Changes in the Vertical Profile of the Indonesian Throughflow During

Total Page:16

File Type:pdf, Size:1020Kb

Changes in the Vertical Profile of the Indonesian Throughflow During PALEOCEANOGRAPHY, VOL. 21, PA4202, doi:10.1029/2006PA001278, 2006 Changes in the vertical profile of the Indonesian Throughflow during Termination II: Evidence from the Timor Sea Jian Xu,1 Wolfgang Kuhnt,1 Ann Holbourn,1 Nils Andersen,2 and Gretta Bartoli1 Received 26 January 2006; revised 31 May 2006; accepted 30 June 2006; published 13 October 2006. [1] We use a multiproxy approach to monitor changes in the vertical profile of the Indonesian Throughflow as well as monsoonal wind and precipitation patterns in the Timor Sea on glacial-interglacial, precessional, and suborbital timescales. We focus on an interval of extreme climate change and sea level variation: marine isotope (MIS) 6 to MIS 5e. Paleoproductivity fluctuations in the Timor Sea follow a precessional beat related to the intensity of the Australian (NW) monsoon. Paired Mg/Ca and d18O measurements of surface- and thermocline- dwelling planktonic foraminifers (G. ruber and P. obliquiloculata) indicate an increase of >4°C in both surface and thermocline water temperatures during Termination II. Tropical sea surface temperature changed synchronously with ice volume (benthic d18O) during deglaciation, implying a direct coupling of high- and low-latitude climate via atmospheric and/or upper ocean circulation. Substantial cooling and freshening of thermocline waters occurred toward the end of Termination II and during MIS 5e, indicating a change in the vertical profile of the Indonesian Throughflow from surface- to thermocline-dominated flow. Citation: Xu, J., W. Kuhnt, A. Holbourn, N. Andersen, and G. Bartoli (2006), Changes in the vertical profile of the Indonesian Throughflow during Termination II: Evidence from the Timor Sea, Paleoceanography, 21, PA4202, doi:10.1029/2006PA001278. 1. Introduction surface temperature (SST) difference between the WPWP and the eastern tropical Pacific cold tongue [Lee et al., [2] It has been increasingly recognized that tropical 2002]. oceans, and in particular the Western Pacific Warm Pool [3] Today, the ITF is dominated by low-salinity, well- (WPWP), play a fundamental role in modulating global ventilated upper thermocline North Pacific water. North climate change on interannual, millennial and orbital time- Pacific water mainly flows southward through the Sulawesi scales [e.g., Godfrey, 1996; Cane and Clement, 1999; Lea et Sea into the Makassar Strait, and then follows two ways: al., 2000; Koutavas et al., 2002; Visser et al., 2003; Medina- one branch enters the Indian Ocean via the Lombok Strait Elizalde and Lea, 2005]. The Indonesian Throughflow (sill depth: 350 m) while the other branch mixes into the (ITF) connects the upper water masses of the Pacific and Flores Sea. Besides the Lombok Strait, there are two other Indian Oceans and substantially influences the salinity and main exit passages: the Ombai Strait (sill depth: 3250 m) heat exchange between these oceans [Gordon and Fine, and Timor Passage (sill depth: 1890 m). The mean trans- 1996]. The annual mean heat transport of the ITF (about ports through the three pathways obtained from mooring 1.15 1015 W) represents a heat sink for the Pacific Ocean  measurements are respectively 1.7 Sv [Murray and Arief, and a major heat source for the Indian Ocean [Schiller et al., 1988], 5.0 ± 1 Sv [Molcard et al., 2001] and 7.0 Sv 1998]. Today, the ITF transports an annual average 16 Sv [Cresswell et al., 1993]. The modern ITF transport mainly (1 Sv = 106 m3 sÀ1) of warm, low-salinity water from the occurs within the thermocline rather than at the sea surface. WPWP and Indonesian-Malaysian archipelago into the It has large seasonal and interannual variability with max- eastern Indian Ocean [You and Tomczak, 1993; Gordon imum annual average flow speeds between 50 and 100 m and Fine, 1996; Schiller et al., 1998; Gordon et al., 2003] and