VCPS Jun 06 Journal No 80.Qxd

Total Page:16

File Type:pdf, Size:1020Kb

VCPS Jun 06 Journal No 80.Qxd ISSN 1033-6966 VICTORIAN CARNIVOROUS PLANT SOC IETY Inc. June 2006 No. 80 Drosera pygmaea Utricularia tenella Drosera glanduligera Utricularia aff. dichotoma Utricularia aff. dichotoma Drosera auriculata Cephalotus follicularis Drosera peltata VICTORIAN CARNIVOROUS VICTORIAN CARNIVOROUS PLANT SOC IETY Inc. PLANT SOC IETY Inc. Annual Subscriptions Issue No. 80 June 2006 Australian membership $20.00 Office Bearers: July 2006 – June 2007 Overseas membership $20.00 Payment from overseas must be in Australian dollars. President Stephen Fretwell All cheques or money orders should be made payable to the Victorian Carnivorous Plant Society Inc (VCPS). Vice President Sean Spence Payment by credit card is NOT available at the time of this journal issue. General Secretary Peter Bloem Correspondence Minutes Secretary Sean Spence Please forward all correspondence regarding subscription, change of address, Other Publications Gordon Ohlenrott articles for the journal and back issues to: The Secretary VCPS Journal Editor Stephen Fretwell P.O. Box 201 SOUTH YARRA 3141. Assistant Journal Editor George Caspar AUSTRALIA Internet Co-ordinator Paul Edwards Journal articles, in MS-Word, ready for publication, may be Emailed to the Editor or Secretary. Treasurer Ken Neal Librarian Andrew Gibbons Meetings Seedbank Administrator Ron Abernethy Most VCPS meetings are held in the hall at the rear of the Pilgrim Uniting Church on the corner of Bayview Road and Montague Street, Yarraville – Melway map reference Hardware Co-ordinator Andre Cleghorn 41K7. These meetings are on the fourth Wednesday of the month at 8 PM. However, some meetings may be at the home of members during a weekend. Show Co-ordinator Peter Anderson Details of meeting dates and topics are listed in each journal. Field Trips Organiser George Caspar If unsure of the location or date of any meeting, please ring a committee person for details. Public Officer Alexander Whitehouse The VCPS Annual General Meeting, usually held at Yarraville in June, provides substantial benefits for each and every member able to attend. Sales Administrator Ron Abernethy 2 – VCPS VCPS – 3 Contents FRONT COVER: MEETING TOPICS & DATES for 2006 D. auriculata found growing VICTORIAN CARNIVOROUS P LANT SOC IETY in tufts of moss on Mt. William at the Grampians N.P . Photo: George Caspar. This year we have scheduled the following discussion topics, and events: January (14th) New Year BBQ, Darlingtonia, Dionaea. BACK COVER: Clockwise from top left: February (22nd) Sarracenia species and hybrids, beginners night. I Drosera pygmaea , Red Rock Rd, Grampians N.P . March (22nd) Nepenthes and Heliamphora . Photo: Sean Spence. April (26th) Drosera , video and information night. Utricularia dichotoma with a triple flower head. I Utricularia tenella , Glenelg Photo: Sean Spence River Rd, Grampians N.P . May (24th) Growing conditions, pygmy Drosera gemmae Photo: Sean Spence. collection, 'best' and 'worst' plants. I Drosera glanduligera , Seed structure 6 Glenelg River Rd, Grampians June (28th) AGM, plant give-away, any CPs. N.P . Photo: Sean Spence. July (26th) Seed growing, tissue culture and potting Gardening Australia Expo 9 I Utricularia aff. dichotoma , demonstration, any CPs. Mt. William, Grampians N.P . Searching for Cephalotus 10 Photo: Sean Spence. August (23rd) Tuberous/Winter growing Drosera , show I Drosera peltata , Wonderland preparation, displays, and companion planting. Range, Grampians N.P . VCPS fieldtrip 2005 – Photo: Sean Spence. September (27th) Cephalotus , Brocchinia, Catopsis and swap night. I Grampians National Park 12 Cephalotus follicularis . October (29th) Field trip to Triffid Park (Sunday afternoon, Photo: David Banks. commencing with barbecue lunch) Pinguicula I Utricularia aff. dichotoma and pygmy Drosera. Triffid Park Open Day 20 colony, Mt. William, Grampians N.P . November (22nd) Byblis, Drosophyllum, Genlisea, Roridula, Utricularia. Seedbank 21 Photo: Stephen Fretwell. December (TBA) Annual show at Collectors Corner. Journal Design: The articles that are found within are copyright but can be copied Stephen Fretwell freely if the author and source are acknowledged. The views are of the Please note: All meetings, other than those where a specific venue is given, will authors and are open to review and debate. Please send all material to Printed by: be on the FOURTH WEDNESDAY of the month in the hall of the Pilgrim Uniting Snap Printing (Box Hill) Church in Yarraville – corner Bayview Road and Montague Street, Melway Map the editor for consideration to be included in our quarterly journal. Reference 41K7. 