Printed in India
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Much Do You Know About Fleas, Ticks, Mites and Other Biters? by Vet Glen Cousquer C Norris
Artful arthropods How much do you know about fleas, ticks, mites and other biters? By vet Glen Cousquer C Norris robably the most historically significant and well known arthropod-borne disease was the “Black Death”. This scourge of the Middle Ages, also known as the Bubonic Plague, killed Pbetween 30 and 60 per cent of Europe’s human population during the 14th Century. This bacterial disease was carried by black rats (Rattus rattus) and transmitted from the rat to humans by the Oriental rat flea (Xenopsylla cheopis). The flea was able to pick up the disease when feeding on rats and then transfer Cheyletiella mites result in the appearance the disease when feeding again on humans. At the time, the of scurf and bald patches in the fur various contributing causes of this devastating disease remained G Cousquer obscure. Our ancestors were largely ignorant of the role played transmit diseases to rabbits. Many of the most important rabbit by the rat, the flea, poor hygiene and inadequate sanitation and diseases are transmitted in this way and we need a detailed this severely hampered their attempts to deal with outbreaks. understanding of the process involved if we are to protect our Today, it is this understanding of how disease can be carried rabbits’ health and welfare. by reservoirs and then transmitted by vectors that allows us to mount more effective responses to such disease threats. So, what are the common arthropod parasites found feeding on rabbits? This feature will look at how certain arthropods play key roles in the transmission of diseases to rabbits. -
Fleas and Flea-Borne Diseases
International Journal of Infectious Diseases 14 (2010) e667–e676 Contents lists available at ScienceDirect International Journal of Infectious Diseases journal homepage: www.elsevier.com/locate/ijid Review Fleas and flea-borne diseases Idir Bitam a, Katharina Dittmar b, Philippe Parola a, Michael F. Whiting c, Didier Raoult a,* a Unite´ de Recherche en Maladies Infectieuses Tropicales Emergentes, CNRS-IRD UMR 6236, Faculte´ de Me´decine, Universite´ de la Me´diterrane´e, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France b Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, USA c Department of Biology, Brigham Young University, Provo, Utah, USA ARTICLE INFO SUMMARY Article history: Flea-borne infections are emerging or re-emerging throughout the world, and their incidence is on the Received 3 February 2009 rise. Furthermore, their distribution and that of their vectors is shifting and expanding. This publication Received in revised form 2 June 2009 reviews general flea biology and the distribution of the flea-borne diseases of public health importance Accepted 4 November 2009 throughout the world, their principal flea vectors, and the extent of their public health burden. Such an Corresponding Editor: William Cameron, overall review is necessary to understand the importance of this group of infections and the resources Ottawa, Canada that must be allocated to their control by public health authorities to ensure their timely diagnosis and treatment. Keywords: ß 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved. Flea Siphonaptera Plague Yersinia pestis Rickettsia Bartonella Introduction to 16 families and 238 genera have been described, but only a minority is synanthropic, that is they live in close association with The past decades have seen a dramatic change in the geographic humans (Table 1).4,5 and host ranges of many vector-borne pathogens, and their diseases. -
BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12. -
ESCCAP Guidelines Final
ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ First Published by ESCCAP 2012 © ESCCAP 2012 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-40-1 ESCCAP Guideline 3 Control of Ectoparasites in Dogs and Cats Published: December 2015 TABLE OF CONTENTS INTRODUCTION...............................................................................................................................................4 SCOPE..............................................................................................................................................................5 PRESENT SITUATION AND EMERGING THREATS ......................................................................................5 BIOLOGY, DIAGNOSIS AND CONTROL OF ECTOPARASITES ...................................................................6 1. Fleas.............................................................................................................................................................6 2. Ticks ...........................................................................................................................................................10 -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Fleas (Siphonaptera) Are Cretaceous, and Evolved with Theria
