Herman Bloch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Burton Introduces Thermal Cracking for Refining Petroleum John Alfred Heitmann University of Dayton, [email protected]
University of Dayton eCommons History Faculty Publications Department of History 1991 Burton Introduces Thermal Cracking for Refining Petroleum John Alfred Heitmann University of Dayton, [email protected] Follow this and additional works at: https://ecommons.udayton.edu/hst_fac_pub Part of the History Commons eCommons Citation Heitmann, John Alfred, "Burton Introduces Thermal Cracking for Refining Petroleum" (1991). History Faculty Publications. 92. https://ecommons.udayton.edu/hst_fac_pub/92 This Encyclopedia Entry is brought to you for free and open access by the Department of History at eCommons. It has been accepted for inclusion in History Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. 573 BURTON INTRODUCES THERMAL CRACKING FOR REFINING PETROLEUM Category of event: Chemistry Time: January, 1913 Locale: Whiting, Indiana Employing high temperatures and pressures, Burton developed a large-scale chem ical cracking process, thus pioneering a method that met the need for more fuel Principal personages: WILLIAM MERRIAM BURTON (1865-1954), a chemist who developed a commercial method to convert high boiling petroleum fractions to gas oline by "cracking" large organic molecules into more useful and marketable smaller units ROBERT E. HUMPHREYS, a chemist who collaborated with Burton WILLIAM F. RODGERS, a chemist who collaborated with Burton EUGENE HOUDRY, an industrial scientist who developed a procedure us ing catalysts to speed the conversion process, which resulted in high octane gasoline Summary of Event In January, 1913, William Merriam Burton saw the first battery of twelve stills used in the thermal cracking of petroleum products go into operation at Standard Oil of Indiana's Whiting refinery. -
Keynote and Plenary Speakers Speaker Biographies
AIChE Midwest Regional Conference March 13-14, 2018 – Chicago, IL Keynote and Plenary Speakers Tuesday, March 13, 2018 Jim Rekoske, Chief Technology Officer, UOP/Honeywell 8:15-9:30am – Sponsored by: Refining & Petrochemical Processing Russell A. Ogle, Principal Engineer, Exponent 12:45-1:45pm – Sponsored by: Process Safety and Occupational Health Christopher W. Jones, Professor and Associate Vice President for Research, Georgia Tech 12:45-1:45pm – Sponsored by: Catalysis & Reaction Engineering Wednesday, March 14, 2018 John A. Rodgers, Professor, Northwestern University 8:15-9:30am – Sponsored by: Biomedical, Pharmaceutical & Nano-Engineering Thomas Foust, Director, National Bioenergy Center, NREL 8:15-9:30am – Sponsored by: Energy and Sustainability Kimberly Grey, Professor and Chair, Civil and Environmental Engineering, Northwestern University 12:45-1:45pm – Sponsored by: Environmental Compliance & Remediation Doraiswami Ramkrishna, Distinguished Professor, Purdue University 6:30-7:30pm – Sponsored by: Process Engineering, Modeling, Optimization & Control and Fluid Properties, Fluid Dynamics & Transport Phenomena and Process Engineering, Modeling, Optimization & Control Speaker Biographies Tuesday Morning Keynote: 8:15 AM March 13, 2018 Jim Rekoske, Chief Technology Officer, UOP/Honeywell Presentation Title (tentative): Light Hydrocarbon Conversion Chemistry Challenges in an Era of Abundant Supply of Raw Material Biographical Sketch: Jim Rekoske is Vice President and Chief Technology Officer at UOP Honeywell. In this role, he is responsible for the entire technology organization, ranging from basic and applied research on new materials, catalysts, membranes and adsorbents through to process development, scale-up and commercialization. Previously, Jim served as Technical Director for Petrochemical Catalysts, Director of Technology for Universal Pharma Technologies and Vice President & General Manager of UOP’s Renewable Energy & Chemicals business unit. -
National Academy of Sciences July 1, 1979 Officers
