A Sustainable Slashing Industry Using Biodegradable Sizes from Modified

Total Page:16

File Type:pdf, Size:1020Kb

A Sustainable Slashing Industry Using Biodegradable Sizes from Modified University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biological Systems Engineering: Papers and Biological Systems Engineering Publications 2015 A Sustainable Slashing Industry Using Biodegradable Sizes from Modified oS y Protein To Replace Petro-Based Poly(Vinyl Alcohol) Yi Zhao University of Nebraska–Lincoln, [email protected] Yuzhu Zhao Donghua University Helan Xu University of Nebraska – Lincoln, [email protected] Yiqi Yang University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosysengfacpub Part of the Bioresource and Agricultural Engineering Commons, Environmental Engineering Commons, and the Other Civil and Environmental Engineering Commons Zhao, Yi; Zhao, Yuzhu; Xu, Helan; and Yang, Yiqi, "A Sustainable Slashing Industry Using Biodegradable Sizes from Modified Soy Protein To Replace Petro-Based Poly(Vinyl Alcohol)" (2015). Biological Systems Engineering: Papers and Publications. 543. https://digitalcommons.unl.edu/biosysengfacpub/543 This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biological Systems Engineering: Papers and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article pubs.acs.org/est A Sustainable Slashing Industry Using Biodegradable Sizes from Modified Soy Protein To Replace Petro-Based Poly(Vinyl Alcohol) † ‡ † † § ∥ Yi Zhao, Yuzhu Zhao, Helan Xu, and Yiqi Yang*, , , † Department of Textiles, Merchandising & Fashion Design, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0802, United States ‡ Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Donghua University, Shanghai, 201620, China § Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0802, United States ∥ Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0802, United States *S Supporting Information ABSTRACT: Biodegradable sizing agents from triethanol- amine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Non- biodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far. Soy protein with good biodegradability showed potential as warp sizes in our previous studies. However, soy protein sizes lacked film flexibility and adhesion for required high-speed weaving. Additives with multiple hydroxyl groups, nonlinear molecule, and electric charge could physically modify secondary structure of soy protein and lead to about 23.6% and 43.3% improvement in size adhesion and ability of hair coverage comparing to unmodified soy protein. Industrial weaving results showed TEA-soy protein had relative weaving efficiency 3% and 10% higher than PVA and chemically modified starch sizes on polyester/cotton fabrics, and had relative weaving efficiency similar to PVA on polyester − fabrics, although with 3 6% lower add-on. In addition, TEA-soy sizes had a BOD5/COD ratio of 0.44, much higher than 0.03 for PVA, indicating that TEA-soy sizes were easily biodegradable in activated sludge. ■ INTRODUCTION tion,13 and ultrafiltration14 were also developed to reuse PVA. Textile industries consume large volume of water, non- However, these methods had fatal drawbacks, including long operation time and high costs, and therefore have not been degradable or toxic chemicals, and become a major contributor 6 to worldwide water pollution. Petroleum-based chemicals like used for real industrial applications. On the other hand, ffl various types of chemically modified starch have been explored poly(vinyl alcohol) (PVA) in textile desizing e uent result in a 15,16 high wastewater load and amount to a COD of 40−80% of the to replace PVA. Unfortunately, the properties of starch- entire load from a textile finishing industry.1 Also, PVA has based sizes were not comparable to PVA on polyesters and been found to be refractory pollutants in textile effluent.2 their blends. The price of starch is escalating recently as its Studies have shown that only 15−25% of PVA was degraded in demand increases much faster than production in food and 3 17 fi anaerobic sludge after around 300 days. Discharged PVA biofuel industries. In addition, some chemical modi cations effluent affects both the water quality, the microbial, and could decrease the biodegradability of starch and increase the aquatic flora. In addition, PVA has the ability to mobilize heavy price, making modified starch unattractive as a slashing metals from sediments in water streams and lakes and caused chemical compared to PVA. severe environmental problems.4,5 Currently, some European Soy protein, wheat gluten and keratin, have been found to countries have enacted several regulations to limit the industrial have good biodegradability, film forming properties and use of PVA sizes. potential of being as textile sizes in our previous lab-scale A considerable amount of studies on the degradation, reuse and substitution of PVA have been carried out. Most of the Received: October 12, 2014 degradation studies focused on chemical and photochemical Revised: January 22, 2015 − oxidation,6 9 enzyme biodegradation,3 and photocatalytic Accepted: January 23, 2015 degradation.10 Approaches, such as coagulation,11,12 adsorp- Published: February 3, 2015 © 2015 American Chemical Society 2391 DOI: 10.1021/es504988w Environ. Sci. Technol. 