4 – VCPS VCPS – 5 camera to take pictures through the eyepiece. Fig. 1 This method is unsophisticated but works quite adequately. Observations made have shown that dif - ferent groups of Drosera have characteristic seed structures. A close look at the seed you are about to sow could save you many hours trying to work out why your plant doesn’t look like it should, and what it actually is. a) D. spatulata b) D. burkeana The most commonly mislabelled plant in “Cranbourne” collections would have to be Drosera (1) (2) spatulata (see fig. 1a) . Various forms of this plant are being circulated under a wide variety of names. This can occur due to a number of factors such as when a stray D. spatulata seed lands in another pot. If the intended species fails to germinate the D. spatulata generally will. The seed from the mature D. spatulata is then passed on as the c) D. capillaris “Praia d) D. biflora De Imbe, Rio Grande species that was supposed to be in the pot, Do Sol, S.America” usually due to the ignorance of the grower. Fig. 2 Unfortunately Drosera spatulata seed is very similar to a number of other species, howev - (3) (4) er close examination of the seed will allow Photographs taken under a microscope of seeds from different genera. (1) Sarracenia psittacina , you to rule out a large number of these (2) Utricularia beaugleholei , (3) Roridula dentata and (4) Drosera callistos . Photos: George Caspar species. Adding to the confusion is the situation where plants are simply mis-identified. A rea - son for this is that there are many species Seed structure that have very similar appearances that can D. sp. madagascar D. madagascariensis easily be confused. A good example are the in fact two taxa being considered. This can - GEORGE CASPAR of seeds sown as a particular species species Drosera burkeana and D. capillaris. not be substantiated though, as they have matured into a different plant. At the same D. burkeana is from Africa whereas not been studied on a taxonomic level. It eed structure is a helpful tool in time I noticed a great deal of variation in D. capillaris is from the Americas. Both plants should be noted that the structure of seed is identifying which species of plant you the appearance of the seed I was sowing. I look very similar. A quick look at the struc - merely one consideration in separating one Sare growing. This is particularly true had a look on the internet to investigate ture of the seed shows that these species are species from another. Other factors such as with Drosera . Although many species are the seed of different species only to find quite distinct (see fig. 1b & c) and easily the phenotype and DNA sequence of a par - closely related, a number of the more that there were virtually no references for identifiable when seed is examined. ticular plant can be of equal importance. common species that contaminate pots in seed appearance. This motivated me to The study of seed raises a number of The difference in seed appearance is collections have distinct seed structures. begin creating such a resource, mainly for questions. I have received Drosera madagas - prominent in the Northern hemisphere I first became interested in seed struc - my own use. cariensis seed from two different and distinct temperate Drosera species; D. rotundifolia, ture when I was beginning to expand my I use a standard dissecting microscope populations. The seed were very different intermedia, capillaris, anglica, linearis and Drosera collection. I found that a number to view seed and then use my digital (see fig. 2) , which could indicate there are filiformis . All have distinct seed, in fact the 6 – VCPS VCPS – 7 Fig. 3 only seed that can be confused is that of D. linearis and D. intermedia . Fortunately these are very different plants which can be easily distinguished when in active growth. Bigger, Better … Drosera rotundifolia has filiform seeds. Drosera intermedia seeds are covered in a Gardening Australia Expo mass of fine raised bumps. Drosera capillaris has longitudinal ridges. Drosera anglica has larger, black, erratically shaped seed. Drosera With a fresh name – Gardening Australia Expo – D. rotundifolia D. intermedia filiformis has barrel shaped seeds that are cov - and a fresh approach, the three-day event will be held ered with bumps. Drosera linearis seed is sim - ilar in shape to D. filiformis but the seeds have Melbourne (October 6-8), 2006. a much finer seed coat. (see fig. 3) You’ll