NATIONAL ACADEMY OF SCIENCES JULY 1, 1979 OFFICERS Term expires President-PHILIP HANDLER June 30, 1981 Vice-President-SAUNDERS MAC LANE June 30, 1981 Home Secretary-BRYCE CRAWFORD,JR. June 30, 1983 Foreign Secretary-THOMAS F. MALONE June 30, 1982 Treasurer-E. R. PIORE June 30, 1980 Executive Officer Comptroller Robert M. White David Williams COUNCIL Abelson, Philip H. (1981) Markert,C. L. (1980) Berg, Paul (1982) Nierenberg,William A. (1982) Berliner, Robert W. (1981) Piore, E. R. (1980) Bing, R. H. (1980) Ranney, H. M. (1980) Crawford,Bryce, Jr. (1983) Simon, Herbert A. (1981) Friedman, Herbert (1982) Solow, R. M. (1980) Handler, Philip (1981) Thomas, Lewis (1982) Mac Lane, Saunders (1981) Townes, Charles H. (1981) Malone, Thomas F. (1982) Downloaded by guest on September 30, 2021 SECTIONS The Academyis divided into the followingSections, to which membersare assigned at their own choice: (11) Mathematics (31) Engineering (12) Astronomy (32) Applied Biology (13) Physics (33) Applied Physical and (14) Chemistry Mathematical Sciences (15) Geology (41) Medical Genetics Hema- (16) Geophysics tology, and Oncology (21) Biochemistry (42) Medical Physiology, En- (22) Cellularand Develop- docrinology,and Me- mental Biology tabolism (23) Physiological and Phar- (43) Medical Microbiology macologicalSciences and Immunology (24) Neurobiology (51) Anthropology (25) Botany (52) Psychology (26) Genetics (53) Social and Political Sci- (27) Population Biology, Evo- ences lution, and Ecology (54) Economic Sciences In the alphabetical list of members,the numbersin parentheses, followingyear of election, indicate the respective Class and Section of the member. CLASSES The members of Sections are grouped in the following Classes: I. Physical and Mathematical Sciences (Sections 11, 12, 13, 14, 15, 16). -
NACS Newsletter
Matt Neurock is the recipient of the 2015 Robert Burwell Club News Lectureship in Catalysis 24th NAM June 14-19, 2015 Club Directory NACS Pittsburgh, Pennsylvania Newsletter VOLUME XLIX, ISSUE 2 WWW.NACATSOC.ORG Back to Cover NACS Newsletter National Officers: President - one or more areas in the field of cataly- routes that prevail at the high surface Enrique Iglesia, University of Matt Neurock is the recipi- California-Berkeley; Vice- sis with emphasis on discovery and un- coverages relevant to catalytic practice, President - Bruce R. Cook,BP ent of the 2015 Robert Bur- Products NA, Inc.; Secretary - derstanding of catalytic phenomena, Hong-Xin Li, Zeolyst Internation- the direct participation of protic media al; Treasurer - C. Y. Chen, Chev- well Lectureship in Catalysis catalytic reaction mechanisms and as a co-catalyst, and the role of acid- ron Energy Technology Co.; Lead Trustee - Thomas F. identification and description of cata- base sites formed by hydroxyl interme- Degnan, University of Notre Dame; Communications Director lytic sites and species. diates on metals. His effective collabo- - Edrick Morales, Sasol Chemi- am pleased to an- cals (USA) LLC; Archivist - Uschi nounce that Professor Professor Matthew Neurock is be- rations with experimental groups have Graham, Topasol LLC. I ing recognized for his seminal contribu- led to fundamental and practical in- Club Representatives: Canada - Matthew Neurock of the Josephine Hill, University of tions to the development and applica- sights into the mechanisms of alkane Calgary; Chicago - Christopher L. University of Minnesota is Marshall, Argonne National La- the recipient of the2015 tion of theoretical and computational activation, Fischer-Tropsch synthesis, boratory; Mexico - José Antonio de los Reyes, Universidad Au- Robert Burwell Lecture- methods to elucidate catalytic mecha- selective oxidation and hydrogenation tonoma Metropolitana, Campus Iztapalapa; Michigan - Eric ship in Catalysis of the nisms and the active sites involved. -
E Helsinki Forum and East-West Scientific Exchange
[E HELSINKI FORUM AND EAST-WEST SCIENTIFIC EXCHANGE JOINT HEARING BEFORE THE SUBCOMMITTEE ON SCIENCE, RESEARCH AND TECHNOLOGY OF THE COMMITTEE ON SCIENCE AND TECHNOLOGY AND THE Sul COMMITTEE ON INTERNATIONAL SECURITY AND SCIENTIFIC AFFAIRS OF THE COMMITTEE ON FOREIGN AFFAIRS HOUSE OF REPRESENTATIVES AND THE COMMISSION ON SECURITY AND COOPERATION IN EUROPE NINETY-SIXTH CONGRESS SECOND SESSION JANUARY 31, 1980 [No. 89] (Committee on Science and Technology) ted for the use of the Committee on Science and Technology and the Committee on Foreign Affairs U.S. GOVERNMENT PRINTING OFFICE 421 0 WASHINGTON: 1980 COMMITTEE ON SCIENCE AND TECHNOLOGY DON FUQUA, Florida, Chairman ROBERT A. ROE, New Jersey JOHN W. WYDLER, New York MIKE McCORMACK, Washington LARRY WINN. JR., Kansas GEORGE E. BROWN, JR., California BARRY M. GOLDWATER, JR., California JAMES H. SCHEUER, New York HAMILTON FISH, JS., New York RICHARD L. OTTINGER, New York MANUEL LUJAN, JR., New Mexico TOM HARKIN, Iowa HAROLD C. HOLLENBECK, New Jersey JIM LLOYD, California ROBERT K. DORNAN, California JEROME A. AMBRO, New York ROBERT S. WALKER, Pennsylvania MARILYN LLOYD BOUQUARD, Tennessee EDWIN B. FORSYTHE, NeW Jersey JAMES J. BLANCHARD, Michigan KEN KRAMER, Colorado DOUG WALGREN, Pennsylvania WILLIAM CARNEY, New York RONNIE G. FLIPPO, Alabama ROBERT W. DAVIS, Michigan DAN GLICKMAN, Kansas TOBY ROTH, Wisconsin ALBERT GORE, JR., Tennessee DONALD LAWRENCE RITTER, WES WATKINS, Oklahoma Pennsylvania ROBERT A. YOUNG, Missouri BILL ROYER, California RICHARD C. WHITE, Texas HAROLD L. VOLKMER, Missouri DONALD J. PEASE, Ohio HOWARD WOLPE, Michigan NICHOLAS MAVROULES, Massachusetts BILL NELSON, Florida BERYL ANTHONY, JR., Arkansas STANLEY N. LUNDINE, New York ALLEN E. -