2015, 49, 2391−2397 Environmental Science & Technology Article − study.18 20 However, without modification, these proteins and tested using a gauge length of 2 in. and crosshead speed of formed brittle films and showed low adhesion to polyester 10 mm/min. and polyester/cotton yarns, therefore failed to protect yarns Intrinsic Viscosity of Sizing Solutions. The intrinsic during high-speed weaving. viscosities of the additive-free soy protein, TEA-soy, diethanol- Many studies of additives have been done to improve amine-soy, ethanolamine-soy, propanolamine-soy, butanol- flexibility of proteins films. Polyols and amines have been used amine-soy, and glycerol-soy solutions were determined as good plasticizers for protein-based materials due to their according to ASTM standard D 2857 at a temperature of 25 ability to reduce intermolecular hydrogen bonding to increase ± 1 °C. An Ubbelohde capillary viscometer, size: 68b, capillary intermolecular spacing.21,22 Small molecules containing amino, diameter: 0.55 mm, (Zhejiang Jiaojiang glassware factory, imino group, or hydroxyl group were capable of plasticizing China) was used. The solvents were 1.2 wt % additives proteins due to their excellent compatibility and disruption of solutions. intermolecular hydrogen bonding between and within Circular Dichroism (CD). Soy protein (10 wt %) was proteins.23,24 However, there is no study reporting the dissolved in TEA-distilled water solution containing 0, 10, 20, molecular characteristics of additives that could improve size and 30 wt % TEA (base on weight of soy protein) under 90 °C performances of proteins for high-speed weaving without for 30 min. The solution was diluted with distilled water to 5 decreasing their biodegradability. mg/L before CD measurement. Each solution in a cuvette with In this study, low-cost soy protein, extracted from soy meal, a path length of 0.1 mm was continuously scanned over the the byproducts from production of edible oil and biodiesel, wavelength range of 190−250 nm at a rate of 50 nm/min on a were physically modified by specific additives, including Jasco model J-815 spectropolarimeter (Jasco, JP) triethanolamine (TEA), diethanolamine, ethanolamine, prop- Tensile Properties of Rovings. Soy protein (10 wt %) anolamine, butanolamine, and glycerol. Conformational change were pretreated by adding different types and contents of of soy protein was induced and found highly relevant to their additives (0 wt % to 30 wt % TEA or glycerol) in distilled water final sizing performance. Tensile properties of TEA soy under 90 °C for 30 min. Before heating, the pH of solutions proteins (TEA-soy) films, adhesion properties, ability to were adjusted to pH 10 by 10 wt % sodium hydroxide. After cover hair, desizing properties and biodegradability were tested. pretreatment, the pH of the solution was adjusted to pH 7 by Industrial-scale weaving trials were also carried out to verify the adding acetic acid. The rovings wound on frames were potential of using TEA-soy to size polyester and polyester/ immersed in the sizing solution at 90 °C for 5 min. Without cotton for high-speed weaving. Use of TEA-soy to replace sizing, the roving had almost no strength since the roving was a nonbiodegradable PVA sizes for high-speed weaving would loose assembly of fibers. Sizing agent adhered to the fibers and remediate environmental pollution and promote sustainability provided cohesion leading to improved strength. Therefore, of textile industry. property of the sized roving was determined by their strength as an indication of adhesion of the sizes to the fibers in the
Recommended publications
  • Novel Possibilities in Chemical Pretreatment and Finishing Of
