    Canonical Quantization C6, HT 2016 Uli Haischa aRudolf Peierls Centre for Theoretical Physics University of Oxford OX1 3PN Oxford, United Kingdom Please send corrections to [email protected]. 1 Canonical Quantization In this part of the lecture we will discuss how to quantize classical field theories using the traditional method of canonical quantization. We start by recalling how canonical quantization works for classical mechanics. 1.1 From Classical to Quantum Theory In quantum mechanics (QM), canonical quantization is a recipe that takes us from the Hamil- b tonian H = H(qa; p ) of classical dynamics to the quantum theory. The recipe tells us to a take the generalized coordinates qa(t) and their conjugate momenta p (t) = @L=@q_a(t) and promote them to operators.1 The Poisson bracket structure of classical mechanics descends to the structure of commutation relations between operators, namely a b b b [qa(t); qb(t)] = [p (t); p (t)] = 0 ; [qa(t); p (t)] = iδa ; (1.1) where [a; b] = ab − ba is the usual commutator. The dynamics of this system is governed by the operator version of Hamilton's equations dq (t) dpa(t) a = i [H; q (t)] ; = i [H; pa(t)] ; (1.2) dt a dt Notice that we work in the Heisenberg picture in which the operators incorporate a dependence on time, but the state vectors are time independent. In contrast, in the Schr¨odingerpicture the operators are constant while the states evolve in time. The two pictures differ only by a basis change with respect to time dependence, which is the difference between active and 1To avoid cluttering the notation, we will drop hats on operators throughout the presentation.
    [Show full text]
  • Quantum Field Theory⋆
    NIKHEF–H/97 Quantum Field Theory⋆ A.N. Schellekens NIKHEF, Postbus 41882, 1009 DB Amsterdam, The Netherlands ⋆ Lectures given at the 1997 Graduate School of Particle Physics, Monschau, 15-26 September 1997 Latest version available via anonymous ftp at ftp.nikhef.nl/pub/aio school/Monschau.ps.gz 2 − − 1. Introduction In the first quarter of this century three important revolutions took place in Physics: Special Relativity, Quantum mechanics and General Relativity. It took another quarter century to formulate a theoretical framework that successfully combines the first two concepts, and this is called “Relativistic Quantum Field Theory” (often the first word and sometimes also the second one is dropped, and we simply call it “Field Theory”). Initially, field theory was applied mainly, but with great success, to the theory of photons and electrons, “Quantum Electrodynamics” (QED), but during the third quarter of the century this was extended to the weak and strong interactions, and field theory became the language in which the “standard model” was written. (Perhaps one day we will look back at the last quarter of this century as the epoch during which General relativity was successfully combined with quantum mechanics via “string theory”, but that’s another story.) As the name suggests, Relativistic Quantum Field Theory rests really on three pillars, Special Relativity, Quantum Mechanics and Field Theory. There are two distinct logical paths one can follow to arrive at the same goal. The first is to start with quantum mechanics and make it “relativistic”. One obvious step is to replace non-relativistic kinematics by relativistic kinematics, but that is not enough.
    [Show full text]
  • The Zero-Point Energy of Elementary Quantum Fields
    The zero-point energy of elementary quantum fields Gerold Gründler 1 Astrophysical Institute Neunhof, Nürnberg, Germany Since 1925, exactly four arguments have been forwarded for the assump- tion of a diverging (respectively — after regularization — very huge) zero-point energy of elementary quantum fields. And exactly three argu- ments have been forwarded against this assumption. In this article, all seven arguments are reviewed and assessed. It turns out that the three contra arguments against the assumption of that zero-point energy are overwhelmingly stronger than the four pro arguments. Keywords: quantum field theory, zero-point energy, quantum vacuum PACS: 03.70.+k 1. Do elementary quantum fields have a non vanishing zero-point energy? The title question of this section is almost as old as quantum arXiv:1711.03877v1 [physics.gen-ph] 9 Nov 2017 theory. In an article, submitted to the Zeitschrift für Physik in November 1925, Born, Heisenberg, and Jordan [1] computed the energy eigenvalues En of a quantum system of harmonic oscillators with eigen-frequencies νj : X En = h · (nj + 1/2)νj with nj = 0, 1 , 2 ... (1) j With regard to this result, they remarked (my translation): “The 1 P ‘zero-point energy’ 2 h j νj [. ] would be infinitely large in particular in the limit of infinitely many degrees of freedom.” The wording “would be . in the limit” reveals, that the authors had 1 email: [email protected] 2 substantial doubts whether this result should be taken seriously, or whether it might indicate a flaw of the theory. Continuous fields have infinitely many degrees of freedom, while discrete fields have only a finite number of degrees of freedom.