Invention and Innovation in the Petroleum Refining Industry
This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research Volume Title: The Rate and Direction of Inventive Activity: Economic and Social Factors Volume Author/Editor: Universities-National Bureau Committee for Economic Research, Committee on Economic Growth of the Social Science Research Council Volume Publisher: Princeton University Press Volume ISBN: 0-87014-304-2 Volume URL: http://www.nber.org/books/univ62-1 Publication Date: 1962 Chapter Title: Invention and Innovation in the Petroleum Refining Industry Chapter Author: John L. Enos Chapter URL: http://www.nber.org/chapters/c2124 Chapter pages in book: (p. 299 - 322) Invention and Innovation in the Petroleum Refining Industry JOHN L. ENOS MASSACHUSETTS INSTITUTE OF TECHNOLOGY AN INNOVATION is the combination of many different activities. Gener- ally an invention is made and recognized, capital is obtained, plant is acquired, managers and workers are hired, markets are developed, and production and distribution take place. As the innovation proceeds the original conception may be altered to make it more amenable to commercial realities. Accomplishing these activities consumes re- sources. At any point in the sequence failure may occur, delaying or even frustrating the innovation. In studying the petroleum refining industry I observed several pro- cessing innovations following one another in time and generating technological progress.' I then sought their origins in terms of the original ideas and the men who conceived them. In this paper I shall discuss the relations between the inventions and the subsequent inno- vations, focusing on the intervals between them, the returns to the inventors and innovators, and the changes in the proportions in which the factors of production in petroleum processing were combined. -
A Case Study in Fluid Catalytic Cracking
THERMAL DENOX OPTIMIZATION: A CASE STUDY IN FLUID CATALYTIC CRACKING by: David E. Rozier III A thesis submitted to the faculty of the University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College Oxford May 2017 Approved by: ______________________________ Advisor: Dr. Adam Smith ______________________________ Reader: Dr. John O’Haver ______________________________ Reader: Dr. Wei-Yin Chen i © 2017 David E. Rozier III ALL RIGHTS RESERVED ii This thesis is dedicated to my late grandfather, David E. Rozier, Sr., who was fond of saying, “A job worth doing is a job worth doing well.” iii Acknowledgments First and foremost, my completion of this thesis would not have been possible without the love and support of my family and friends, especially my parents, Dave and Jackie Rozier. I would like to thank Dr. Adam Smith, Dr. John O’Haver, Dr. Wei-Yin Chen, and Mr. David Carroll for their feedback and encouragement. I would also like to thank ExxonMobil for affording me the opportunity as an intern to conduct this project work and granting me permission to publish technical details. Finally, I must thank all of my coworkers in Operations Support at the Baton Rouge Refinery for their assistance with the project discussed here. iv Abstract This thesis will first provide background information on fluid catalytic cracking (FCC), a highly important unit operation to the process of petroleum refining, and a description of Thermal DeNOx, an environmental treatment system common to FCC units and other process units where high temperature furnaces are used. Next, this thesis will detail a project which I had the chance to lead as a process engineering intern at ExxonMobil’s Baton Rouge Refinery in the fall of 2016. -
UNITED STATES PATENT OFFICE 2,478,916 REFORMING Process Vladimir Haensel, Clarendon Hills, and Curtis F