see creative feature gardens for the backyard, courtyard and the balcony. Seed is not always a foolproof method of There will be thousands of new products to see and buy and non-stop practical identification. When we again consider gardening demonstrations and talks from several theatre stages. Drosera capillaris and other closely related Presenters from the ABC TV’s Gardening Australia and other gardening and species we will notice that a number of landscape experts will be on hand to answer your questions and provide advice. these species have seed that is very similar. D. anglica D. capillaris , Charlotte I grow Drosera capillaris and D. biflora (see Don’t miss your chance to experience the exciting Gardening Australia Expos. County. Florida fig. 1c & d) . Although these plants look Where & When: Caulfield Racecourse, Caulfield, October 6-8, 2006 slightly different, the seed is almost indistin - guishable. The same problem exists with Open: 9.30am – 4.30pm daily Drosera sessilifolia and burmannii which are Tickets: Tickets available at the door.
Recommended publications
  • A Biological Survey of the Southern Mount Lofty Ranges
    Southern Mount Lofty Ranges Biological Survey APPENDIX I DESCRIPTION OF ENVIRONMENTAL ASSOCIATIONS OCCURRING IN SURVEY REGION BOUNDARY. Part 1. Environmental associations in study area occurring within FLEURIEU IBRA sub-region Environmental Total % of Description Association Area vegetation (ha) remaining 3.2.1 Mt. Rapid 12,763 3.9 Hills and ridges on interbedded shale and arkose, locally overlain by tillite. Relict fans form broad flat surfaces near Cape Jervis where some coastal cliffs occur. Open parkland with sown pasture is used for livestock grazing. The scenery of the coastline is dominated by tall cliffs that vary in form and steepness, the amount of rock outcrop and vegetative cover. 3.2.2 Deep Creek 12,984 30.2 A long dissected ridge of phyllite and greywacke with cliffs, or beaches and dunes along the coastline. The cover is predominantly open parkland over sown pasture with widespread remnants of woodland and forest. Inland views tend to be middle-ground panoramic, featuring grassy ridge crests and valley floors with bracken and reed or remnant forest vegetation. 3.2.3 Fleurieu 30,389 15.6 An undulating to hilly dissected tableland on lateritized sandstone. There is a mixed cover of open parkland, forest plantation and woodland. 3.2.4 Inman 37,130 4.4 A series of low dissected ridges and spurs on tillite and arkose, with dunes and beaches or Valley cliffs along the coast. The cover is open parkland over sown pastures and cereal crops. 3.2.5 Bob Tiers 15,761 21.3 Ridges on schist and gneiss with dissected slopes and remnantsof laterite-capped tableland.
    [Show full text]
  • Deletion of Cephalotus Follicularis from Appendix II
    Prop. 11.6 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA A. PROPOSAL Deletion of Cephalotus follicularis from Appendix II. B. PROPONENT Commonwealth of Australia (Environment Australia) C. SUPPORTING STATEMENT The monotypic genus Cephalotus is an insectivorous plant endemic to south western Australia. It occurs on wetland margins throughout the southwest corner of Western Australia. This portion of Western Australia has a high rainfall and as a result there are extensive areas of suitable habitat, especially on the south coastal plain. Within its range are large areas of government owned forests, National Parks and other reserves where the species is common and is likely to occur in vast numbers. The species is easily propagated from small segments of rhizomes and, as a result, it is commonly traded and is widely cultivated. Morphological variation in wild populations is not evident. As the species is easily propagated, it is unlikely that cultivated stocks are derived from wild collections. Cephalotus follicularis has been identified by the CITES Plants Committee under the Ten Year Review as a candidate for deletion from Appendix II as there has been no recorded trade in wild taken specimens since the species was listed. The proposal received full endorsement of the 5th meeting of the CITES Plants Committee in Mexico, May 1994. 1. Taxonomy 1.1. Class Magnoliatae 1.2. Order Rosales 1.3. Family Cephalotaceae 1.4. Genus/species Cephalotus follicularis Labillardière 1806 1.5. Common name Western Australian pitcher plant; Albany pitcher plant 2. Biological data 2.1. Distribution The area of distribution ranges over 400 km from NW to SE and corresponds with the meso- mediterranean climate of the extreme south western part of Australia.