bioRxiv preprint doi: https://doi.org/10.1101/014308; this version posted January 24, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Fleas (Siphonaptera) are Cretaceous, and Evolved with Theria Qiyun Zhu1, Michael Hastriter2, Michael Whiting2, 3, Katharina Dittmar1, 4* Jan. 23, 2015 Abstract: Fleas (order Siphonaptera) are highly-specialized, diverse blood-feeding ectoparasites of mammals and birds with an enigmatic evolutionary history and obscure origin. We here present a molecular phylogenetic study based on a compre- hensive taxon sampling of 259 flea taxa, representing 16 of the 18 extant families of this order. A Bayesian phylogenetic tree with strong nodal support was recovered, consisting of seven sequentially derived lineages with Macropsyllidae at the base and Stephanocircidae as the second basal group. Divergence times of flea lineages were estimated based on fossil records and host specific associations to bats (Chiroptera), showing that the common ancestor of extant Siphonaptera split from its clos- est mecopteran sister group in the Early Cretaceous and basal lineages diversified during the Late Cretaceous. However, most of the intraordinal divergence into families took place after the K-Pg boundary. Ancestral states of host association and bioge- ographical distribution were reconstructed, suggesting with high likelihood that fleas originated in the southern continents (Gondwana) and migrated from South America to their extant distributions in a relatively short time frame. Theria (placental mammals and marsupials) represent the most likely ancestral host group of extant Siphonaptera, with marsupials occupying a more important role than previously assumed. -
(Siphonaptera, Ceratophyllidae). a New Flea Belonging to the Genus Dasypsyllus Baker, 1905, D
Bulletin de la Société entomologique de France, 117 (1), 2012 : 119-122. Dasypsyllus patagonicus n. sp. de l'extrême sud du Chili (Siphonaptera, Ceratophyllidae) par Jean-Claude BEAUCOURNU *, Sebastian Alejandro MUÑOZ - LÉAL ** & Daniel GONZÁLEZ -ACUÑA** *Laboratoire de Parasitologie et Zoologie appliquée, Faculté de Médecine, 2 avenue du Professeur-Léon- Bernard, F – 35043 Rennes cedex, et Institut de Parasitologie de l'Ouest, même adresse <[email protected]> **Departamento de Ciencias Pecuarias, Facultad de Ciencias Veterinarias, Universidad de Concepción, Casilla 537, Chillán, Chili. Résumé . – Une nouvelle puce du genre Dasypsyllus Baker, 1905, D. patagonicus n. sp., est décrite du sud du Chili sur une unique femelle. Les caractères montrés par cet exemplaire permettent d'écarter tous les autres taxa déjà décrits et, de plus, ils sont suffisamment originaux pour que la création d'un nouveau sous-genre puisse être envisagée lorsque le mâle sera connu. Abstract . – Dasypsyllus patagonicus n. sp. from Southern Chile (Siphonaptera, Ceratophyllidae). A new flea belonging to the genus Dasypsyllus Baker, 1905, D. patagonicus n. sp., is described from a single female from Southern Chile. The features shown by this specimen differ from all other taxa previously described and are particular enough to consider the definition of a new sub-genus when the male is known. Resumen . – Dasypsyllus patagonicus n. sp. en el extremo sur de Chile (Siphonaptera, Ceratophyllidae). Una nueva especie de pulga del género Dasypsyllus Baker, 1905, D. patagonicus n. sp., es descrita en el sur de Chile a partir de un espécimen hembra. Los caracteres mostrados por este ejemplar difieren de todos los otros taxa descritos previamente y son suficientemente particulares para definir un nuevo sub género cuando sea encontrado el macho. -
The Bedfordshire Naturalist
