'USDA Red' Spinach

Total Page:16

File Type:pdf, Size:1020Kb

'USDA Red' Spinach HORTSCIENCE 54(11):2070–2072. 2019. https://doi.org/10.21273/HORTSCI14308-19 cultivars. It has a monoecious flowering habit and produces smooth seeds. Compared with other varieties, it has moderate resistance to ‘USDA Red’ Spinach bolting. Beiquan Mou Field evaluations. ‘USDA Red’ was planted in a field at the experiment station U.S. Department of Agriculture (USDA), Agricultural Research Service, of the USDA in Aug. 2015, Aug. 2016, Aug. 1636 East Alisal Street, Salinas, CA 93905 2017, and Aug. 2018 in Salinas, CA, to Additional index words. antioxidant capacity, betacyanin, nutritional value, red leaf, Spinacia evaluate its horticultural and nutritional traits. A green-leaf spinach cultivar, Polar oleracea Bear (Rijk Zwaan, De Lier, Holland), and two red-veined cultivars, Bordeaux and Red Spinach has always been known as a green that attack proteins, lipids, and DNA, conse- Deer (Rijk Zwaan), were included in the leafy vegetable. Although there are some quently leading to damage and dysfunction of trials. The experiment design was a random- plants called ‘‘red spinach,’’ they are usually enzymes, cell membranes, and genetic mate- ized complete block with four replications. red-leaf amaranth (Amaranthus spp.) or other rial (Stintzing and Carle, 2004). Betacyanin Each plot consisted of 50 plants of a geno- species (e.g., Blitum rubrum), not true spinach has been shown to significantly reduce oxi- type, with 30 cm between plants and 35 cm (Spinacia oleracea). There are currently some dative stress in patients and may help in between rows on 1-m wide double-row beds. ‘‘red’’ true spinach cultivars on the market, but preventing chronic pathologies, inflamma- Ten plants were randomly selected from each the red coloration is limited to the veins of the tion, and cancer (Stintzing and Carle, 2004; plot to measure petiole length, spread (di- leaves. In this article, the development of Sumaya-Martinez et al., 2011). Therefore, ameter of the plant), (fully developed) leaf ‘USDA Red’, the world’s first true spinach betacyanin adds another benefit to a plant number, plant height (from ground to the tip variety with red color on the surface of the already loaded with phytonutrients, making of the tallest leaf), and plant weight (exclud- leaves, is described. spinach a true ‘‘super food.’’ ing roots) for each plant (not all these traits Spinach consumption (and production) in Red spinach can be used as baby or were evaluated during each trial). Per-plant the United States decreased from 2.3 pounds ‘‘teen’’ leaf in salad bags (alone or in values were averaged and an analysis was per person to 1.6 pounds during the year mixtures with other vegetables), bunched following an Escherichia coli outbreak in products, and spring mix for fresh-market 2006, and it has not fully recovered (NASS, consumption, or as processed products (fro- 2015, 2018). Red spinach will bring some zen or canned). The red color in spring mix is excitement to the spinach market and help now provided by red lettuce, radicchio, or attract consumers. Furthermore, it may help chard, and red spinach will give processors increase the consumption of spinach and aid another choice. Ultimately, the consumers in fighting the obesity epidemic. The obesity will have access to new vegetable products to rate has climbed to 39.6% of American benefit their health and well-being. adults, 42.8% among those aged 40–59 (Hales et al., 2017), costing more than $147 Origin billion per year for the treatment of illnesses related to obesity (Finkelstein et al., 2009). ‘USDA Red’ was derived from the self- Unhealthy diets are a direct cause of being pollination (selfing) of a single monoecious overweight, but efforts by public health plant from a red-veined spinach culti- organizations and the produce industry to var Bordeaux (Johnny’s Selected Seeds, increase the consumption of fruits and vege- Winslow, ME). Progeny plants were selected tables have had limited success due to dietary in the field for red color and selfed three more habits and economic or cultural reasons. generations. Twenty-three plants were se- Enhanced nutritional levels of vegetables lected from the selfed progeny and allowed Fig. 1. A plant of spinach variety ‘USDA Red’ in would improve the nutrient intake without to randomly