    [Show full text]
  • Giant Cephalotus of Unknown Origins
    Giant Cephalotus of unknown origins Dick Chan • P.O. Box 2252 • Pasadena • California 91102 • USA • [email protected] Introduction I have been growing Cephalotus follicularis for over 20 years. Initially, I was obsessed with grow- ing specimen-type Cephalotus of different clones and to prove once-and-for-all that this was not a difficult plant to grow. Countless plants have met their demise as I experimented with various meth- ods of cultivation. For those that have survived and flourished, I noticed one plant in particular that grew larger, more vigorous, and had a different pitcher/leaf morphology than Cephalotus ‘Hummer’s Giant’ and the typical Cephalotus. However, I do not believe this plant to be just a better-grown speci- men of ‘Hummer’s Giant’. Through the years, I have given and sold this plant to individuals calling it the “Bubble Giant”, however, I have not received nor heard any feedback as to the well-being of those plants. So, for those reading this article and have received this plant from me, I would appreciate seeing some photos. For the remainder of this article, this plant will be referred to as the “unknown”. Origins During my initial spark-of-entry into the hobby, I started collecting Cephalotus cuttings, plants, stems, and leaves from anyone who had the plant and was willing to give or sell a piece to me. Be- cause of that activity, this plant is of an unknown origin because of the feverish pace by which I went about amassing what I had hoped would become a genetically diverse collection of plants.
    [Show full text]
  • Carnivorous Plant Newsletter V44 N4 December 2015
    Technical Refereed Contribution Several pygmy Sundew species possess catapult-flypaper traps with repetitive function, indicating a possible evolutionary change into aquatic snap traps similar to Aldrovanda Siegfried R. H. Hartmeyer and Irmgard Hartmeyer • Weil am Rhein • Germany • s.hartmeyer@ t-online.de • www.hartmeyer.de Keywords: Drosera, pygmy Sundew, Aldrovanda, Dionaea, Droseraceae, Collembola, carnivorous plant, catapult-flypaper trap, snap trap, snap-tentacle, functional morphology, phylogeny. Abstract: Approximately 50 species of pygmy Sundews (genus Drosera, section Bryastrum) occur in the South of Australia and one each in New Zealand (D. pygmaea) and Venezuela (D. meristo- caulis). They grow mainly as small stemless rosettes possessing minute trapping leaves of 1-2 mm diameter with prominent marginal tentacles, or have elongated erect stems. The caulescent species possess only mucus-producing tentacles that are most effective in capturing small flying insects. The acaulescent species in contrast are specialized on crawling prey (Verbeek & Boasson 1993) and have developed mucus-free snap-tentacles (Fig. 1), able to bend surprisingly rapidly towards the leaf center. They lift prey like, e.g. springtails (Collembola) from the ground and carry it with a 180°-movement from the periphery of the plant onto the sticky leaf. Our examinations brought to light that several small species of section Bryastrum are able to catapult small animals even within fractions of a second. If the whole leaf is touched, several or even all marginal tentacles perform such bending movements simultaneously. We documented this behavior on video, featured on our film “Catapults in Pygmyland” on YouTube (www.youtube.com/watch?v=5k7GYGibdjM). Our results prove that more than only one species in the genus Drosera possess rapidly moving catapult-flypaper traps and that the examined pygmy catapults show a further specialization and function repeatedly (in contrast to the one-shot snap tentacles of D.