important net flow down to 400 m water depth in the (Figure 1). Warm water transported by the ITF amounts to Makassar and Timor Straits [Gordon et al., 1999; Potemra 5.3 Sv of the total transport of 17.8 Sv in the upper branch et al., 2003]. Recent modeling work suggested that changes of the global thermohaline Conveyor Belt at 20°N in the in the vertical profile of the ITF are more important to alter North Atlantic [Speich et al., 2001]. Thus the ITF forms an the stratification and surface heat fluxes of the Indian Ocean important component of the global thermohaline circulation, than mean transport flux [Song and Gordon, 2004] and that and exerts a strong influence on regional as well as global during glacials, thermocline flow was significantly reduced, climate. For instance, blockage of the ITF would depress the whereas surface flow remained virtually unchanged [Kuhnt mean thermocline of the tropical Pacific and reduce the sea et al., 2004; Zˇuvela, 2005]. [4] The hydrography of the WPWP region is strongly 1Institute of Geosciences, Christian-Albrechts-University, Kiel, influenced by the semiannually reversed wind regime of the Germany. Asian-Australian monsoon and associated seasonal precip- 2 Leibniz Laboratory for Radiometric Dating and Stable Isotope itation patterns. The Asian-Australian monsoon is a huge Research, Christian-Albrechts-University, Kiel, Germany. thermal circulation system driven by seasonal surface tem- Copyright 2006 by the American Geophysical Union. perature differences between broadly central Asia and 0883-8305/06/2006PA001278 Australia [Tapper, 2002] (Figure 2). The east Asian boreal PA4202 1of14 PA4202 XU ET AL.: TERMINATION II INDONESIAN THROUGHFLOW PA4202 summer. The winds are relatively light in the monsoon transition periods of March–April and October–November, as the Intertropical Convergence Zone (ITCZ) moves alter- natively north and south across the region [Tapper, 2002]. The ITCZ shift has substantial impact on the seasonal precipitation pattern over Australasia. While precipitation focuses in the north (South China Sea) and east (west Pacific) during boreal summer, a large part of the ITF area, including the eastern part of the Timor Sea and Timor Strait, receives high precipitation during the austral summer mon- soonal season (December to March) [Tapper, 2002]. How- ever, during glacial times, the southward shift of the ITCZ in boreal winter may have been considerably restricted, and/ or the Australian summer monsoon may have been drier because of cooler Indian Ocean water masses (Figure 2). [5] The main objectives of this work are to track changes in the vertical profile of the ITF outflow in the Timor Sea during a period of extreme climate change and sea level variation (Termination II) and to determine leads and lags in climatic, hydrographic and paleoproductivity proxies. We use a multiproxy approach to reconstruct temperature and salinity of surface and thermocline waters, and to investi- gate changes in the productivity driven particle flux to the deep ocean. Our work is based on high-resolution sediment Figure 1. (a) Flow paths of present-day Indonesian Throughflow [after Kuhnt et al., 2004] and Indian Ocean annual (b) mean temperature (°C) and (c) salinity in upper thermocline on isopycnal surface 25.7, located in the depth range 150–200 m [after You and Tomczak, 1993]. Arrows in Figures 1b and 1c indicate movement of Indian Central Water (black) and Australasian Mediterranean Water (red) derived from Indonesian Throughflow (ITF). Solid circles Figure 2. Modern and inferred glacial Australasian denote the locations of MD98-2162 and MD01-2378. Core monsoon system. Main air pressure cells and wind-driven MD01-2378 is situated in the frontal area between the two surface circulation are after Wang et al. [2005] and Tapper water masses. [2002]. Modifications for the glacial state include increased SE Asian winter monsoon and decreased SE Asian summer winter (northeast) monsoon, which is in phase with the monsoon strength [Jian et al., 2001], position of winter and Australian austral summer (northwest) monsoon, is charac- summer Intertropical Convergence Zone closer to the terized by cold, dry air flowing southward across the South equator with reduced precipitation [De Deckker et al., China Sea. In contrast, a moist northwest monsoonal flow 2002], and absence of surface water flow from South China becomes established over northern Australia during austral Sea into Java Sea because of an exposed Sunda Shelf. 