intercross in an isolation cham- the field with the purple–red color developing requiring an increase in consumption. Spin- ber. The resulting progeny plants were from the lower part of the leaves. ach is one of the most desirable leafy vege- selected in the field for red color and inter- b tables due to its high content of -carotene pollinated through four additional cycles of (provitamin A), lutein, folate, vitamin C, phenotypic recurrent selection. The resulting calcium, iron, phosphorus, and potassium. seeds from the population were bulk- The red color of ‘USDA Red’ comes from harvested and designated ‘USDA Red’. betacyanin, which exists in the family of Amaranthaceae, instead of the more common anthocyanin (Ali et al., 2009). Betacyanin is a Description potent antioxidant that can scavenge exces- sive reactive oxygen species and free radicals Morphological characters. ‘USDA Red’ is a semi-flat type of spinach with a medium growth rate and semi-erect leaves. Its leaves are spade-shaped with round-pointed tips and Received for publication 20 June 2019. Accepted purple-red veins and petioles. There may be for publication 30 July 2019. one or two indents on both sides of the leaf I thank Chenping Xu, Emi Kuroiwa, and Sharon blade. As the dark green leaves grow, purple– Benzen for technical assistance. red color (59A, Red–Purple Group, the Royal Mention of a trade name, proprietary product, or Horticultural Society (RHS) Color Chart, vendor does not constitute an endorsement, guar- antee, or warranty by the USDA and does not imply London, UK) develops from the lower part its approval to the exclusion of other products or of the leaves (Fig. 1) and may cover the entire vendors that may be suitable. upper (adaxial) surface (Fig. 2). The lower Fig. 2. A plant of spinach variety ‘USDA Red’ in B.M. is the corresponding author. E-mail: bei- leaf (abaxial) surface remains green. Its taste the field with purple–red color covering the [email protected]. is mild and bland, similar to other spinach entire upper leaf surface. 2070 HORTSCIENCE VOL. 54(11) NOVEMBER 2019 Table 1. Horticultural trait means of ‘USDA Red’, ‘Bordeaux’ (red-veined cultivar), ‘Red Deer’ (red-veined cultivar), and ‘Polar Bear’ (standard green-leaf cultivar) grown in field trials conducted in Salinas, CA, in 2015–18. Petiole length (cm) Plant spread (cm) Leaf number Plant ht (cm) Plant wt (g) Genotype 2018 2017 2018 2015 2016 2017 2018 2015 2017 2018 2015 2016 2017 2018 USDA Red 8.7 bz 15.3 c 35.2 c 23.4 a 16.5 a 11.2 b 21.4 b 13.6 a 8.9 b 18.6 c 57.7 b 27.4 a 21.0 a 72.0 b Bordeaux 11.4 a 18.1 b 40.6 b 24.8 a 15.8 a 14.0 a 25.1 a 15.3 a 11.7 a 22.7 ab 45.6 b 11.9 b 12.5 b 69.1 b Red Deer 10.5 a 21.0 a 48.2 a — 16.8 a 13.9 a 19.8 b — 11.6 a 25.0 a — 29.1 a 28.7 a 131.5 a Polar Bear 8.2 b 20.8 a 41.1 b 16.4 b 15.5 a 11.1 b 14.3 c 14.3 a 11.4 a 21.6 b 102.7 a 29.3 a 27.4 a 109.7 a zMeans with the same letter in a column are not significantly different statistically at P < 0.05. Table 2. Nutritional trait means of ‘USDA Red’, ‘Bordeaux’ (red-veined cultivar), ‘Red Deer’ (red-veined cultivar), and ‘Polar Bear’ (standard green-leaf cultivar) grown in field trials conducted in Salinas, CA, in 2015–18, on fresh weight basis. Betacyanin (mg/g) Antioxidant capacity (TE mmol/g) 2015 2016 2017 2018 2016 2017 2018 Genotype 52 DAP 45 DAP 52 DAP 45 DAP 59 DAP 57 DAP 45 DAP 52 DAP 45 DAP 59 DAP 57 DAP USDA Red 78.9 az 145.9 a 157.4 a 131.3 a 222.3 a 280.4 a 34.2 a 43.8 a 20.7 a 38.5 a 39.6 a Bordeaux 54.6 b 99.7 b 93.1 b 90.1 bc 131.2 b 128.5 b 27.0 b 31.7 bc 17.4 ab 23.9 b 23.7 b Red Deer — 101.9 b 95.4 b 100.4 b 138.2 b 117.5 b 25.7 b 27.9 c 15.9 b 19.1 b 19.5 b Polar Bear 12.9 c 77.4 c 82.3 b 72.5 c 100.7 c 86.7 c 24.8 b 36.6 b 18.3 ab 22.8 b 23.2 b zMeans with the same letter in a column are not significantly different statistically at P < 0.05. DAP = days after planting; TE = Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) equivalent. Table 3. Nutritional trait means of ‘USDA Red’, ‘Bordeaux’ (red-veined cultivar), ‘Red Deer’ (red-veined cultivar), and ‘Polar Bear’ (standard green-leaf cultivar) grown in field trials conducted in Salinas, CA, on fresh weight basis. Concentrations of chlorophyll, phenolics, and flavonoid were measured52d after planting (DAP) in 2015, while b-carotene and vitamin C concentrations were determined 57 DAP in 2018.