    [Show full text]
  • Insectivorous Plants”, He Showed That They Had Adaptations to Capture and Digest Animals
    the Strange, the Ugly, and the Bizarre . carnivores, parasites, and mycotrophs . Plant Oddities - Carnivores, Parasites & Mycotrophs Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake. Carnivore: Nepenthes Plant Oddities - Carnivores, Parasites & Mycotrophs Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake. Parasite: Rafflesia Plant Oddities - Carnivores, Parasites & Mycotrophs Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake. Things to focus on for this topic! 1. What are these three types of plants 2. How do they live - selection 3. Systematic distribution in general 4. Systematic challenges or issues 5. Evolutionary pathways - how did they get to what they are Mycotroph: Monotropa Plant Oddities - The Problems Three factors for systematic confusion and controversy 1. the specialized roles often involve reductions or elaborations in both vegetative and floral features — DNA also is reduced or has extremely high rates of change for example – the parasitic Rafflesia Plant Oddities - The Problems Three factors for systematic confusion and controversy 2. their connections to other plants or fungi, or trapping of animals, make these odd plants prone to horizontal gene transfer for example – the parasitic Mitrastema [work by former UW student Tom Kleist]
    [Show full text]
  • Management Plan Kaiserstuhl Conservation Park 2006
    Department for Environment and Heritage Management Plan Kaiserstuhl Conservation Park 2006 www.environment.sa.gov.au This plan of management was adopted on 11 January 2006 and was prepared in pursuance of section 38 of the National Parks and Wildlife Act 1972. Government of South Australia Published by the Department for Environment and Heritage, Adelaide, Australia © Department for Environment and Heritage, 2006 ISBN: 1 921018 887 Front cover photograph courtesy of Bernd Stoecker FRPS and reproduced with his permission This document may be cited as “Department for Environment and Heritage (2006) Kaiserstuhl Conservation Park Management Plan, Adelaide, South Australia” FOREWORD Kaiserstuhl Conservation Park is located approximately 80 kilometres north-east of Adelaide and approximately 12 kilometres south-east of Tanunda, in the northern Mount Lofty Ranges. The 392 hectare park was proclaimed in 1979 to conserve a remnant block of native vegetation, in particular the northern-most population of Brown Stringybark (Eucalyptus baxteri). Kaiserstuhl Conservation Park preserves a substantial number of habitats for native fauna and helps to protect the soil and watershed of Tanunda Creek. More than 360 species of native plant are found within the reserve, many of which are of conservation significance. Bird species of conservation significance recorded within the reserve include the Diamond Firetail, White-browed Treecreeper, Elegant Parrot and Crescent Honeyeater. Kaiserstuhl Conservation Park also has a rich cultural heritage. The reserve is of significance to the Peramangk people and Ngadjuri people who have traditional associations with the land. Kaiserstuhl Conservation Park has also been a valuable source of material for botanical research. Dr Ferdinand von Mueller and Dr Hans Herman Behr collected Barossa Ranges plants from the area between 1844 and 1851.
    [Show full text]
  • Floral Micromorphology and Nectar Composition of the Early Evolutionary Lineage Utricularia (Subgenus Polypompholyx, Lentibulariaceae)
    Protoplasma https://doi.org/10.1007/s00709-019-01401-2 ORIGINAL ARTICLE Floral micromorphology and nectar composition of the early evolutionary lineage Utricularia (subgenus Polypompholyx, Lentibulariaceae) Bartosz J. Płachno1 & Małgorzata Stpiczyńska 2 & Piotr Świątek3 & Hans Lambers4 & Gregory R. Cawthray4 & Francis J. Nge5 & Saura R. Silva6 & Vitor F. O. Miranda6 Received: 1 April 2019 /Accepted: 4 June 2019 # The Author(s) 2019 Abstract Utricularia (Lentibulariaceae) is a genus comprising around 240 species of herbaceous, carnivorous plants. Utricularia is usually viewed as an insect-pollinated genus, with the exception of a few bird-pollinated species. The bladderworts Utricularia multifida and U. tenella are interesting species because they represent an early evolutionary Utricularia branch and have some unusual morphological characters in their traps and calyx. Thus, our aims were to (i) determine whether the nectar sugar concentrations andcompositioninU. multifida and U. tenella are similar to those of other Utricularia species from the subgenera Polypompholyx and Utricularia, (ii) compare the nectary structure of U. multifida and U. tenella with those of other Utricularia species, and (iii) determine whether U. multifida and U. tenella use some of their floral trichomes as an alternative food reward for pollinators. We used light microscopy, histochemistry, and scanning and transmission electron microscopy to address those aims. The concentration and composition of nectar sugars were analysed using high-performance liquid chroma- tography. In all of the examined species, the floral nectary consisted of a spur bearing glandular trichomes. The spur produced and stored the nectar. We detected hexose-dominated (fructose + glucose) nectar in U. multifida and U. tenella as well as in U.