    Novel Possibilities in Chemical Pretreatment and Finishing of Cotton Fabrics Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften – Dr. rer. nat. – vorgelegt von Vahid Ameri Dehabadi geboren in Kashan/Iran Institut für Deutsches Textilforschungszentrum Nord-West gGmbH der Universität Duisburg-Essen 2012 Die vorliegende Arbeit wurde im Zeitraum von Nov 2008 bis Juli 2012 im Arbeitskreis von Prof. Dr. Gutmann am Institut für Deutsches Textilforschungszentrum Nord-West gGmbH der Universität Duisburg-Essen durchgeführt. Tag der Disputation: 10.12.2012 Gutachter: Prof. Dr. Gutmann Prof. Dr. Ulbricht Vorsitzender: Prof. Dr. Spohr Erklärung Hiermit versichere ich, dass ich die vorliegende Arbeit mit dem Titel „Novel Possibilities in Chemical Pretreatment and Finishing of Cotton Fabrics ” selbst verfasst und keine außer den angegebenen Hilfsmitteln und Quellen benutzt habe, und dass die Arbeit in dieser oder ähnlicher Form noch bei keiner anderen Universität eingereicht wurde. Essen, im Juli 2012 Vahid Ameri Dehabadi Novel Possibilities in Chemical Pretreatment and Finishing of Cotton Fabrics Von der Fakultät für Chemie der Universität Duisburg-Essen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation von Vahid Ameri Dehabadi Essen–DeutsChland Juli 2012 Acknowledgment I am heartily thankful to my supervisor Prof. Dr. JoChen Stefan Gutmann, whose enCouragement, guidanCe and support from the initial to the final level enabled me to develop an understanding of the subjeCt. I also must deClare my speCially thanks to retired Prof. Dr. ECkhard SChollmeyer, who had kindly helped and let me to Continue my study in University of Duisburg- Essen. I owe my deepest gratitude to Dr. Hans-Jürgen BusChmann and Dr.
    [Show full text]
  • Preparation of Cloth for Dyeing METHODOLOGY
    Preparation of Cloth for dyeing METHODOLOGY • PREPARATION OF CLOTH FOR DYEING • Grey cloth as it comes from the loom stage is unattractive and contains natural as well as added impurities, which hinders the successful operations of dyeing by reducing the absorbency of the fabric that’s why it is necessary to make the fabric water absorbent, by making the fabric free from any natural as well as added impurities in order to achieve successful dyeing process. • Preparation of the cotton cloth contains following steps systematically. Different Treatments to the fabric • Desizing • Scouring • Bleaching Desizing • Desizing is a process by which fatty matters are removed from the grey cloth i.e. starch etc., which applied to the warp and weft yarns during weaving in order to with stand the stress or strain. • Process of desizing can be done either by hydrolytic desizing or by oxidative desizing. • The theme of desizing process is only to convert the insoluble starch into soluble form. Starch can be hydrolyzed under the following steps: • Starch → Dextrin → Dextrin → Maltose → Glucose • (Insoluble) (Insoluble) (Soluble) (Soluble) (Soluble) Scouring • Scouring is the process by which oils, fats, waxes and other nitrogenous matters are removed. Process is carried out by adding 2g/l caustic soda, 1g/l soda ash and 1 g/l T.R.O. and then the temperature is raised to boil and process continued for 3‐4 hours under the pH 10‐ 11.5. Bleaching • A method of bleaching, the fabric is rinsed and struck against a stone, so as to remove as much of the sizing as possible.
    [Show full text]
  • Clean Trends in Textile Wet Processing Dalia F
    Science ile & Ibrahim, J Textile Sci Eng 2012, 2:5 xt e E T n f g i DOI: 10.4172/2165-8064.1000e106 o n l e a e n r r i n u Journal of Textile Science & Engineering g o J ISSN: 2165-8064 Editorial OpenOpen Access Access Clean Trends in Textile Wet Processing Dalia F. Ibrahim* Faculty of Applied Arts, Helwan University, Cairo, Egypt Textile industries are facing a challenging condition in the field of quality and productivity, due to the globalization of the world market. The highly competitive atmosphere and as the ecological parameters becoming more stringent, it becomes the prime concern of the textile processor to be conscious about quality and ecology. Again the guidelines for the textile processing industries by the pollution control boards create concern over the environment-friendliness of the processes, making it essential for innovations and changes in the processes [1]. Textile wet processing, is consider as a big and important sector in textile industry, with a wide range of procedures, which affect the final product appearance and quality. Wet processing occurs at various stages in the creation of textiles, as shown in Figure 1. This is the most widely used wet processing flow-chart on the Figure 2 contemporary textile industry. As textile industry is searching for innovative production techniques to improve the product quality, liquids and gaseous media. With reference to the properties of human as well as society requires new finishing techniques working in ear, high frequency inaudible oscillations are ultrasonic or supersonic. environmental respect [2]. In other words, while the normal range of human hearing is in between 16 Hz and 16 kHz, ultrasonic frequencies lie between 20 kHz and 500 Through this review article, we focus on the most innovated trends MHz.