Recommended publications
  • Caryophyllales 2018 Instituto De Biología, UNAM September 17-23
    Caryophyllales 2018 Instituto de Biología, UNAM September 17-23 LOCAL ORGANIZERS Hilda Flores-Olvera, Salvador Arias and Helga Ochoterena, IBUNAM ORGANIZING COMMITTEE Walter G. Berendsohn and Sabine von Mering, BGBM, Berlin, Germany Patricia Hernández-Ledesma, INECOL-Unidad Pátzcuaro, México Gilberto Ocampo, Universidad Autónoma de Aguascalientes, México Ivonne Sánchez del Pino, CICY, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México SCIENTIFIC COMMITTEE Thomas Borsch, BGBM, Germany Fernando O. Zuloaga, Instituto de Botánica Darwinion, Argentina Victor Sánchez Cordero, IBUNAM, México Cornelia Klak, Bolus Herbarium, Department of Biological Sciences, University of Cape Town, South Africa Hossein Akhani, Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Iran Alexander P. Sukhorukov, Moscow State University, Russia Michael J. Moore, Oberlin College, USA Compilation: Helga Ochoterena / Graphic Design: Julio C. Montero, Diana Martínez GENERAL PROGRAM . 4 MONDAY Monday’s Program . 7 Monday’s Abstracts . 9 TUESDAY Tuesday ‘s Program . 16 Tuesday’s Abstracts . 19 WEDNESDAY Wednesday’s Program . 32 Wednesday’s Abstracs . 35 POSTERS Posters’ Abstracts . 47 WORKSHOPS Workshop 1 . 61 Workshop 2 . 62 PARTICIPANTS . 63 GENERAL INFORMATION . 66 4 Caryophyllales 2018 Caryophyllales General program Monday 17 Tuesday 18 Wednesday 19 Thursday 20 Friday 21 Saturday 22 Sunday 23 Workshop 1 Workshop 2 9:00-10:00 Key note talks Walter G. Michael J. Moore, Berendsohn, Sabine Ya Yang, Diego F. Registration
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Understanding the Weedy Chenopodium Complex in the North Central States
    UNDERSTANDING THE WEEDY CHENOPODIUM COMPLEX IN THE NORTH CENTRAL STATES BY SUKHVINDER SINGH DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Crop Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois Doctoral Committee: Professor Patrick J. Tranel, Chair Associate Professor Aaron G. Hager Associate Professor Geoffrey A. Levin Assistant Professor Matthew E. Hudson ABSTRACT The genus Chenopodium consists of several important weed species, including Chenopodium album, C. berlandieri, C. strictum, and C. ficifolium. All of these species share similar vegetative morphology and high phenotypic plasticity, which makes it difficult to correctly identify these species. All of these weedy Chenopodium species have developed resistance to one or more classes of herbicides. An experiment was conducted to determine if there is variability in response of Chenopodium species present in the North Central states to glyphosate. Our results indicate variable responses within and among the Chenopodium species. Species such as C. berlandieri and C. ficifolium had higher levels of tolerance to glyphosate than did various accessions of C. album. In another experiment, 33 populations of Chenopodium sampled across six North Central states were screened with glyphosate. The results showed variable responses to glyphosate within and among the Chenopodium populations. In general, the Chenopodium populations from Iowa were more tolerant, but some biotypes from North Dakota, Indiana and Kansas also had significantly high tolerance to glyphosate. Given there are species other than C. album that have high tolerance to glyphosate, and there are Chenopodium populations across the North Central states that showed tolerance to glyphosate, one intriguing question was to whether the Chenopodium populations were either biotypes of C.
