Development of Molecular Methods for Screening Plasmodium Infections: New Diagnostics for the Era of Malaria Elimination
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
~.. R---'------ : KASMERA: Vol
~.. r---'-------------- : KASMERA: Vol.. 9, No. 1 4,1981 Zulla. Maracaibo. Venezuela. PROTOZOOS DE VENEZUELA Carlos Diaz Ungrla· Tratamos con este trabajo de ofrecer una puesta al día de los protozoos estudiados en nuestro país. Con ello damos un anticipo de lo que será nuestra próxima obra, en la cual, además de actualizar los problemas taxonómicos, pensamos hacer énfasis en la ultraestructura, cuyo cono cimiento es básico hoy día para manejar los protozoos, comQ animales unicelulares que son. Igualmente tratamos de difundir en nuestro medio la clasificación ac tual, que difiere tanto de la que se sigue estudiando. y por último, tratamos de reunir en un solo trabajo toda la infor mación bibliográfica venezolana, ya que es sabido que nuestros autores se ven precisados a publicar en revistas foráneas, y esto se ha acentuado en los últimos diez (10) años. En nuestro trabajo presentaremos primero la lista alfabética de los protozoos venezolanos, después ofreceremos su clasificación, para terminar por distribuirlos de acuerdo a sus hospedadores . • Profesor de la Facultad de Ciencias Veterinarias de la Universidad del Zulia. Maracaibo-Venezuela. -147 Con la esperanza de que nuestro trabajo sea útil anuestros colegas. En Maracaibo, abril de mil novecientos ochenta. 1 LISTA ALF ABETICA DE LOS PROTOZOOS DE VENEZUELA Babesia (Babesia) bigemina, Smith y Kilbome, 1893. Seflalada en Bos taurus por Zieman (1902). Deutsch. Med. Wochens., 20 y 21. Babesia (Babesia) caballi Nuttall y Stricldand. 1910. En Equus cabal/uso Gallo y Vogelsang (1051). Rev. Med.Vet. y Par~. 10 (1-4); 3. Babesia (Babesia) canis. Piana y Galli Valerio, 1895. En Canis ¡ami/iaris. -
Plasmodium Scientific Classification
Plasmodium - Wikipedia https://en.wikipedia.org/wiki/Plasmodium From Wikipedia, the free encyclopedia Plasmodium is a genus of parasitic alveolates, many of which cause malaria in their hosts.[1] The parasite always has two hosts in its life Plasmodium cycle: a Dipteran insect host and a vertebrate host. Sexual reproduction always occurs in the insect, making it the definitive host.[2] The life-cycles of Plasmodium species involve several different stages both in the insect and the vertebrate host. These stages include sporozoites, which are injected by the insect vector into the vertebrate host's blood. Sporozoites infect the host liver, giving rise to merozoites and (in some species) hypnozoites. These move into the blood where they infect red blood cells. In the red blood cells, the parasites can either form more merozoites to infect more red blood cells, or produce gametocytes which are taken up by insects which feed on the vertebrate host. In the insect host, gametocytes merge to sexually reproduce. After sexual reproduction, parasites grow into new sporozoites, which move to the insect's salivary glands, from which they can infect a vertebrate False-colored electron micrograph of a [1] host bitten by the insect. Plasmodium sp. sporozoite. The genus Plasmodium was first described in 1885. It now contains Scientific classification about 200 species, which are spread across the world where both the (unranked): SAR insect and vertebrate hosts are present. Five species regularly infect humans, while many others infect birds, reptiles, -
Malaria Brochure.Pub
General Information Susceptible Populations The word Malaria is from the Italian/ All individuals, both sexes or any age Latin languages meaning “bad air”. The disease group are susceptible to the malaria parasite. In is caused by protozoan parasites that attack some areas of California the risk of infection is MalariaMalaria and destroy red blood cells. The parasites are greater because of the high number of imported transmitted through the bite of an infected mos- malarial cases as well as the presence of higher “Intermittent quito. numbers of Anopheline mosquitoes. Fever” At present malaria transmission occurs Protection from Mosquito Bites mainly in the tropical and subtropical regions of The greatest risk of mosquito bites occurs the world. Every year, thousands of cases of during the first few hours after sunset. Some ways malaria are imported into the United States as you can reduce the risk of being bitten by