Patented Aug. 16, 1949 2.478,916 UNITED STATES PATENT OFFICE 2,478,916 REFORMING PRocess Vladimir Haensel, Clarendon Hills, and Curtis F. Gerald, Riverside, E., assignors to Universa Oil Products Company, Chicago, I., a corporation of Delaware No Drawing. Application December 21, 1946, Serial No. 71,659 13 Claims. (Cl 196-50) 2 This invention relates to a reforming process mally liquid hydrocarbons substantially or con and more particularly to a process for the re pletely into normally gaseous hydrocarbons. forming of a saturated gasoline fraction in the The desired selective cracking generally com presence of a particular catalyst and under se prises the removal of methyl, ethyl and, to a lected conditions of operation. lesser extent, propyl groups, in the form of The saturated gasoline fraction to be treat methane, ethane and propane as will be herein ed in accordance with the present invention after described. However, the removal of these comprise straight run gasolines, natural gaso radicals is controlled so that not more than. One lines, etc. The gasoline fraction may be a full or possibly two of such radicals are removed boiling range gasoline having an initial boiling O from a given molecule. For example, heptane point within the range of about 50 to about may be reduced to hexane, nonane to Octane or 90 F. and an end boiling point within the heptane, etc. On the other hand uncontrolled range of about 375 to about 4.25° F., or it may or non-selective cracking will result in the de be a selected fraction thereof which usually will composition of normally liquid hydrocarbons be a higher boiling fraction, commonly referred into normally gaseous hydrocarbons as, for ex to as naphtha, and generally having an initial ample, by the continued demethylation of nor boiling point of from about 150 to about 250 F. -
Catalysis: Change for the Better
Catalysis: Change for the Better Grade Level petroleum into the high-level fuels that we rely on for nearly all our transportation Elementary through middle school with adult needs. It also produces "aromatic" assistance. petrochemicals, the raw materials used in the manufacture of plastics and fibers. High school This new idea in catalysts, and the ideas Materials that followed, have made our fuel more efficient, environmentally-friendly and easier Ordinary sugar cubes and cheaper to produce. It has also made Matches the plastics industry more environmentally- Ash friendly. Metal plate or can lid In 1998, Vladimir Haensel received the Charles Stark Draper Prize, a $450,000 Discussion award, for his work. This award is the "Nobel Prize" of engineering. it is presented by the Sometimes a chemical reaction won't take National Academy of Engineering, with an place, or will proceed very slowly, unless endowment from the Charles Stark Draper some other substance is added. That other Laboratory. Charles Stark Draper was an substance is called a catalyst, which engineer and "father" of modern inertial hastens the action but is not part of it and guidance systems, used in commercial does not change. Catalysts are widely used aircraft, space vehicles, strategic missiles, in the chemical industry to speed up and submarines. Draper also developed the reactions. An important use of catalysts is in sophisticated navigational system that the making of gasoline from crude oil. landed the Apollo astronauts on the moon and returned them safely to earth. In 1949 at Universal Oil Products (now UOP), chemical engineer Vladimir Haensel developed a revolutionary process called Platforming. -
The Catalytic Development of High Octane Gasoline Lead
Volume 16 Number 041 Giving Gas a Boost: The Catalytic Development of High Octane Gasoline Lead: In the 1930s, oil companies were struggling to boost the octane of gasoline. Eugène Houdry’s catalytic cracking process made it possible and may have helped win World War II. Intro.: A Moment in Time with Dan Roberts. Content: When it comes from the ground, crude oil is almost useless, a mixture of thousands of different types of hydrocarbons: asphalt to gasoline to natural gas. Each has a different molecular weight, therefore, crude oil must be refined to pull out the impurities such as sulfur compounds and separate different components such as kerosene, gasoline, fuel oil, and so forth. In the 19th century kerosene was the most valuable product because it was used in lamps and for heating. Because it was so unstable, gasoline was often just dumped on the ground or in a nearby stream and natural gas, considered completely useless, was just burned