    [Show full text]
  • Amaranthaceae Amaranth Family
    Amaranthaceae Amaranth Family Mostly ruderal annuals, there are 900 species in 65 genera. A single genus reaches Nova Scotia. Their flowers are inconspicuous, green and apetalous, subtended by papery bracts. Flowers are unisexual Page | 108 although the plants are monoecious. The terminal inflorescence is brushlike or axillary. A single lens- shaped achene is produced. Some are flowering ornamentals, such as Celosia and Love-lies-bleeding (Amaranthus caudatus) and others are used for grain. Amaranthus L. Three of 50 species have been introduced into Nova Scotia. Key to species A. A. Plants slender, branching diffusely; flowers in small axillary clusters; Amaranthus albus seeds small, <0.8mm wide. aa. Plants robust, erect; flowers in large terminal inflorescences; seeds >1mm B wide. B. Leaves green beneath; sepals pointed. A. hybridus bb. Leaves whitish beneath; sepals truncate. A. retroflexus Amaranthus albus L. Tumbleweed; amarante blanche An erect herb, its stems are freely branching. Leaves are elliptic or oblanceolate, borne on petioles. Flowers are arranged in dense axillary clusters. July to October, on disturbed soils. Uncommon and appearing as a garden weed or about railways. Collected from Truro, Wentworth, Windsor and Kentville. Ranges from western Canada to Mexico. Introduced throughout most of the continent. 3-2 Amaranthaceae Amaranthus hybridus L. Green Amaranth; amarante verte Tall and robust, its stem reaches to 2m in height, often branching freely. Stems are scaly or lightly pubescent Page | 109 especially in the inflorescence. Flowers are reddish, not showy. Leaves are elliptic and petiolate. August to October. A weed of disturbed soils and cultivated fields. It is limited to a few well-established populations: Morristown and other communities in Kings Co.
    [Show full text]
  • Chenopodioideae, Chenopodiaceae/ Amaranthaceae): Implications for Evolution and Taxonomy
    Fruit and Seed Anatomy of Chenopodium and Related Genera (Chenopodioideae, Chenopodiaceae/ Amaranthaceae): Implications for Evolution and Taxonomy Alexander P. Sukhorukov1,2*, Mingli Zhang1,3 1 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China, 2 Department of Higher Plants, Biological Faculty, Moscow Lomonosov State University, Moscow, Russia, 3 Institute of Botany, Chinese Academy of Sciences, Beijing, China Abstract A comparative carpological study of 96 species of all clades formerly considered as the tribe Chenopodieae has been conducted for the first time. The results show important differences in the anatomical structure of the pericarp and seed coat between representatives of terminal clades including Chenopodium s.str.+Chenopodiastrum and the recently recognized genera Blitum, Oxybasis and Dysphania. Within Chenopodium the most significant changes in fruit and seed structure are found in members of C. sect. Skottsbergia. The genera Rhagodia and Einadia differ insignificantly from Chenopodium. The evolution of heterospermy in Chenopodium is discussed. Almost all representatives of the tribe Dysphanieae are clearly separated from other Chenopodioideae on the basis of a diverse set of characteristics, including the small dimensions of the fruits (especially in Australian taxa), their subglobose shape (excl. Teloxys and Suckleya), and peculiarities of the pericarp indumentum. The set of fruit and seed characters evolved within the subfamily Chenopodioideae is described. A recent phylogenetic hypothesis is employed to examine the evolution of three (out of a total of 21) characters, namely seed color, testa-cell protoplast characteristics and embryo orientation. Citation: Sukhorukov AP, Zhang M (2013) Fruit and Seed Anatomy of Chenopodium and Related Genera (Chenopodioideae, Chenopodiaceae/Amaranthaceae): Implications for Evolution and Taxonomy.