mosqui- a result of infections that were acquired in other toes are: countries. Every California county has reported ♦ Reduce outdoor activities during the first few imported malaria cases. hours after sunset Occasionally, transmission occurs within ♦ Wear long sleeved clothing and long pants the United States by local mosquitoes. The ♦ Apply insect repellent as needed according to the product label source of parasites in those instances is from an infected person arriving from another country. A ♦ Ensure that door and window screens are in good repair notable outbreak occurred in San Diego county in 1986. Without prompt action by health offi- Sutter-Yuba Mosquito & cials and mosquito control agencies, malaria For more information about mosquitoes and the Vector Control District diseases they can transmit contact your local mos- could again become established in California. -
A Meta-Analysis of the Genus Alouatta
Chapter 17 Ecological and Anthropogenic Influences on Patterns of Parasitism in Free-Ranging Primates: A Meta-analysis of the Genus Alouatta Martin M. Kowalewski and Thomas R. Gillespie 17.1 Introduction Parasites play a central role in tropical ecosystems, affecting the ecology and evolution of species interactions, host population growth and regulation, and com- munity biodiversity (Esch and Fernandez 1993; Hudson, Dobson and Newborn 1998; Hochachka and Dhondt 2000; Hudson et al. 2002). Our understanding of how nat- ural and anthropogenic factors affect host-parasite dynamics in free-ranging pri- mate populations (Gillespie, Chapman and Greiner 2005a; Gillespie, Greiner and Chapman 2005b; Gillespie and Chapman 2006) and the relationship between wild primates and human health in rural or remote areas (McGrew et al. 1989; Stuart et al. 1990; Muller-Graf, Collins and Woolhouse 1997; Gillespie et al. 2005b; Pedersen et al. 2005) remain largely unexplored. The majority of emerging infec- tious diseases are zoonotic – easily transferred among humans, wildlife, and domes- ticated animals – (Nunn and Altizer 2006). For example, Taylor, Latham and Woolhouse (2001) found that 61% of human pathogens are shared with animal hosts. Identifying general principles governing parasite occurrence and prevalence is critical for planning animal conservation and protecting human health (Nunn et al. 2003). In this review, we examine how various ecological and anthropogenic factors affect patterns of parasitism in free-ranging howler monkeys (Genus Alouatta). 17.1.1 Evidence of the Relationships Between Howlers and Parasitic Diseases in South America The genus Alouatta is the most geographically widespread non-human primate in South America, with 8 of 10 Alouatta species ranging from Northern Colombia M.M. -
Marmoset Models Commonly Used in Biomedical Research
Comparative Medicine Vol 53, No 4 Copyright 2003 August 2003 by the American Association for Laboratory Animal Science Pages 383-392 Overview Marmoset Models Commonly Used in Biomedical Research Keith Mansfield, DVM The common marmoset (Callithrix jacchus ) is a small, nonendangered New World primate that is native to Brazil and has been used extensively in biomedical research. Historically the common marmoset has been used in neuro- science, reproductive biology, infectious disease, and behavioral research. Recently, the species has been used in- creasingly in drug development and safety assessment. Advantages relate to size, cost, husbandry, and biosafety issues as well as unique physiologic differences that may be used in model development. Availability and ease of breeding in captivity suggest that they may represent an alternative species to more traditional nonhuman pri- mates. The marmoset models commonly used in biomedical research are presented, with emphasis on those that may provide an alternative to traditional nonhuman primate species. In contrast to many other laboratory animal species, use of nonhuman primate species. nonhuman primates has increased in recent years and there Common marmosets represent an attractive alternative non- currently exists a substantial shortage of such animals for use human primate species for a variety of reasons. These small in biomedical research. The national supply of macaque mon- hardy animals breed well in captivity, with reproductive effi- keys has been unable to meet the current or projected demands ciency that may exceed 150% (number of live born per year/ of the research community. Although efforts are underway to number of breeding females). Furthermore, sexual maturity is increase domestic production and to identify alternative foreign reached by 18 months of age, allowing rapid expansion of exist- sources, this will unlikely alter short-term availability. -