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]
  • The Cost of Carnivory for Darlingtonia Californica (Sarraceniaceae): Evidence from Relationships Among Leaf Traits1
    American Journal of Botany 92(7): 1085±1093. 2005. THE COST OF CARNIVORY FOR DARLINGTONIA CALIFORNICA (SARRACENIACEAE): EVIDENCE FROM RELATIONSHIPS AMONG LEAF TRAITS1 AARON M. ELLISON2,4 AND ELIZABETH J. FARNSWORTH3 2Harvard University, Harvard Forest, P.O. Box 68, Petersham, Massachusetts 01366 USA; and 3New England Wild Flower Society, 180 Hemenway Road, Framingham, Massachusetts 01701 USA Scaling relationships among photosynthetic rate, foliar nutrient concentration, and leaf mass per unit area (LMA) have been observed for a broad range of plants. Leaf traits of the carnivorous pitcher plant Darlingtonia californica, endemic to southern Oregon and northern California, USA, differ substantially from the predictions of these general scaling relationships; net photosynthetic rates of Darlingtonia are much lower than predicted by general scaling relationships given observed foliar nitrogen (N) and phosphorus (P) concentrations and LMA. At ®ve sites in the center of its range, leaf traits of Darlingtonia were strongly correlated with elevation and differed with soil calcium availability and bedrock type. The mean foliar N : P of 25.2 6 15.4 of Darlingtonia suggested that these plants were P-limited, although N concentration in the substrate also was extremely low and prey capture was uncommon. Foliar N : P stoichiometry and the observed deviation of Darlingtonia leaf traits from predictions of general scaling relationships permit an initial assessment of the ``cost of carnivory'' in this species. Carnivory in plants is thought to have evolved in response to N limitation, but for Darlingtonia, carnivory is an evolutionary last resort when both N and P are severely limiting and photosynthesis is greatly reduced. Key words: carnivorous plants; Darlingtonia californica; fens; leaf mass area; leaf traits; photosynthesis; nitrogen; serpentine.
    [Show full text]
  • Carnivorous Plant Newsletter V50 N2, June 2021
    New Cultivars Keywords: cultvar, Cephalotus follicularis ‘Squat’, Dionaea ‘EEC Purple People Eater’, Dionaea ‘Magikarp’, Drosera ‘Avaricious Arugula’, Sarracenia ‘Talisman’. Abstract: Five new carnivorous plant cultivars are named and described: Cephalotus follicularis ‘Squat’, Dionaea ‘EEC Purple People Eater’, Dionaea ‘Magikarp’, Drosera ‘Avaricious Arugula’, Sarracenia ‘Talisman’. Cephalotus follicularis ‘Squat’ Submitted: 21 February 2021 Cephalotus follicularis ‘Squat’ (Fig. 1) originates from the late Dennis Hastings collection. The cultivar tends to grow with wide and short pitchers. There is a horizontal protrusion under the peri- stome giving the pitcher a squat appearance, which is also observable on newly emerging and de- veloping pitchers. Moreover, the base is rounded with a bullet like appearance, further contributing to its squat like characteristic. The peristome is round with short and thin teeth. The shape is stable and very different from the other Cephalotus, making it easy to distinguish even without a label. The name derives from the pitcher’s squat looking appearance. Asexual propagation (vegetative) is required in order to preserve the unique characteristics. —Dimitar Daskalov • Plovdiv 4013 • Bulgaria • [email protected] Figure 1: Cephalotus follicularis ‘Squat’. Volume 50 June 2021 87 Dionaea ‘EEC Purple People Eater’ Submitted: 15 February 2021 Dionaea ‘EEC Purple People Eater’ (Fig. 2) is the product of a collaboration between Evan Wang and Craig Heath. Hand pollination was performed in the summer of 2018 by Evan, Emmy, and Stephen Wang with isolation of flowers after pollination. The seed was the product of crossing D. ‘FTS Maroon Monster’ with D. ‘Jaws Smiley’. Numerous seeds from this cross were grown by both Evan Wang and Craig Heath.