2of14 PA4202 XU ET AL.: TERMINATION II INDONESIAN THROUGHFLOW PA4202 samples from IMAGES Core MD01-2378, recovered mundulus was analyzed). In a few samples, where benthic during the WEPAMA cruise in 2001, and complements an foraminiferal density was low, a smaller number (1–2) of earlier investigation of the 40.73 m core in a time resolution specimens was analyzed. The initial isotopic data of of 1–2 kyr [Holbourn et al., 2005]. This previous study Holbourn et al. [2005] were included. 16 replicate samples indicated that productivity fluctuations in the Timor Sea of G. ruber and P. obliquiloculata indicate that the mean over the last 460 kyr were strongly influenced by monsoonal reproducibility (1s) is ±0.12% for d18O and ±0.13% for wind patterns offshore NW Australia (23 and 19 kyr d13C. The mean reproducibility of 17 paired samples of variability), but were also modulated by sea-level-related P. wuellerstorfi is better than ±0.08% for d18O and d13C. variations in the intensity of the ITF (100 kyr variability) Paired measurements on P. wuellerstorfi and C. mundulus over glacial-interglacial cycles. indicate no significant offset between these two species. [9] All tests were checked for cement encrustations and 2. Material and Methods infillings before being broken into large fragments, then cleaned in alcohol in an ultrasonic bath and dried at 40°C. 0 0 [6] IMAGES Site MD01-2378 (13°4.95 S, 121°47.27 E; Stable carbon and oxygen isotope measurements were made water depth: 1783 m) is located at the southern margin of with the Finnigan MAT 251 mass spectrometer at the the main outflow of the ITF in the Timor Sea (Figure 1).
Recommended publications
  • Seasonal Influence of Indonesian Throughflow in the Southwestern Indian Ocean
    Seasonal influence of Indonesian Throughflow in the southwestern Indian Ocean Lei Zhou and Raghu Murtugudde Earth System Science Interdisciplinary Center, College Park, Maryland Markus Jochum National Center for Atmospheric Research, Boulder, Colorado Lei Zhou Address: Computer & Space Sciences Bldg. 2330, University of Maryland, College Park, MD 20742 E-mail: [email protected] Phone: 301-405-7093 1 Abstract The influence of the Indonesian Throughflow (ITF) on the dynamics and the thermodynamics in the southwestern Indian Ocean (SWIO) is studied by analyzing a forced ocean model simulation for the Indo-Pacific region. The warm ITF waters reach the subsurface SWIO from August to early December, with a detectable influence on weakening the vertical stratification and reducing the stability of the water column. As a dynamical consequence, baroclinic instabilities and oceanic intraseasonal variabilities (OISVs) are enhanced. The temporal and spatial scales of the OISVs are determined by the ITF-modified stratification. Thermodynamically, the ITF waters influence the subtle balance between the stratification and mixing in the SWIO. As a result, from October to early December, an unusual warm entrainment occurs and the SSTs warm faster than just net surface heat flux driven warming. In late December and January, signature of the ITF is seen as a relatively slower warming of SSTs. A conceptual model for the processes by which the ITF impacts the SWIO is proposed. 2 1. Introduction Sea surface temperature (SST) variations in the southern Indian Ocean are generally modest. But they are significantly larger in the southwestern Indian Ocean (SWIO, Annamalai et al. 2003). In an analysis of observational data, Klein et al.