    [Show full text]
  • Phylogeny and Comparative Analysis of Chinese Chamaesium Species Revealed by the Complete Plastid Genome
    plants Article Phylogeny and Comparative Analysis of Chinese Chamaesium Species Revealed by the Complete Plastid Genome 1 1, 2 1, 1, Xian-Lin Guo , Hong-Yi Zheng y, Megan Price , Song-Dong Zhou * and Xing-Jin He * 1 Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; [email protected] (X.-L.G.); [email protected] (H.-Y.Z.) 2 Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China; [email protected] * Correspondence: [email protected] (S.-D.Z.); [email protected] (X.-J.H.) Equal contributions to this work. y Received: 30 June 2020; Accepted: 28 July 2020; Published: 30 July 2020 Abstract: Chamaesium H. Wolff (Apiaceae, Apioideae) is a small genus mainly distributed in the Hengduan Mountains and the Himalayas. Ten species of Chamaesium have been described and nine species are distributed in China. Recent advances in molecular phylogenetics have revolutionized our understanding of Chinese Chamaesium taxonomy and evolution. However, an accurate phylogenetic relationship in Chamaesium based on the second-generation sequencing technology remains poorly understood. Here, we newly assembled nine plastid genomes from the nine Chinese Chamaesium species and combined these genomes with eight other species from five genera to perform a phylogenic analysis by maximum likelihood (ML) using the complete plastid genome and analyzed genome structure, GC content, species pairwise Ka/Ks ratios and the simple sequence repeat (SSR) component. We found that the nine species’ plastid genomes ranged from 152,703 bp (C.
    [Show full text]
  • Draft Genome of Spinach and Transcriptome Diversity of 120 Spinacia Accessions
    ARTICLE Received 20 Jun 2016 | Accepted 7 Mar 2017 | Published 24 May 2017 DOI: 10.1038/ncomms15275 OPEN Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions Chenxi Xu1,*, Chen Jiao2,*, Honghe Sun2,*, Xiaofeng Cai1, Xiaoli Wang1, Chenhui Ge1, Yi Zheng2, Wenli Liu2, Xuepeng Sun2, Yimin Xu2, Jie Deng3, Zhonghua Zhang3, Sanwen Huang3, Shaojun Dai1, Beiquan Mou4, Quanxi Wang1, Zhangjun Fei1,2,5 & Quanhua Wang1 Spinach is an important leafy vegetable enriched with multiple necessary nutrients. Here we report the draft genome sequence of spinach (Spinacia oleracea,2n¼ 12), which contains 25,495 protein-coding genes. The spinach genome is highly repetitive with 74.4% of its content in the form of transposable elements. No recent whole genome duplication events are observed in spinach. Genome syntenic analysis between spinach and sugar beet suggests substantial inter- and intra-chromosome rearrangements during the Caryophyllales genome evolution. Transcriptome sequencing of 120 cultivated and wild spinach accessions reveals more than 420 K variants. Our data suggests that S. turkestanica is likely the direct progenitor of cultivated spinach and spinach domestication has a weak bottleneck. We identify 93 domestication sweeps in the spinach genome, some of which are associated with important agronomic traits including bolting, flowering and leaf numbers. This study offers insights into spinach evolution and domestication and provides resources for spinach research and improvement. 1 Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China. 2 Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA. 3 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
    [Show full text]
  • An Illustrated Key to the Amaranthaceae of Alberta
    AN ILLUSTRATED KEY TO THE AMARANTHACEAE OF ALBERTA Compiled and writen by Lorna Allen & Linda Kershaw April 2019 © Linda J. Kershaw & Lorna Allen This key was compiled using informaton primarily from Moss (1983), Douglas et. al. (1998a [Amaranthaceae], 1998b [Chenopodiaceae]) and the Flora North America Associaton (2008). Taxonomy follows VASCAN (Brouillet, 2015). Please let us know if there are ways in which the key can be improved. The 2015 S-ranks of rare species (S1; S1S2; S2; S2S3; SU, according to ACIMS, 2015) are noted in superscript (S1;S2;SU) afer the species names. For more details go to the ACIMS web site. Similarly, exotc species are followed by a superscript X, XX if noxious and XXX if prohibited noxious (X; XX; XXX) according to the Alberta Weed Control Act (2016). AMARANTHACEAE Amaranth Family [includes Chenopodiaceae] Key to Genera 01a Flowers with spiny, dry, thin and translucent 1a (not green) bracts at the base; tepals dry, thin and translucent; separate ♂ and ♀ fowers on same the plant; annual herbs; fruits thin-walled (utricles), splitting open around the middle 2a (circumscissile) .............Amaranthus 01b Flowers without spiny, dry, thin, translucent bracts; tepals herbaceous or feshy, greenish; fowers various; annual or perennial, herbs or shrubs; fruits various, not splitting open around the middle ..........................02 02a Leaves scale-like, paired (opposite); stems feshy/succulent, with fowers sunk into stem; plants of saline habitats ... Salicornia rubra 3a ................. [Salicornia europaea] 02b Leaves well developed, not scale-like; stems not feshy; plants of various habitats. .03 03a Flower bracts tipped with spine or spine-like bristle; leaves spine-tipped, linear to awl- 5a shaped, usually not feshy; tepals winged from the lower surface ..............