The Historical Ecology of Human and Wild Primate Malarias in the New World
Diversity 2010, 2, 256-280; doi:10.3390/d2020256 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article The Historical Ecology of Human and Wild Primate Malarias in the New World Loretta A. Cormier Department of History and Anthropology, University of Alabama at Birmingham, 1401 University Boulevard, Birmingham, AL 35294-115, USA; E-Mail: [email protected]; Tel.: +1-205-975-6526; Fax: +1-205-975-8360 Received: 15 December 2009 / Accepted: 22 February 2010 / Published: 24 February 2010 Abstract: The origin and subsequent proliferation of malarias capable of infecting humans in South America remain unclear, particularly with respect to the role of Neotropical monkeys in the infectious chain. The evidence to date will be reviewed for Pre-Columbian human malaria, introduction with colonization, zoonotic transfer from cebid monkeys, and anthroponotic transfer to monkeys. Cultural behaviors (primate hunting and pet-keeping) and ecological changes favorable to proliferation of mosquito vectors are also addressed. Keywords: Amazonia; malaria; Neotropical monkeys; historical ecology; ethnoprimatology 1. Introduction The importance of human cultural behaviors in the disease ecology of malaria has been clear at least since Livingstone‘s 1958 [1] groundbreaking study describing the interrelationships among iron tools, swidden horticulture, vector proliferation, and sickle cell trait in tropical Africa. In brief, he argued that the development of iron tools led to the widespread adoption of swidden (―slash and burn‖) agriculture. These cleared agricultural fields carved out a new breeding area for mosquito vectors in stagnant pools of water exposed to direct sunlight. The proliferation of mosquito vectors and the subsequent heavier malarial burden in human populations led to the genetic adaptation of increased frequency of sickle cell trait, which confers some resistance to malaria. -
Place De La Biologie Moléculaire Dans L'épidémiologie, Le Diagnostic Et L'évaluation De La Chimiorésistance Du Paludi
Place de la biologie moléculaire dans l’épidémiologie, le diagnostic et l’évaluation de la chimiorésistance du paludisme en République Démocratique du Congo Dieudonné Mvumbi Makaba, MD, MSc. Département des Sciences de Base Faculté de Médecine Université de Kinshasa Thèse soutenue et défendue publiquement en vue de l'obtention du grade de Docteur en Sciences Biomédicales (PhD) Promoteur: Co-promoteur: Marie-Pierre Hayette, PhD Jean-Marie Kayembe, PhD Ulg Unikin Thèse Place de la biologie moléculaire dans l’épidémiologie, le diagnostic et l’évaluation de la chimiorésistance du paludisme en République Démocratique du Congo Par Dieudonné Mvumbi Makaba Présentée et soutenue publiquement en vue de l'obtention du grade de Docteur en Sciences Biomédicales (PhD) Le 11 février 2017 Composition du Jury : 1. Professeur Marie-Pierre Hayette, Université de Liège (promoteur) 2. Professeur Jean-Marie Kayembe, Université de Kinshasa (co-promoteur) 3. Professeur Hippolyte Situakibanza, Université de Kinshasa 4. Professeur Gauthier Mesia, Université de Kinshasa 5. Professeur Patrick De Mol, Université de Liège 6. Professeur Dieudonné Mumba, Université de Kinshasa 7. Professeur Prosper Lukusa, Katholieke Universiteit Leuven Université de Kinshasa Faculté de Médecine Département des Sciences de Base Service de Biologie Moléculaire Place de la biologie moléculaire dans l’épidémiologie, le diagnostic et l’évaluation de la chimiorésistance du paludisme en République Démocratique du Congo Dieudonné Mvumbi Makaba Promoteur Co-promoteur Marie-Pierre Hayette, PhD Jean-Marie Kayembe N., PhD A ma famille … Table des matières Liste des figures iii Liste des tableaux iv Liste des abréviations v Remerciements vi Résumé ix Introduction………………………………………………………….1 Partie I: Etat des connaissances……………………………………3 I.1. -
Ovale Wallikeri