off at the well. By the early 20th century things had changed. Because of the automobile, the most valuable product of crude oil had become gasoline. It, however, was becoming more and more rare as automobiles grew in number and power. The problem was that not all gasoline was the same. Different grades of gas are determined by the level of octane they contain. The scale is 0 to 100. The higher the number the greater the power and the less knocking. In an internal combustion engine, gasoline is combined with air inside a cylinder, it is then fired off by a spark plug, and the resulting explosion creates compression which pushes the cylinder and turns the engine. -
CHEMICAL HERITAGE FOUNDATION GEORGE A. OLAH Transcript
CHEMICAL HERITAGE FOUNDATION GEORGE A. OLAH Transcript of an Interview Conducted by James G. Traynham and Arnold Thackray at Loker Hydrocarbon Research Institute Los Angeles, California on 3 February 2000 (With Subsequent Corrections and Additions) This interview has been designated as Free Access. One may view, quote from, cite, or reproduce the oral history with the permission of CHF. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to credit CHF using the format below: George A. Olah, interview by James G. Traynham and Arnold Thackray at Loker Hydrocarbon Research Institute, Los Angeles, California, 3 February 2000 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0190). Chemical Heritage Foundation Oral History Program 315 Chestnut Street Philadelphia, Pennsylvania 19106 GEORGE A. OLAH 1927 Born in Budapest, Hungary, on 22 May Education 1945 B.S., organic chemistry, Technical University, Budapest 1949 Ph.D., organic chemistry, Technical University, Budapest Professional Experience Technical University, Budapest, Hungary 1949-1954 Assistant Professor to Associate Professor of Organic Chemistry Hungarian Academy of Sciences 1954-1956 Head of Department of Organic Chemistry and Associate Scientific Director of Central Research Institute The Dow Chemical Company 1957-1964 Senior Research Scientist Case Western Reserve University 1965-1967 Professor and Chairman, Department of Chemistry 1967-1969 Chairman of Combined Departments of Chemistry (Case Institute and Western Reserve University) 1967-1977 C. F. Mabery Distinguished Professor of Research in Chemistry University of Southern California 1977-1977 Professor of Chemistry and Scientific Director, Hydrocarbon Research Institute 1980-present Distinguished Professor of Chemistry 1983-present Donald P. -
2002 Issue 3
The North American Catalysis Society NEWSLETTER December, 2002 http://www.nacatsoc.org Vol. XXXVI No. 3 Emmett Award to Francisco Zaera The Paul H. Emmett Award in Fundamental Catalysis to Professor Francisco Zaera of the University of California at Riverside, USA. The award is sponsored by the Davison Chemical Division of W.R. Grace and Company. The Award is intended to recognize and encourage individual contributions (under the age of 45) in the field of catalysis with emphasis on discovery and understanding of catalytic phenomena, proposal of catalytic reaction mechanisms and identification of and description of catalytic sites and species. Professor Zaera’s main interests lie with the study of mechanisms of surface reactions by using modern surface- sensitive techniques. He is noted for bridging the knowledge on surface reactions with that of organometallic systems and for his extension of kinetic theories to reactions on surfaces. His nominators commented that he has placed particular emphasis on making a connection between the atomic details of surface reactions and heterogeneous catalytic processes. While most surface kinetic concepts have been recognized for some time, Francisco is credited with quantifying the kinetic consequences of these effects by a variety of surface science techniques to rationalize the rates observed in model systems and correlate them with practical heterogeneous catalysis rates. He has been given credit for unequivocally establishing that most hydrocarbon processing catalysts are covered with a carbonaceous layer during the catalytic process. By performing isotope labeling experiments and using vibrational spectroscopy and molecular beam studies, Professor Zaera determined that those deposits are not direct intermediates in hydrogenation-dehydrogenation steps, but rather an play an indirect role by tempering the high activity of the metal surfaces and providing a reservoir for the surface hydrogen.