The Bedfordshire Naturalist JOURNAL OF THE) BEDFORDSHIRE NATURAL HISTORY SOCIETY FOR THE YEAR 1973 No. 28 ONE POUND PUBLISHED BY THE BEDFORDSHIRE NATURAL HISTORY SOCIETY ; \',;i!ili.*;.;';¥H"';;II~",h""~i'" ~.,,," ef., "-'; •. ; ' .. , ~;~~ __"",-.~_~~_,_c_.-.-~' • ~- -----'--~--,~-~'. - ~".-<~-;)fM~.N'''F ,I THE BEDFORDSHIRE NATURALIST THE JOURNAL OF THE THE BEDFORDSHIRE NATURAL HISTORY SOCIETY Edited byR. V. A. Wagstaff No. 2~ 1973 CONTENTS ,1. OFFICERS OF THE SOCIETY 2. STATEMENT OF ACCOUNTS, 3. REPORT' OF THE COUNCIL ' 4 4. PROCEEDINGS: INDOOR AND FIELD MEETINGS 4, STUDENT ACTIVITIES 'THE FUNGUS FORAY' '7 5. REPORTS OF RECORDERS: BOTANY (FLOWERING PLANTS) BRYOPHYTES 9 METEOROu:laY 10 , MOLLuscA' G. 13 LEECHES AND FLATWORMS- '. 13 SPIDERS 14 LEPIDOPTERA 14 DRAGONFLIES' , ,15 BUGS 16- BIRDS , 16, MAMMALS 31 7. THEED PEARSE 34 8. THE DOORMOUSE IN A SOUTH BEDFORl?SHmE ,WOOD 35 9. THE .HARVEST 'MOUSE IN BEDFORDSHIRE 35 10. FLEAS OF THE ':HAiWEST' MOUSE 41 H. ' HARVEST MICE ~. UNDERGROUND BREEDING IN CAPTIVITY 44 12. THE B. T.O. ORNITHOLoGICAL ATLAS 1968-72 46 13. MISTLETOE SURvEy AT WREST PARK 51 14. FIELD WORK IN MAULDEN WOOD, 52 15i PUTNOE WOOD 1973 " 56 16. NEW ,NEMBERS, 56 BEDFORDSHIRE NATURAL HISTORY SOCIETY 1974 Chairmmf: H.A.S. KEY Hon. Becreta,ry: ~ D, GREEN, Red Cow Fa~Cottage,. Bidwell, Dunstable. Hon. Treasurer: j.M. DYMOND. 91 PUtnoe LIme, Bedford. Hon. Progrlllnme .sIlC~tary: D.G. RANDS. 51 Wychwood Aveniie, Luton. Hon. Librarian: R. B. STEPHENSoN, 17 Pentland Rise, PUtnoe, Bedford. Committee: D. Anderson . C. Banks P.F. Bonham W.J, Champkin A. Ford B.S., Nau A.R.Outen Mrs E.B. -
New Records of Fleas (Siphonaptera: Ctenophthalmidae
Revista Mexicana de Biodiversidad 85: 383-390, 2014 Revista Mexicana de Biodiversidad 85: 383-390, 2014 DOI: 10.7550/rmb.42071 DOI: 10.7550/rmb.42071383 New records of fleas (Siphonaptera: Ctenophthalmidae: Rhopalopsyllidae and Stephanocircidae) from Argentinean Patagonia, with remarks on the morphology of Agastopsylla boxi and Tiarapsylla argentina Nuevos registros de pulgas (Siphonaptera: Ctenophthalmidae: Rhopalopsyllidae y Stephanocircidae) de la Patagonia argentina, con comentarios sobre la morfología de Agastopsylla boxi y Tiarapsylla argentina Juliana Sánchez and Marcela Lareschi Centro de Estudios Parasitológicos y de Vectores, Centro Científico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata. Bv. 120 s/n e/ Av. 60 y calle 61, 1900 La Plata, Argentina. [email protected] Abstract. A high diversity of fleas parasitizing sigmodontine rodents has been mentioned for Patagonia. Several of these fleas have been described having their type localities in the region, including several endemic taxa. For many species, however, the original descriptions are brief and there are no new morphological contributions. In the present study we report 8 species of fleas (Ctenophthalmidae, Rhopalopsyllidae and Stephanocircidae) parasitizing sigmodontine rodents from Argentinean Patagonia. Nineteen new parasite–host associations are reported and all studied fleas extend their known geographic range. Among them, Tiarapsylla argentina is mentioned for the first time for Patagonia; Craneopsylla minerva, Sphinctopsylla ares, Polygenis (P.) platensis and Polygenis (P.) rimatus are registered for the first time for Chubut, and Agastopsylla boxi, Ectinorus (E.) ixanus and Ectinorus (E.) hapalus for Santa Cruz, extending the southernmost limit of their geographical distribution. Also, for A. boxi and T. -
DESCRIPTIONS of NEW SPECIES of HYSTRICHOPSYLLID FLEAS with NOTES on ARCHED PRONOTAL COMBS, CONVERGENT EVOLUTION and ZOOGEOGRAPHY (Siphonaptera)1
Pacific Insects 9 (4) : 603-677 20 November 1967 DESCRIPTIONS OF NEW SPECIES OF HYSTRICHOPSYLLID FLEAS WITH NOTES ON ARCHED PRONOTAL COMBS, CONVERGENT EVOLUTION AND ZOOGEOGRAPHY (Siphonaptera)1 By Robert Traub2 and Thomas M. Evans3 Abstract: It is suggested that the peculiar arched or flared pronotal comb, now known to occur in 8 genera and 5 families of fleas, is an example of convergent evolution in shrew-fleas or macroscelid-fleas. The following new species are described and illustrated, and are cited as exhibiting modifications in the genal or pronotal spines which are asso ciated with the phylogeny of the host, or else with its habits or environment: Palaeop- sylla recava n. sp. ex shrews in Taiwan; P. apsidata n. sp. ex Crocidura in the mountains of Malaya; P. setzeri n. sp. ex Hyperacrius burrowing-voles in the Himalayas of W. Paki stan ; P. remota nesicola n. ssp. primarily ex Taiwanese Anourosorex; Doratopsylla wissemani n. sp. ex Sorex in W. Pakistan; and Corrodopsylla harrerai n. sp. ex Sorex in Guerrero, Mexico. The hitherto unknown female of Xenodaeria telios Jordan 1932, ex shrews, etc. in the Himalayas, is described and illustrated. Discussions on the