International Conference on Computing, Networking and Communications, Internet Services and Applications Symposium On Zap Time Minimization in IPTV Networks Matthew Long, Sridhar Radhakrishnan, Suleyman Karabuk, John Antonio School of Computer Science School of Industrial Engineering School of Computer Science University of Oklahoma University of Oklahoma University of Oklahoma Norman, Oklahoma 73019 Norman, Oklahoma 73019 Norman, Oklahoma 73019 E-mail: {mglong, sridhar}@ou.edu E-mail:
[email protected] E-mail:
[email protected] Abstract—Digital television systems have a clear disadvantage state-of-the-art. These advantages include a) wherever Internet relative to analog systems in users’ quality of experience, most access is available, broadcast channels can be delivered and notably in the time required to change channels, or zap time. this eliminates the need for additional infrastructure (such as The goal of this research is to improve the performance of a multicasting IPTV network, both in user experience and in cable or satellite), b) the broadcast content can be viewed on resource consumption. We formulate the problem of assigning any device that has an Internet connection and appropriate IPTV clients to servers as an integer programming model, in video display without the need for specialized STB hardware, variants which minimize channel-change times, overall network and c) bandwidth can be conserved as only the users watching capacity consumption, or both. This problem is shown to be a particular channel need to receive it. Several organizations computationally hard, and the performance of the models is tested on problems of different sizes. Polynomial-time heuristics have set standards for implementing IPTV networks, including are presented which address a relaxed version of the problem, ETSI TISPAN, the DVB Project, and the Open IPTV Forum and the performance of these heuristics is measured.