    [Show full text]
  • Guest Experience
    Guest Experience Contents The Amanwana Experience 3 Spa & Wellness 29 During Your Stay 5 Amanwana Spa Facilities 29 A New Spa Language 30 Aman Signature Rituals 32 Amanwana Dive Centre 7 Nourishing 33 Grounding 34 Diving at Amanwana Bay 7 Purifying 35 Diving at the Outer Reefs 8 Body Treatments 37 Diving at Satonda Island 10 Massages 38 Night Diving 13 Courses & Certifications 14 Moyo Conservation Fund 41 At Sea & On Land 17 Island Conservation 41 Species Protection 42 Water Sports 17 Community Outreach & Excursions 18 Camp Responsibility 43 On the Beach 19 Trekking & Cycling 20 Amanwana Kids 45 Leisure Cruises & Charters 23 Little Adventurers 45 Leisure Cruises 23 Fishing 24 Charters 25 Dining Experiences 27 Memorable Moments 27 2 The Amanwana Experience Moyo Island is located approximately eight degrees south of the equator, within the regency of Nusa Tenggara Barat. The island has been a nature reserve since 1976 and measures forty kilometres by ten kilometres, with a total area of 36,000 hectares. Moyo’s highest point is 600 meters above the Flores Sea. The tropical climate provides a year-round temperature of 27-30°C and a consistent water temperature of around 28°C. There are two distinct seasons. The monsoon or wet season is from December to March and the dry season from April to November. The vegetation on the island ranges from savannah to dense jungle. The savannah land dominates the plateaus and the jungle the remaining areas. Many varieties of trees are found on the island, such as native teak, tamarind, fig, coral and banyan.
    [Show full text]
  • The Seasonal Variability of Sea Surface Temperature and Chlorophyll-A Concentration in the South of Makassar Strait
    Available online at www.sciencedirect.com ScienceDirect Procedia Environmental Sciences 33 ( 2016 ) 583 – 599 The 2nd International Symposium on LAPAN-IPB Satellite for Food Security and Environmental Monitoring 2015, LISAT-FSEM 2015 The seasonal variability of sea surface temperature and chlorophyll-a concentration in the south of Makassar Strait Bisman Nababan*, Novilia Rosyadi, Djisman Manurung, Nyoman M. Natih, and Romdonul Hakim Department of Marine Science and Technology, Bogor Agricultural University, Jl. Lingkar Akademik, Kampus IPB Darmaga, Bogor 16680, Indonesia Abstract The sea surface temperature (SST) and chlorophyll-a (Chl-a) variabilities in the south of Makassar Strait were mostly affected by monsoonal wind speed/directions and riverine freshwater inflows. The east-southeast (ESE) wind (May-October) played a major role in an upwelling formation in the region starting in the southern tip of the southern Sulawesi Island. Of the 17 years time period, the variability of the SST values ranged from 25.7°C (August 2004) - 30.89°C (March 2007). An upwelling initiation typically occurred in early May when ESE wind speed was at <5 m/s, a fully developed upwelling event usually occurred in June when ESE wind speed reached >5 m/s, whereas the largest upwelling event always occurred in August of each year. Upwelling event generally diminished in September and terminated in October. At the time of the maximum upwelling events (August), the formation of upwelling could be observed up to about 330 km toward the southwest of the southern tip of the Sulawesi island. Interannually, El Niño Southern Oscillation (ENSO) intensified the upwelling event during the east season through an intensification of the ESE wind speed.
    [Show full text]
  • Indonesian Seas by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO
    An Atlas of Oceanic Internal Solitary Waves (February 2004) Indonesian Seas by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO Indonesian Seas • Bali Sea • Flores Sea • Molucca Sea • Banda Sea • Java Sea • Savu Sea • Cream Sea • Makassar Strait Overview The Indonesian Seas are the regional bodies of water in and around the Indonesian Archipelago. The seas extend between approximately 12o S to 3o N and 110o to 132oE (Figure 1). The region separates the Pacific and Indian Oceans. Figure 1. Bathymetry of the Indonesian Archipelago. [Smith and Sandwell, 1997] Observations Indonesian Archipelago is most extensive archipelago in the world with more than 15,000 islands. The shallow bathymetry and the strong tidal currents between the islands give rise to the generation of internal waves throughout the archipelago. As a result there are a very 453 An Atlas of Oceanic Internal Solitary Waves (February 2004) Indonesian Seas by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO large number of internal wave sources throughout the region. Since the Indonesian Seas boarder the equator, the stratification of the waters in this sea area does not change very much with season, and internal wave activity is expected to take place all year round. Table 2 shows the months of the year during which internal waves have been observed in the Bali, Molucca, Banda and Savu Seas Table 1 - Months when internal waves have been observed in the Bali Sea. (Numbers indicate unique dates in that month when waves have been noted) Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 12111 11323 Months when Internal Waves have been observed in the Molucca Sea.