    [Show full text]
  • Advanced Solid State Physics.Pdf
    Contents 1 Introduction 5 2 Scales and Complexity 11 2.1 Time scales . 12 2.2 L: Length scales . 12 2.3 N: particle number . 13 2.4 C: Complexity and diversity. 13 3 Quantum Fields: Overview 17 4 Collective Quantum Fields 27 4.1 Harmonic oscillator: a zero-dimensional field theory . 27 4.2 Collective modes: phonons . 34 4.3 The Thermodynamic Limit . 39 4.4 Continuum Limit . 42 4.5 Exercises for chapter 4 . 47 5 Conserved Particles 53 5.1 Commutation and Anticommutation Algebras . 54 5.1.1 Heuristic Derivation for Bosons . 55 5.2 What about Fermions? . 57 5.3 Field operators in different bases . 57 5.4 Fields as particle creation and annihilation operators. 59 5.5 The vacuum and the many body wavefunction . 62 5.6 Interactions . 63 5.7 Identical Conserved Particles in Thermal Equilibrium . 68 5.7.1 Generalities . 68 5.7.2 Identification of the Free energy: Key Thermodynamic Properties . 71 5.7.3 Independent Particles . 73 5.8 Exercises for chapter 5 . 74 1 Chapter 0. c P. Coleman 04 6 Simple Examples of Second-quantization 79 6.1 Jordan Wigner Transformation . 79 6.2 The Hubbard Model . 86 6.3 Gas of charged particles . 88 6.3.1 Link with first quantization . 88 6.4 Non-interacting particles in thermal equilibrium . 90 6.4.1 Fluid of non-interacting Fermions . 91 6.4.2 Fluid of Bosons: Bose Einstein Condensation . 94 6.5 Exercises for chapter 6 . 100 7 Greens Functions 105 7.1 Interaction representation . 107 7.1.1 Driven Harmonic Oscillator .
    [Show full text]
  • I-7: Feynman Rules
    2012 Matthew Schwartz I-7: Feynman rules 1 Introduction In the previous lecture we saw that scattering calculations are naturally expressed in terms of time-ordered products of fields. The S-matrix has the form h f | S | i i ∼ h Ω| T{ φ( x1 ) φ( xn) }| Ωi (1) where | Ωi is the ground state/vacuum in the interacting theory. In this expression the fields φ( x) are not free but are the full interacting quantum fields. We also saw that in the free theory time-ordered product of two fields is given by the Feynman propagator: 4 d k i ik ( x − y) DF ( x, y) ≡ h 0| T{ φ0( x) φ0 ( y) }| 0i = lim e (2) ε → 0 (2 π) 4 k2 − m2 + iε Z where | 0i is the ground state in the free theory. In this lecture we will develop a method of calculating time-ordered products in the inter- acting theories in perturbation theory in terms of integrals over various Feynman propagators. There is a beautiful pictorial representation of the perturbation expansion using Feynman dia- grams and an associated set of Feynman rules. There are position space Feynman rules, for cal- culating time-ordered products and also momentum space Feynman rules for calculating S- matrix elements. The momentum space Feynman rules are by far more important – they provide an extremely efficient way to set up calculations of physical results in quantum field theory. They are the main result of this entire first part of the course. We will first derive the Feynman rules using a Lagrangian formulation of time-evolution and quantization.
    [Show full text]