    [Show full text]
  • Towards a Species Level Tree of the Globally Diverse Genus
    Molecular Phylogenetics and Evolution 62 (2012) 359–374 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae) ⇑ Susy Fuentes-Bazan a,b, Guilhem Mansion a, Thomas Borsch a, a Botanischer Garten und Botanisches Museum Berlin-Dahlem und Institut für Biologie, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 6-8, 14195 Berlin, Germany b Herbario Nacional de Bolivia, Universidad Mayor de San Andrés (UMSA), La Paz, Bolivia article info abstract Article history: Chenopodium is a large and morphologically variable genus of annual and perennial herbs with an almost Received 21 March 2011 global distribution. All subgenera and most sections of Chenopodium were sampled along with other gen- Revised 28 September 2011 era of Chenopodieae, Atripliceae and Axyrideae across the subfamily Chenopodioideae (Chenopodiaceae), Accepted 11 October 2011 totalling to 140 taxa. Using Maximum parsimony and Bayesian analyses of the non-coding trnL-F Available online 24 October 2011 (cpDNA) and nuclear ITS regions, we provide a comprehensive picture of relationships of Chenopodium sensu lato. The genus as broadly classified is highly paraphyletic within Chenopodioideae, consisting of Keywords: five major clades. Compared to previous studies, the tribe Dysphanieae with three genera Dysphania, Tel- Chenopodium oxys and Suckleya (comprising the aromatic species of Chenopodium s.l.) is now shown to form one of the Chenopodioideae Chenopodieae early branches in the tree of Chenopodioideae. We further recognize the tribe Spinacieae to include Spina- TrnL-F cia, several species of Chenopodium, and the genera Monolepis and Scleroblitum.
    [Show full text]
  • Comparative Studies on Morphology and Anatomy of Selected Species of the Genus Amaranthus L
    Indian Journal of Plant Sciences ISSN: 2319–3824(Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jps.htm 2017 Vol.6 (2) April-June, pp.99-105/Arya et al. Research Article COMPARATIVE STUDIES ON MORPHOLOGY AND ANATOMY OF SELECTED SPECIES OF THE GENUS AMARANTHUS L. IN KERALA S. Arya, *T. Rajesh Kumar and R.Santhoshkumar Department of Botany, Mahatma Gandhi College (Kerala University) *Author for Correspondence ABSTRACT The genus Amaranthus, a widely cultivated taxonomic group, consists about 60–70 species. Collectively known as Amaranth, it is a cosmopolitan genus of herbs belonging to the family Amaranthaceae. Most of amaranth species are summer annual weeds and are commonly referred to as pig weed. The floral and vegetative characters of the genus are complicated and hence it is refered as a difficult genus. The paper attempts to understand in deep the morphological and anatomical characters of selected five species of Amaranthus viz of A. caudatus, A. tricolor, A. viridis, A. blitum and A. hybridus. An indended key is prepared on the anatomy and morphological characters reporting the new unnoticed traits which would help in the easy identification of the species. It also puts light into the evolutionary relationship of these species with respect to the taxonomical and anatomical traits. Keywords: Amaranthus, Morphology, Anatomy, Key to the Species INTRODUCTION Under the traditional Bentham and Hooker system of classification (1862), the family Amaranthaceae comes under the series Curvembryae under the group Monochlamydae of Dicotyledons (Sambamurthy, 2010). Schinz, while dividing the family into two sub-families, viz. Amaranthoideae and Gomphrenoideae, included amaranths under the former group (Subfamily: Amaranthoideae; Tribe: Amarantheae (Vasishta, 1994).