    [Show full text]
  • Summary: This Manuscript Contributes a Reconstruction of Paleo Sea-Level Position at 24 Points in Time Throughout the Mid to Late Holocene
    cp-2019-63 Review Feb. 2020 Late Holocene (0-6ka) sea-level changes in the Makassar Strait, Indonesia (Bender et al.) Summary: This manuscript contributes a reconstruction of paleo sea-level position at 24 points in time throughout the mid to late Holocene. Authors interpret the new sea-level index points from the age, elevation, and paleo-water depth interpretation of fossil fringing reefs across SE Sulawesi near Makassar, Indonesia. In contrast to other coral-based reconstructions of past sea- level changes, but in keeping with other Holocene reconstructions from the SW Pacific (e.g. Hallmann et al., 2018), authors evaluate fossil reef growth in a fascinating morphology – microatolls – highlighting the potential for reconstructing past sea-level in great detail using this approach. Additionally, authors combine new data with previous data from two other islands near Makassar (recalculated results of three previous studies to directly compare them), which demonstrate higher-than-present relative (local) sea-level (RSL) during the late Holocene. Results and methods described here underscore the importance of evaluating fossil microatolls in the context of nearby living microatolls. Authors directly compare the elevations of fossil microatolls with their modern counterparts to evaluate the relationship between highest living coral (HLC) and the tidal cycle. Similar to previous works, this study finds that this relationship varies greatly on small spatial scales. To reconstruct paleo sea-level from fossil microatoll elevation requires the assumption that the relationship between HLC and the tidal cycle at that site has remained the same since the microatoll formed. Wisely, this study does not attempt to “connect the dots” and provide an RSL curve, but instead provides sea-level index points that can be compared with other Holocene RSL reconstructions and RSL predictions from GIA modeling.
    [Show full text]
  • Bay of Bengal: from Monsoons to Mixing Ocethe Officiala Magazinen Ogof the Oceanographyra Societyphy
    The Oceanography Society Non Profit Org. THE OFFICIAL MAGAZINE OF THE OCEANOGRAPHY SOCIETY P.O. Box 1931 U.S. Postage Rockville, MD 20849-1931 USA PAID Washington, DC ADDRESS SERVICE REQUESTED Permit No. 251 OceVOL.29, NO.2,a JUNEn 2016 ography Register now to attend this conference for international scientific profes- sionals and students. Virtually every facet of ocean color remote sensing and optical oceanography will be presented, including basic research, technological development, environmental management, and policy. October 23–28, 2016 | Victoria, BC, Canada Registration is open! The oral presentation schedule is available on the conference website Submission of abstracts for poster presentation remains open through summer 2016. www.oceanopticsconference.org Bay of Bengal: From Monsoons to Mixing OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Susanto, R.D., Z. Wei, T.R. Adi, Q. Zheng, G. Fang, B. Fan, A. Supangat, T. Agustiadi, S. Li, M. Trenggono, and A. Setiawan. 2016. Oceanography surrounding Krakatau Volcano in the Sunda Strait, Indonesia. Oceanography 29(2):264–272, http://dx.doi.org/10.5670/oceanog.2016.31. DOI http://dx.doi.org/10.5670/oceanog.2016.31 COPYRIGHT This article has been published in Oceanography, Volume 29, Number 2, a quarterly journal of The Oceanography Society. Copyright 2016 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA.
    [Show full text]
  • The Indonesian Throughflow: the Fifteen Thousand Rivers – David Pickell
    The Indonesian Throughflow: The Fifteen Thousand Rivers – David Pickell If Indonesia did not exist, the earth’s day would be significantly shorter than the approximately twenty-four hours to which we have become accustomed. This would have a dramatic impact on the clock industry, of course, and familiar phrases like “twenty-four/seven” would have to be modified. But Indonesia does exist, and its seventeen thousand islands, together with a complicated multitude of underwater trenches, basins, channels, ridges, shelfs, and sills, continue their daily work of diverting, trapping, and otherwise disrupting one of the most voluminous flows of water on earth, a task that consumes so much energy that it slows the very spinning of the globe. The flow that passes through Indonesia is called the Indonesian Throughflow (ITF), and was first noted by oceanographer Klaus Wyrtki in 1957. Its source is the Philippine Sea and the West Caroline Basin, where the incessant blowing of the Trade Winds, and the currents they generate, have entrapped water from the great expanse of the Pacific. In the Pacific Ocean northeast of the Indonesian archipelago, the sea level is twenty centimeters above average; in the Indian Ocean south of Indonesia, because of similar forces acting in an opposite direction, the sea level is ten centimeters below average. This thirty centimeter differential—an American foot—sets in motion a massive movement of water. The volume of this flow is so great that familiar units like cubic meters and gallons quickly become unwieldy, so oceanographers have invented a unit they call the “Sverdrup,” named after Norwegian scientist Harald Sverdrup of the Scripps Institution of Oceanography.