geographic and host-distribu tion of some fleas in W. Pakistan and on "adaptive" modifications of the pronotal and genal spines of shrew-fleas are presented. The genus Corrodopsylla is shown to be high ly unusual in possessing pseudosetae on the first tergum and comments are made about this structure, on apical spinelets and combs of spines in certain fleas. Fleas of the family Hystrichopsyllidae are intimately associated with rodents and insec tivores and hence are frequently encountered in field studies on vectors and reservoirs of viral and rickettsial infections, such as those undertaken by field teams of the Depart ment of Microbiology of the University of Maryland School of Medicine conducted in West Pakistan and elsewhere. -
Myxomatosis: the Emergence of Male and Female European Rabbit Fleas Spilopsyllus Cuniculi (Dale) from Laboratory Cultures
J. Hyg., Camb. (1980), 84, 109 109 Printed in Great Britain Myxomatosis: the emergence of male and female European rabbit fleas Spilopsyllus cuniculi (Dale) from laboratory cultures BY ROSAMOND C. H. SHEPHERD AND J. W. EDMONDS Keith Turnbull Research Institute, Vermin and Noxious Weeds Destruction Board, Department of Crown Lands and Survey, Frankston, Victoria 3199 (Received 28 May 1979) SUMMARY The sex ratios and the emergence patterns of the European rabbit flea bred under animal house conditions were examined. An overall preponderance of female fleas was found. This was due to the greater preponderance of female fleas in the primary emergence, whereas the sex ratios in the secondary emergence were about 1:1. INTRODUCTION European rabbit fleas Spilopsyllus cuniculi (Dale) were introduced from the United Kingdom as vectors for myxomatosis (Sobey & Menzies, 1969). In Victoria fleas were introduced first for experimental purposes (Shepherd & Edmonds, 1976) and later on a large scale. The large numbers of fleas required for these widespread field releases were bred at the Keith Turnbull Research Institute under animal house conditions. The emergence period of fleas under these conditions may last up to 140 days and fleas from any emergence period were released in the field. Differences in the emergence patterns of male and female fleas could have resulted in an imbalance of sex ratios and consequently poor flea breeding. The emergence patterns were therefore investigated to ensure there were sufficient numbers of each sex in each batch of fleas released. METHODS The methods used to breed the fleas were similar to those described by Sobey, Menzies & Conolly (1974) and Sobey, Conolly & Menzies (1977). -
Taxonomic Revision of the Flea Genus Agastopsylla Jordan & Rothschild
An Acad Bras Cienc (2020) 92(1): e20181136 DOI 10.1590/0001-3765202020181136 Anais da Academia Brasileira de Ciências | Annals of the Brazilian Academy of Sciences Printed ISSN 0001-3765 I Online ISSN 1678-2690 www.scielo.br/aabc | www.fb.com/aabcjournal BIOLOGICAL SCIENCES Taxonomic revision of the flea genus Running title: The genus Agastopsylla Jordan & Rothschild 1923 Agastopsylla (Siphonaptera: Ctenophthalmidae) Academy Section: Biological sciences MARIA FERNANDA LÓPEZ-BERRIZBEITIA, JULIANA SANCHEZ, RUBÉN M. BARQUEZ & MÓNICA DÍAZ e20181136 Abstract: Fleas of Argentina are receiving renewed systematic interest, but the identification of many species associated with small mammals can be problematic. We review the taxonomy of the flea genus Agastopsylla including the re-description of two 92 (1) species and one subspecies, and designate neotype and neallotype for Agastopsylla 92(1) hirsutior, neotype for Agastopsylla nylota nylota from the “Colección Mamíferos Lillo Anexos” (CMLA), Universidad Nacional de Tucumán, Argentina, and neotype and neallotype for Agastopsylla pearsoni from the Natural History Museum (London, U.K.). Additionally, a key to identification of the species of Agastopsylla and a distribution map of the species of the genus are included. Key words: fleas, systematic, type specimens, rodents, key identification. INTRODUCTION Agastopsylla guzmani Beaucournu et al. 2011 (Beaucournu et al. 2014, Lareschi et al. 2016). In The genus Agastopsylla Jordan & Rothschild Argentina, only two species and two subspecies, 1923 (family Ctenophthalmidae, subfamily A. b. boxi, A. b. gibbosa and A. pearsoni (Lareschi Ctenophthalminae) is characterized by the et al. 2016) have been recorded. reduction in size and the coloration of the spines There are several issues that hinder the of the genal comb (Hopkins & Rothschild 1966).