    [Show full text]
  • Life Cycle Assessment of the Neutralization Process in a Textile WWTP
    Erciyes Üniversitesi Erciyes University Fen Bilimleri Enstitüsü Dergisi Journal of Institue Of Science and Technology Cilt 36, Sayı 3 , 2020 Volume 36, Issue 3, 2020 Life Cycle Assessment of the Neutralization Process in a Textile WWTP Fatma Şener Fidan *1, Emel Kızılkaya Aydoğan 1, Niğmet Uzal 2 *1 Erciyes University Engineering Faculty Department of Industrial Engineering, KAYSERI 2 Abdullah Gul University, Engineering Faculty Department of Civil Engineering, KAYSERI (Alınış / Received: 29.01.2020, Kabul / Accepted: 05.12.2020, Online Yayınlanma / Published Online: 31.12.2020) Keywords Abstract: Although industrial wastewater treatment plants (WWTP) have become Life Cycle Assessment, an important part of textile facilities in reducing environmental pollution Neutralization, problems, they also produce sludge and various emissions such as high chemical Sustainability, oxygen demand, color and conductivity which have serious negative impacts on Textile Industry, the environment. One of the processes with enormous chemical consumption in Wastewater treatment, industrial WWTP of textile facilities is the neutralization process, which aims to adjust the pH of the wastewater. Neutralization processes needed to be optimized in order to determine its overall environmental impacts and then identify the most environmentally appropriate options. The aim of this study is to compare the environmental impacts of carbon dioxide and sulfuric acid, which are two alternative chemicals used in the neutralization process of textile facilities, using Life Cycle Assessment (LCA) approach. The environmental impacts resulting from the use of these two chemicals proposed according to the Reference document on Best Available Techniques (BREF) Document for Textile Industry were revealed by the CML-IA method and the gate-to-gate method.
    [Show full text]
  • Feasibility Study of Integrated Desizing, Scouring and Bleaching
    European Scientific Journal November 2016 edition vol.12, No.33 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Feasibility Study of Integrated Desizing, Scouring and Bleaching of Cotton Woven Fabric with H2O2 and Investigation of Various Physical Properties with Traditionally Treated Fabric Md. Golam Nur, Senior Lecturer Department of Textile Engineering, Primeasia University, Bangladesh M. Forhad Hossain, Associate Prof. Mustafijur Rahman, Lecturer Department of Wet Process Engineering, Bangladesh University of Textiles doi: 10.19044/esj.2016.v12n33p26 URL:http://dx.doi.org/10.19044/esj.2016.v12n33p26 Abstract Pre-treatment plays a significant role for the successful coloration of any kind of natural textile fiber like cotton, wool, flax, silk etc. This research work overview the influence of various types of traditional preparation techniques applied on cotton fiber before coloration such as desizing, scouring and bleaching. The traditional pre-treatment processes consume plenty of environmentally unfriendly chemicals those generate pollution in the effluents. In this research work an endeavour has been made to desize, scour and bleach grey cotton woven fabric simultaneously using caustic soda and hydrogen peroxide. The physical properties like whiteness, percent loss in fabric weight, tensile strength of the treated fabric have been compared with those of the fabric treated to conventional desizing, scouring and bleaching process. It is observed that the whiteness (ready for colouration) obtained by this process is quite satisfactory. Moreover, this process has some other merits such as ecological, economical, energy conserving and time saving aspect. Keywords: Desizing, Scouring, Bleaching, Pre-treatment, Hydrogen Peroxide Introduction Natural fibres like cotton, jute, flax, hemp, kenaf contain some inherent impurities such as oil, fat, wax and pectin within the fiber structure.