    [Show full text]
  • Phylogeny and Biogeography of the Carnivorous Plant Family Droseraceae with Representative Drosera Species From
    F1000Research 2017, 6:1454 Last updated: 10 AUG 2021 RESEARCH ARTICLE Phylogeny and biogeography of the carnivorous plant family Droseraceae with representative Drosera species from Northeast India [version 1; peer review: 1 approved, 1 not approved] Devendra Kumar Biswal 1, Sureni Yanthan2, Ruchishree Konhar 1, Manish Debnath 1, Suman Kumaria 2, Pramod Tandon2,3 1Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, 793022, India 2Department of Botany, North-Eastern Hill University, Shillong, Meghalaya, 793022, India 3Biotech Park, Jankipuram, Uttar Pradesh, 226001, India v1 First published: 14 Aug 2017, 6:1454 Open Peer Review https://doi.org/10.12688/f1000research.12049.1 Latest published: 14 Aug 2017, 6:1454 https://doi.org/10.12688/f1000research.12049.1 Reviewer Status Invited Reviewers Abstract Background: Botanical carnivory is spread across four major 1 2 angiosperm lineages and five orders: Poales, Caryophyllales, Oxalidales, Ericales and Lamiales. The carnivorous plant family version 1 Droseraceae is well known for its wide range of representatives in the 14 Aug 2017 report report temperate zone. Taxonomically, it is regarded as one of the most problematic and unresolved carnivorous plant families. In the present 1. Andreas Fleischmann, Ludwig-Maximilians- study, the phylogenetic position and biogeographic analysis of the genus Drosera is revisited by taking two species from the genus Universität München, Munich, Germany Drosera (D. burmanii and D. Peltata) found in Meghalaya (Northeast 2. Lingaraj Sahoo, Indian Institute of India). Methods: The purposes of this study were to investigate the Technology Guwahati (IIT Guwahati) , monophyly, reconstruct phylogenetic relationships and ancestral area Guwahati, India of the genus Drosera, and to infer its origin and dispersal using molecular markers from the whole ITS (18S, 28S, ITS1, ITS2) region Any reports and responses or comments on the and ribulose bisphosphate carboxylase (rbcL) sequences.
    [Show full text]
  • Carnivorous Plants with Hybrid Trapping Strategies
    CARNIVOROUS PLANTS WITH HYBRID TRAPPING STRATEGIES BARRY RICE • P.O. Box 72741 • Davis, CA 95617 • USA • [email protected] Keywords: carnivory: Darlingtonia californica, Drosophyllum lusitanicum, Nepenthes ampullaria, N. inermis, Sarracenia psittacina. Recently I wrote a general book on carnivorous plants, and while creating that work I spent a great deal of time pondering some of the bigger issues within the phenomenon of carnivory in plants. One of the basic decisions I had to make was select what plants to include in my book. Even at the genus level, it is not at all trivial to produce a definitive list of all the carnivorous plants. Seventeen plant genera are commonly accused of being carnivorous, but not everyone agrees on their dietary classifications—arguments about the status of Roridula can result in fistfights!1 Recent discoveries within the indisputably carnivorous genera are adding to this quandary. Nepenthes lowii might function to capture excrement from birds (Clarke 1997), and Nepenthes ampullaria might be at least partly vegetarian in using its clusters of ground pitchers to capture the dead vegetable mate- rial that rains onto the forest floor (Moran et al. 2003). There is also research that suggests that the primary function of Utricularia purpurea bladders may be unrelated to carnivory (Richards 2001). Could it be that not all Drosera, Nepenthes, Sarracenia, or Utricularia are carnivorous? Meanwhile, should we take a closer look at Stylidium, Dipsacus, and others? What, really, are the carnivorous plants? Part of this problem comes from the very foundation of how we think of carnivorous plants. When drafting introductory papers or book chapters, we usually frequently oversimplify the strategies that carnivorous plants use to capture prey.
    [Show full text]