    [Show full text]
  • Reprinted from the Proceedings of the 4Th Pacific Science Congress, Java, 1929; from Vol
    Reprinted from the Proceedings of the 4th Pacific Science Congress, Java, 1929; from Vol. III, 1930, pp. 1-6 (preprint, pp. 1-6, issued at Congress, May, 1929). The Hydrographic and Faunal Independence of certain isolated deepwater seas in Eastern Asia. by CARL L. HUBBS University of Michigan, U. S. A. One of the most fascinating phases of zoogeography, since the publication of WALLACE'S "Island Life", has been a comparison of the faunas of isolated regions. The faunas of islands are not the only ones segregated from one another : so also are those of mountain tops, of rivers, of continents and oceans themselves. Among the most interesting cases are those of isolated deepwater basins-freshwater lakes, saline inland seas, deep fjords, and partially enclosed seas, such as the Black Sea and the Mediterranean Sea. It is probable that a number of such seas exist in the highly complicated Indopacific region. Two seas of this sort have interested me, and they form a striking contrast with one another. The Sea of Japan, nearly enclosed by land or by straits which nowhere are depressed as much as 180 meters below sea level, receives through Chosen Strait at its south end a branch of the warm Kuro Shiwo, and through its northern straits cold subarctic waters, which of course dip down beneath the warm layers coming up from the south. DR. CHARLES HENRY GILBERT, whose recent death was a severe blow to the zoology of the Pacific, has related to me the taking by the Albatross during its 1906 cruise in Japan, of tropical pelagic animals over a subarctic bottom fauna.
    [Show full text]
  • The Makassar Strait Tsunamigenic Region, Indonesia
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/226929573 The Makassar Strait Tsunamigenic Region, Indonesia Article in Natural Hazards · November 2001 DOI: 10.1023/A:1012297413280 CITATIONS READS 16 274 3 authors, including: Willem Pieter de Lange The University of Waikato 238 PUBLICATIONS 904 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Identification of active faults in the Hamilton Basin View project Impacts of coastal dredging View project All content following this page was uploaded by Willem Pieter de Lange on 29 May 2017. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. 1 Case Study I: Tsunami Hazards in the Indian Ocean The eastern Indian Ocean basin is a region of high earthquake and volcanic activity, so it should come as no surprise that tsunamis pose a threat to the Indian Ocean basin. (For example, the 27 August 1883 eruptions of Krakatoa produced a series of tsunamis that killed over 36,000 people in Indonesia.) However, most federal governments and international regarded the overall tsunami threat in the Indian Ocean as minor – prior to the 26 December 2004 event. Today we discuss the roots of this complacency and explore how it might be avoided as a consequence of the Mission 2009 design. Required Readings Tsunami Information, a basic web site, produced by the Australian Bureau of Meteorology, that provides background information on the phenomenon and, specifically, the 26 December 2004 event: http://www.bom.gov.au/info/tsunami/tsunami_info.shtml#physics Prasetya, G.