    [Show full text]
  • Water Pollution Reduction Through Recovery of Desizing Wastes
    .. WATER POLLUTION REDUCTION THROUGH RECOVERY OF DES IZI NG WASTES DEPARTMENT OF TEXTILE CHEMISTRY SCHOOL OF TEXTILES NORTH CAROLINA STATE UNIVERSITY RALEIGH, NORTH CAROLINA 27607 for the ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND MONITORING Project 12090 EOE January 1972 --- --- For sale by the Superintendent of Documents, U.S. Oovemment Printing Office, Wasblngton, D.C. 20402 - Prlce 60 cents This report has been reviewed by the Environnental Protec- ticn Agency and apprcYJe6 for publication. Approval does not sig:iify tnat the cofitents necessarily r-ef1ec-t the views and policies of the Envircnmntal Frotcction Agency, nor does mention of trade names or commercial products constitute endorsement or recomiendation for use. 3 ii ABSTRACT Processes for precipitating from desizing wastes the synthetic warp sizes, carboxymethyl cellulose ( CMC) and polyvinyl alcohol ( PVA) , were inve s tigate d. Carboxyme thy1 cellulose is precipitated quantitatively by certain multivalent metal salts, such as aluminum sulfate and ferric chloride. Aluminum sulfate is the more suitable for size recovery. Cycles of sizing, desizing and size recovery were performed on cotton- polyester ( 65:35) yarns, starting with commercial CMC, and continuing with only the recovered material. After four cycles, the performance of the recovered CMC on a Callaway slasher was satisfactory and results with the sized yarns on a warp-shed tester were equivalent to results with yarns sized with new CMC. Two copolymers of PVA were prepared, one of which was precipitated from dilute solution by aluminum sulfate and ferric chloride, the other by acidification, Preliminary sizing trials with small samples of mater- ials indicate that these, or similar, copolymers may be effective, recovera- ble warp sizes.
    [Show full text]
  • Denim Fabric Manufacturing
    TECHNICAL BULLETIN 6399 Weston Parkway, Cary, North Carolina, 27513 • Telephone (919) 678-2220 ISP 1010 DENIM FABRIC MANUFACTURING This report is sponsored by the Importer Support Program and written to address the technical needs of product sourcers. © 2004 Cotton Incorporated. All rights reserved; America’s Cotton Producers and Importers. PROCESS FLOW FOR DENIM MANUFACTURING The warp yarn (length-wise) used in denim fabrics is uniquely prepared for denim manufacturing compared to conventional woven fabrics. The yarn goes through numerous processing steps before it is placed on the weaving machine. Unlike the warp yarn, most filling yarn (width-wise) is put onto yarn packages and delivered directly to the weaving machine where it is inserted into the fabric without any further preparation in the same manner as conventional woven fabrics. The following flow chart reveals the necessary steps in the manufacture of denim fabrics, beginning with the production of the warp yarns used. The chart forms an outline for most of the topics that will be covered in this bulletin. Yarn Spinning Ball Warping Dye Beam Warping Beam Warping Rope Dyeing Beam Dyeing Slasher Dyeing Slashing (undyed) Re-Beaming Slashing Weaving Weaving Desizing Finishing Slashing Weaving Finishing Dyeing Weaving Finishing Finishing Finishing Finished Fabric Operations Figure 1. Process Flow for Warp Yarn in Denim Manufacturing 1 DENIM YARNS Yarn Numbering Refer to Cotton Incorporated’s technical bulletin entitled “Yarn Numbering Systems-TRI 1014” for further information on yarn numbering systems and how to convert from one system to another. Common Yarn Sizes for Denim Warp yarns for bottom weight jeans typically range in size from Ne 4.0 to Ne 12.5/1.