A New Real-Time PCR for the Detection of Plasmodium ovale wallikeri Adriana Calderaro1*, Giovanna Piccolo1, Chiara Gorrini1, Sara Montecchini1, Sabina Rossi1, Maria Cristina Medici1, Carlo Chezzi1, Georges Snounou2,3 1 Department of Pathology and Laboratory Medicine, Section of Microbiology, University of Parma, Parma, Italy, 2 Universite´ Pierre et Marie Curie - Paris VI, UMR S 945, Paris, France, 3 Institut National de la Sante´ et de la Recherche Me´dicale UMR S 945, Paris, France Abstract It has been proposed that ovale malaria in humans is caused by two closely related but distinct species of malaria parasites: P. ovale curtisi and P. ovale wallikeri. We have extended and optimized a Real-time PCR assay targeting the parasite’s small subunit ribosomal RNA (ssrRNA) gene to detect both these species. When the assay was applied to 31 archival blood samples from patients diagnosed with P. ovale, it was found that the infection in 20 was due to P. ovale curtisi and in the remaining 11 to P. ovale wallikeri. Thus, this assay provides a useful tool that can be applied to epidemiological investigations of the two newly recognized distinct P. ovale species, that might reveal if these species also differ in their clinical manifestation, drugs susceptibility and relapse periodicity. The results presented confirm that P. ovale wallikeri is not confined to Southeast Asia, since the majority of the patients analyzed in this study had acquired their P. ovale infection in African countries, mostly situated in West Africa. Citation: Calderaro A, Piccolo G, Gorrini C, Montecchini S, Rossi S, et al. (2012) A New Real-Time PCR for the Detection of Plasmodium ovale wallikeri. -
Highly Rearranged Mitochondrial Genome in Nycteria Parasites (Haemosporidia) from Bats
Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats Gregory Karadjiana,1,2, Alexandre Hassaninb,1, Benjamin Saintpierrec, Guy-Crispin Gembu Tungalunad, Frederic Arieye, Francisco J. Ayalaf,3, Irene Landaua, and Linda Duvala,3 aUnité Molécules de Communication et Adaptation des Microorganismes (UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, CP52, 75005 Paris, France; bInstitut de Systématique, Evolution, Biodiversité (UMR 7205), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, Université Pierre et Marie Curie, CP51, 75005 Paris, France; cUnité de Génétique et Génomique des Insectes Vecteurs (CNRS URA3012), Département de Parasites et Insectes Vecteurs, Institut Pasteur, 75015 Paris, France; dFaculté des Sciences, Université de Kisangani, BP 2012 Kisangani, Democratic Republic of Congo; eLaboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Inserm U1016, CNRS UMR 8104, Cochin Institute, 75014 Paris, France; and fDepartment of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 Contributed by Francisco J. Ayala, July 6, 2016 (sent for review March 18, 2016; reviewed by Sargis Aghayan and Georges Snounou) Haemosporidia parasites have mostly and abundantly been de- and this lack of knowledge limits the understanding of the scribed using mitochondrial genes, and in particular cytochrome evolutionary history of Haemosporidia, in particular their b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria basal diversification. parasites isolated from Nycteridae bats has been recently reported. Nycteria parasites have been primarily described, based on Bats are hosts to a diverse and profuse array of Haemosporidia traditional taxonomy, in African insectivorous bats of two fami- parasites that remain largely unstudied. -
Desarrollo De Vacunas Frente a La Malaria
DESARROLLO DE VACUNAS FRENTE A LA MALARIA TRABAJO DE FIN DE GRADO Autor: Taranu, Alexandru Mirel Directores: Mesa Valle, Concepción María Garrido Cárdenas, José Antonio DEPARTAMENTO DE BIOLOGÍA Y GEOLOGÍA ÁREA DE PARASITOLOGÍA Grado en Biotecnología Junio, 2020 ÍNDICE 1. RESUMEN/ABSTRACT ..............................................................................................2 1.1. Resumen ......................................................................................................................2 1.2. Abstract .......................................................................................................................2 2. OBJETIVOS ...............................................................................................................3 3. INTRODUCCIÓN .......................................................................................................3 4. EL PARÁSITO ............................................................................................................5 4.1. Clasificación taxonómica .............................................................................................5 4.2. Ciclo de vida de Plasmodium .......................................................................................5 5. LA ENFERMEDAD .....................................................................................................6 5.1. Sintomatología ............................................................................................................6 5.2. Epidemiología ..............................................................................................................7 -