    [Show full text]
  • FLORA of BEIJING Jinshuang Ma and Quanru Liu
    URBAN HABITATS, VOLUME 1, NUMBER 1 • ISSN 1541-7115 FLORA OF BEIJING http://www.urbanhabitats.org Jinshuang Ma and Quanru Liu Flora of Beijing: An Overview and Suggestions for Future Research* Jinshuang Ma and Quanru Liu Brooklyn Botanic Garden, 1000 Washington Avenue, Brooklyn, New York 11225; [email protected]; [email protected] nonnative, invasive, and weed species, as well as a lst Abstract This paper reviews Flora of Beijing (He, 1992), of relevant herbarium collections. We also make especially from the perspective of the standards of suggestions for future revisions of Flora of Beijing in modern urban floras of western countries. The the areas of description and taxonomy. We geography, land-use and population patterns, and recommend more detailed categorization of species vegetation of Beijing are discussed, as well as the by origin (from native to cultivated, including plants history of Flora of Beijing. The vegetation of Beijing, introduced, escaped, and naturalized from gardens which is situated in northern China, has been and parks); by scale and scope of distribution drastically altered by human activities; as a result, it (detailing from worldwide to special or unique local is no longer characterized by the pine-oak mixed distribution); by conservation ranking (using IUCN broad-leaved deciduous forests typical of the standards, for example); by habitat; and by utilization. northern temperate region. Of the native species that Finally, regarding plant treatments, we suggest remain, the following dominate: Pinus tabuliformis, improvements in the stability of nomenclature, Quercus spp., Acer spp., Koelreuteria paniculata, descriptions of taxa, and the quality and quantity of Vitex negundo var.
    [Show full text]
  • Scientific Classification
    Entry prepared by Sarah Mortati „08 in College Seminar 235 Food for Thought: The Science, Culture, & Politics of Food Spring 2008 SPINACH SCIENTIFIC CLASSIFICATION AND ENTYMOLOGY Scientific Classification Spinach, or “roundleaf spinage”, is a staple of the Kingdom Plantae early American vegetable gardens. It is a Phylum Magnoliophyta relatively quick-growing vegetable and easy to Class Magnoliopsida maintain. Spinach is in the classification system Order Caryophyllales Family Amaranthaceae. spinacia oleraceae being its Family Amaranthaceae official scientific classification name. Within Genus Spinacia Amaranthaceae there are about 102 genera and 1400 Species s. oleraceae species world wide. It is within the family of leafy http://www.usda.gov/wps/portal/usdahome1 green vegetables, referred to as „greens‟ or „potherbs‟, because they were historically cooked before eating. Spinach ranges in color from light to dark green and comes in two general types: the crinkle leaf variety and the smooth leaf variety, although there are varieties that contain characters of both, known as “semi- Savoy Spinach”2 The word “spinach” is derived from the Persian word “ispanai” which means „green hand‟, which later became „spanachia‟ in late Latin, and ultimately „spinage‟ and then „spinach‟ in English.3 4 1 USDA, United States Department of Agriculture http://www.usda.gov/wps/portal/usdahome 2 Kenneth F. Kiple. Cambridge World History of Food. (United Kingdom: Cambridge, 2002) 1857 p 288 3 UGA Horticulture, Spinach University of Georgia College of Agricultural and Environmental Sciences, Department of Horticulture. Vegetable Crops http://www.uga.edu/vegetable/spinach.html 4 Flickr.com (Creative Commons) HISTORICAL IMPORTANCE Spinach is native to southwestern Asia.
    [Show full text]