    [Show full text]
  • Plasma Technology & Its Application in Textile Wet Processing
    International Journal of Engineering Research & Technology (IJERT) Vol. 1 ISSN:Issue 5,2278-0181 July - 2012 PLASMA TECHNOLOGY & ITS APPLICATION IN TEXTILE WET PROCESSING S. K. Chinta*, S. M. Landage and Sathish Kumar. M D.K.T.E.Society‟s, Textile & Engineering Institute, Ichalkaranji, Maharashtra, India Abstract Plasma treatments are gaining popularity in the textile industry due to their numerous advantages over conventional wet processing techniques. The plasma treatment does not alter the bulk property. Plasma surface treatments show distinct advantages, because they are able to modify the surface properties of inert materials, sometimes with environment friendly devices. Application of “Plasma Technology” in chemical processing of textiles is one of the revolutionary ways to enhance the textile wet processing right from pretreatments to finishing. This paper deals with application of plasma technology for cotton pretreatment and finishing. Key words: Cotton, Dyeing, Finishing, Pretreatments, Plasma Technology 1. Introduction Textiles have undergone chemical processing since time immemorial. The textile industry is searching for innovative production techniques to improve the product quality, as well as society requires new 1 www.ijert.org 1 International Journal of Engineering Research & Technology (IJERT) Vol. 1 ISSN:Issue 5,2278-0181 July - 2012 finishing techniques working in environmental respect. Over recent years, physicochemical techniques have become more commercially attractive and have begun to overcome conventional wet chemical methods for property modification. The importance of surface modification of textile materials extends over a wide range of alterations or embedded selective additions, to provide desired single or multi features for various applications. It is a highly focused area of research in which alterations to physical and/or chemical properties lead to new textile products that provide new applications or satisfy specific needs.
    [Show full text]
  • Chemistry & Technology of Fabric Preparation & Finishing
    Chemistry & Technology of Fabric Preparation & Finishing by Dr. Charles Tomasino Department of Textile Engineering, Chemistry & Science College of Textiles North Carolina State University Raleigh, North Carolina CHEMISTRY & TECHNOLOGY OF FABRIC PREPARATION & FINISHING BY DR. CHARLES TOMASINO DEPARTMENT OF TEXTILE ENGINEERING, CHEMISTRY AND SCIENCE COLLEGE OF TEXTILES NORTH CAROLINA STATE UNIVERSITY All rights reserved. Copyright © 1992 by Charles Tomasino No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the author PREFACE Global competition has caused the US textile industry to modernize and become cost competitive because developing nations have discovered that exporting textile products to the USA is an attractive way to enhance their economic growth. Their low labor costs have pressured domestic producers into replacing labor intensive manufacturing equipment with automated, sophisticated, efficient, high- technology machinery. The industry has focused on reducing costs, improving quality and developing quick turnaround and response scenarios. These forces have impacted the number and quality of the technical work force. Graduates with a background in computers and information management are making up a larger portion of the entry-level technical staff. Process engineers dedicated to improving quality and efficiency make up the rest. Most of the entry level work force has little or no exposure to textile education or training, they have to rely on experienced technologists to guide and train them. Unfortunately as the older technologists retire, they take with them valuable technical knowledge and know-how leaving the skeletal remains technically unsupported.
    [Show full text]
  • One Bath Enzymatic Desizing, Scouring and Activated Bleaching
    ABSTRACT LI, MIN. An Environmentally Benign Approach to Cotton Preparation: One Bath Enzymatic Desizing, Scouring and Activated Bleaching. (Under the direction of Dr. David Hinks and Dr. Ahmed El-Shafei). Current textile wet processing of woven cotton fabrics typically involves at least three stages: desizing, scouring and bleaching. The above sequences are often done separately, which involve high resource consumption and fiber damage, especially for conventional rapid hot bleaching and scouring. In this thesis, a novel process for desizing, bleaching and scouring using one bath is described in which an innovative bleach activator, N-[4- (triethylammoniomethyl)benzoyl]-butyrolactam chloride (TBBC) is employed to enable effective scouring and bleaching at reduced time and temperature compared to conventional cotton preparation. TBBC reacts with H2O2 to generate a peracid that is a more kinetically active oxidant than the perhydroxy anion that is the active oxidizer in conventional alkaline hydrogen peroxide bleaching. TBBC-activated bleaching is capable of bleaching at 50 °C at near neutral pH. Data show that effective preparation in terms of desizing, scouring, whiteness and fabric strength was achieved in a one-bath two-step process. While absorbency of the prepared fabric using the TBBC-based process was inferior to when conventional desizing, scouring and bleaching was employed, the energy, time and water consumption required were substantially reduced. Despite inferior wetting properties, the dyeing performance of the fabrics prepared using the novel process was satisfactory. TBBC-based prepared fabric was compared to conventional processes in both dyeing using single dyes as well as trichromatic dyeing. The results demonstrated that the fabric prepared using the TBBC-activated process can provide a base white which enables the fabric to dye to a similar shade as its conventionally prepared counterpart, although some adjustment may be required for the base white when predicting recipes in recipe formulation models.