Plasmodium Malariae and P. Ovale Genomes Provide Insights Into Malaria Parasite Evolution Gavin G
OPEN LETTER doi:10.1038/nature21038 Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution Gavin G. Rutledge1, Ulrike Böhme1, Mandy Sanders1, Adam J. Reid1, James A. Cotton1, Oumou Maiga-Ascofare2,3, Abdoulaye A. Djimdé1,2, Tobias O. Apinjoh4, Lucas Amenga-Etego5, Magnus Manske1, John W. Barnwell6, François Renaud7, Benjamin Ollomo8, Franck Prugnolle7,8, Nicholas M. Anstey9, Sarah Auburn9, Ric N. Price9,10, James S. McCarthy11, Dominic P. Kwiatkowski1,12, Chris I. Newbold1,13, Matthew Berriman1 & Thomas D. Otto1 Elucidation of the evolutionary history and interrelatedness of human parasite P. falciparum than in its chimpanzee-infective relative Plasmodium species that infect humans has been hampered by a P. reichenowi8. In both cases, the lack of diversity in human-infective lack of genetic information for three human-infective species: P. species suggests recent population expansions. However, we found malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri)1. that a species that infects New World primates termed P. brasilianum These species are prevalent across most regions in which malaria was indistinguishable from P. malariae (Extended Data Fig. 2b), as is endemic2,3 and are often undetectable by light microscopy4, previously suggested9. Thus host adaptation in the P. malariae lineage rendering their study in human populations difficult5. The exact appears to be less restricted than in P. falciparum. evolutionary relationship of these species to the other human- Using additional samples to calculate standard measures of molecular infective species has been contested6,7. Using a new reference evolution (Methods; Supplementary Information), we identified a genome for P. -
Structural and Functional Insights Into Apicomplexan Gliding and Its Regulation
Structural and functional insights into apicomplexan gliding and its regulation Dissertation to obtain the degree of Doctor of Natural Sciences University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences at the Department of Biology by Samuel Pažický from Bratislava, Slovakia Hamburg 2020 Examination commission Examination commission chair Prof. Dr. Jörg Ganzhorn (University of Hamburg) Examination commission members Prof. Jonas Schmidt-Chanasit (Bernhard Nocht Institute for Tropical Medicine and University of Hamburg) Prof. Tim Gilberger (Bernhard Nocht Institute for Tropical Medicine, Centre for Structural Systems Biology and University of Hamburg) Dr. Maria Garcia-Alai (European Molecular Biology Laboratory and Centre for Structural Systems Biology) Dr. Christian Löw (European Molecular Biology Laboratory and Centre for Structural Systems Biology) Date of defence: 29.01.2021 This work was performed at European Molecular Biology Laboratory, Hamburg Unit under the supervision of Dr. Christian Löw and Prof. Tim-Wolf Gilberger. The work was supported by the Joachim Herz Foundation. Evaluation Prof. Dr. rer. nat. Tim-Wolf Gilberger Bernhard Nocht Institute for Tropical Medicine (BNITM) Department of Cellular Parasitology Hamburg Dr. Christian Löw European Molecular Biology Laboratory Hamburg unit Hamburg Prof. Dr. vet. med. Thomas Krey Hannover Medical School Institute of Virology Declaration of academic honesty I hereby declare, on oath, that I have written the present dissertation by my own and have not used other than the acknowledged resources and aids. Eidesstattliche Erklärung Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Hamburg, 22.9.2020 Samuel Pažický List of contents Declaration of academic honesty 4 List of contents 5 Acknowledgements 6 Summary 7 Zusammenfassung 10 List of publications 12 Scientific contribution to the manuscript 14 Abbreviations 16 1.