    [Show full text]
  • Indonesian Marine Fisheries Development and Strategy Under Extended Maritime Jurisdiction
    East-West Environment and Policy Institute Research Report No. 13 Indonesian Marine Fisheries Development and Strategy under Extended Maritime Jurisdiction by Salvatore Comitini Sutanto Hardjolukito East-West Center Honolulu, Hawaii THE EAST-WEST CENTER is an educational institution established in Hawaii in 1960 by the United States Congress. The Center's mandate is "to promote better relations and understanding among the nations of Asia, the Pacific, and the United States through cooperative study, training, and research." Each year more than 1,500 graduate students, scholars, professionals in business and government, and visiting specialists engage in research with the Center's interna• tional staff on major issues and problems facing the Asian and Pacific region. Since 1960, more than 30,000 men and women from the region have participated in the Center's cooperative programs. The Center's research and educational activities are conducted in five institutes- Communication, Culture Learning, Environment and Policy, Population, and Re• source Systems—and in its Pacific Islands Development Program, Open Grants, and Center-wide programs. Although principal funding continues to come from the U.S. Congress, more than 20 Asian and Pacific governments, as well as private agencies and corporations, have provided contributions for program support. The East-West Center is a public, nonprofit corporation with an international board of governors. THE EAST-WEST ENVIRONMENT AND POLICY INSTITUTE was established in October 1977 to increase understanding of the interrelationships among policies designed to meet a broad range of human and societal needs over time and the nat• ural systems and resources on which these policies depend or impact.
    [Show full text]
  • Structural Description of Adang Fault, Makasar Strait, Indonesia
    IPA15-G-157 PROCEEDINGS, IDONESIAN PETROLEUM ASSOCIATION Thirty-Ninth Annual Convention & Exhibition, May 2015 STRUCTURAL DESCRIPTION OF ADANG FAULT, MAKASSAR STRAIT, INDONESIA Hesekiel Bernando Nainggolan* RM Iman Argakoesoemah* Indra Wahyudi *,** Andry Hidayat*,*** Muhammad Fikry Shahab* ABSTRACT the Adang Fault along the northern flank of the Paternoster Platform in the southern end of North The, presence of Adang Fault is critical to the Makassar Basin, (Figure 1). The 3D seismic cube development of overall Neogene depositions in the available just to the east of the fault is also interpreted southern part of North Makassar Basin. It is believed to support the presence of the fault. Some relatively that the fault has been one of the key players to many small size of the fault splays are also interpreted to deepwater depositional sequences toward the north- have been developed as the results of the Adang northeast. Hence, some of the provenances of Fault activities in the region. deepwaters have been interpreted to be derived from Paternoster Platform where Adang Fault located at The quality of 2D seismic lines across the Adang the northern border separating the platform from the Fault is sparse and relatively poor. This has impacted basin to the northeast. to the difficulty of interpretation to be precise. Hence, the interpretation is heavily based on the In subsurface, Adang Fault is descriptively defined subsidiary fault splays to reconstruct the presence using seismic lines partially crossing Paternoster and movement of the primary fault. Platform. It is a fault zone showing a group of series of relatively smaller branching faults in a very There are not many published papers discussed the similar strike towards northwest-southeast but have Adang Fault in detail available.
    [Show full text]
  • SESSION I : Geographical Names and Sea Names
    The 14th International Seminar on Sea Names Geography, Sea Names, and Undersea Feature Names Types of the International Standardization of Sea Names: Some Clues for the Name East Sea* Sungjae Choo (Associate Professor, Department of Geography, Kyung-Hee University Seoul 130-701, KOREA E-mail: [email protected]) Abstract : This study aims to categorize and analyze internationally standardized sea names based on their origins. Especially noting the cases of sea names using country names and dual naming of seas, it draws some implications for complementing logics for the name East Sea. Of the 110 names for 98 bodies of water listed in the book titled Limits of Oceans and Seas, the most prevalent cases are named after adjacent geographical features; followed by commemorative names after persons, directions, and characteristics of seas. These international practices of naming seas are contrary to Japan's argument for the principle of using the name of archipelago or peninsula. There are several cases of using a single name of country in naming a sea bordering more than two countries, with no serious disputes. This implies that a specific focus should be given to peculiar situation that the name East Sea contains, rather than the negative side of using single country name. In order to strengthen the logic for justifying dual naming, it is suggested, an appropriate reference should be made to the three newly adopted cases of dual names, in the respects of the history of the surrounding region and the names, people's perception, power structure of the relevant countries, and the process of the standardization of dual names.
    [Show full text]