    [Show full text]
  • Cold-Pad-Batch Bio-Pretreatment of Cotton Woven Fabrics: a Case Report on Industrial Trials
    Current Trends in Fashion Technology & Textile Engineering ISSN: 2577-2929 Case Report Curr Trends Fashion Technol Textile Eng Volume 1- Issue 5 - December 2017 Copyright © All rights are reserved by Eun Kyung Choe DOI: 10.19080/CTFTTE.2017.01.555573 Cold-Pad-Batch Bio-Pretreatment of Cotton Woven Fabrics: A Case Report on Industrial Trials Eun Kyung Choe1*, Juhea Kim1 and Sung Dong Kim2 1Textile Materials Division, Korea Institute of Industrial Technology, Korea 2Department of Organic and Nano System Engineering, Konkuk University, Korea Submission: October 20, 2017; Published: December 13, 2017 *Corresponding author: Eun Kyung Choe, Textile Materials Division, Korea Institute of Industrial Technology, 143 Hanggaul-ro, Sangrok-gu, Ansan-15588, Korea, Tel: ; Email: Abstract In spite of technologically proved bioscouring using pectinase that substitutes for conventional alkaline scouring, the batch-wise bioscouring in a single bath is sometimes not welcome to certain companies where continuous or cold-pad-batch alkaline pretreatment for cotton woven fabrics used to be done with pad steamer or pad-batch equipments because of low productivity of single batch-wise process as well as the company’s existing unique facility. To increase the applicability of enzymatic bioscouring, two industrial trials of bio-pretreatment by cold-pad- batch method were carried out in two different sites using their own pad-batch facilities. Simultaneous enzymatic desizing and scouring for cotton and cotton-blend woven fabrics were carried out using amylase of low-temperature type and alkaline pectinase with 100% cotton woven fabric of 200 yard length and cotton/nylon/polyurethane woven fabric of 1000 yard length by the cold-pad-batch method.
    [Show full text]
  • Biovision in Textile Wet Processing Industry- Technological Challenges
    Volume 7, Issue 1, Spring 2011 Biovision in Textile Wet Processing Industry- Technological Challenges C. Vigneswaranb, N. Anbumania and M. Ananthasubramanianc aDepartment of Textile Technology, bDepartment of Fashion Technology and cDepartment of Biotechnology PSG College of Technology Coimbatore – 641 004, India ABSTRACT Environmental consciousness is one of the major concerns for textile wet processing industry as the industry contributes much to industrial pollution problems facing the country. Such pollutants as such as lime, sodium sulfide, salt, solvents, synthetic pigments come mainly from desizing, scouring, bleaching and dyeing processes in textile wet processing. In order to overcome the hazards caused by the chemical effluents, use of enzymes as a viable alternative has been resorted to in preparatory dyeing operations such as desizing, scouring, and bleaching treatments. This review focuses on the use of microbial enzymes as an alternate technology to the conventional methods, and highlights the importance of these enzymes in minimizing the pollution load. Environmental pollution has been a major irritant to industrial development. Also in this paper we have discussed the advantages and limitations of bioprocessing techniques in the various textile wet processing such as desizing, scouring, bleaching, biopolishing, bio-singeing and bio-decoloration in the dyeing effluents for cellulosic and non-cellulosic materials. Keywords: enzymes, dyeing, wet processing, environmental pollution 1. INTRODUCTION also necessary to get optimum results. In the conventional textile wet Chemical and chemical-based industries are processing, the grey fabric has to undergo a the prime targets of the environmentalists series of chemical treatments before it turns for their crusade against pollution, and into a finished fabric.
    [Show full text]