PVDF: a Fluoropolymer for Chemical Challenges

Total Page:16

File Type:pdf, Size:1020Kb

PVDF: a Fluoropolymer for Chemical Challenges Electronically reprinted from August 2018 PVDF: A Fluoropolymer for Chemical Challenges When it comes to selecting materials of construction, keep in mind the favorable properties of fluoropolymers for corrosive service Averie Palovcak and Jason ince its commercialization in the Pomante, mid-1960s, polyvinylidene fluoride Arkema Inc. (PVDF) has been used across a Svariety of chemical process indus- tries (CPI) sectors due to its versatility and IN BRIEF broad attributes. With flagship applications PVDF AND THE in architectural coatings and the CPI, the FLUOROPOLYMER FAMILY breadth of industries where PVDF is utilized today is expansive. PVDF components (Fig- COPOLYMERS CHANGE ures 1 and 2) are utilized and installed where FLEXURAL PROPERTIES engineers are looking to maximize longevity PVDF COMPONENTS and reliability of process parts in many CPI sectors, including semiconductor, pharma- FIGURE 1. A variety of fluoropolymer components are shown ceutical, food and beverage, petrochemi- here cal, wire and cable, and general chemicals. change the performance properties. Fluo- PVDF and the fluoropolymer family ropolymers are divided into two main cat- PVDF is a high-performance plastic that falls egories: perfluorinated and partially fluori- into the family of materials called fluoropoly- nated [1]. The partially fluorinated polymers mers. Known for robust chemical resistance, contain hydrogen or other elements, while fluoropolymers are often utilized in areas the perfluorinated (fully fluorinated) poly- where high-temperature corrosion barriers mers are derivatives or copolymers of the are crucial. In addition to being chemically tetrafluoroethylene (C2F4) monomer. Com- resistant and non-rusting, this family of poly- monly used commercial fluoropolymers mers is also considered to have high purity, include polytetrafluoroethylene (PTFE), non-stick surfaces, good flame and smoke perfluoroalkoxy polymer (PFA), fluorinated resistance, excellent weathering and ultra- ethylene propylene (FEP), polyvinylidene violet (UV) stability. fluoride (PVDF), ethylene tetrafluoroethyl- Fluoropolymers have carbon and fluorine ene (ETFE), and ethylene chlorotrifluoro- as the main components of their chemical ethylene (ECTFE). backbone. Small changes in percent fluo- PVDF is a partially fluorinated polymer rination or addition of other elements may consisting of repeated units of the vinylidene 400 350 300 C) 250 o 200 Temperature ( Temperature 150 100 50 0 PTFE PFA FEP ETFE ECTFE PVDF Melting Degradation FIGURE 3. The processing temperature window for several fluoropolymers is shown here temperature requirements must be the crystallinity of PVDF, resulting in taken into account when processing added ductility and increased elon- most fluoropolymers. gation [5]. Varying amounts of HFP FIGURE 2. These fluoropolymer tower packings are used in distillation columns Unlike its fluoropolymer counter- can be reacted with VF2 to yield parts, PVDF is the most benign to broad ranges of flexibility. Table 2 fluoride (VF2) monomer [(C2H2F2)]. process. PVDF has the widest gap gives an example of the range of Standard PVDF homopolymer is between its melt temperature and its flexural moduli of PVDF, both homo- 59.4% fluorinated and PVDF copo- degradation temperature, as shown polymer and copolymer, compared lymers (described in later sections) in Figure 3. In fact, PVDF does not to other fluoropolymers. can reach up to 65% fluorination. require special equipment and can Variations in material flexibility re- Generally, the higher the fluorine be processed on standard equip- sult in a wider range of components content, the higher the chemical ment used to process polyolefins, available in PVDF materials. While resistance, as the carbon-fluorine such as polyethylene (PE) and poly- PVDF homopolymer has a long leg- bond is one of the strongest known propylene (PP). acy of use in piping, valves, pumps in chemistry. PVDF homopolymers and other applications that require can tolerate chemistries from a pH Copolymers flexural properties high mechanical rigidity, the PVDF co- of less than 1 up to 12 and PVDF While PVDF is the strongest of the polymer range has a variety of melt- copolymers can extend that range fluoropolymers up to 140°C, PVDF processed components, such as wire from much less than 1 up to 13.5. copolymers can bring added de- and cable jacketing (Figure 4), tubing, While PTFE, with its high melting grees of flexibility. Copolymerization hoses and gaskets, to name a few. point of 325°C, is well known as a is a true chemical reaction. It does liner for high temperature applica- not involve additives or stabilizers PVDF components tions, PVDF homopolymer has a melt that can leach out over time. Some As previously described, the proper- point between 165 and 172°C and of most common comonomers are ties of PVDF make it useful across a maintains a Underwriters Laborato- hexafluoropropylene (HFP), tetra- variety of applications. The following ries (UL) relative thermal index (RTI) fluoroethylene (TFE), and chlorotri- are just a few highlighted components rating of 150°C [2]. Table 1 shows the fluoroethylene (CTFE). HFP is a fully heat deflection temperature of fluo- fluorinated monomer that disrupts ropolymers with PVDF holding me- chanical integrity under pressure up to its usage certification temperature. Aside from PTFE, which is most often processed by sintering, most other commercial fluoropolymers are melt processable, and require high heat to process in a molten state [4]. Equipment used to make most fluoropolymer components must be therefore equipped to han- dle the associated thermal stresses. FIGURE 4. Wire and cable components are com- FIGURE 5. PVDF piping systems come in a various Special considerations related to monly made of fluoropolymers forms FIGURE 7. This flexible tubing is made from PVDF copolymers FIGURE 6. Electrofusion is one joining method of dards [8]. Piping systems for waste PVDF systems drainage applications along with wire FIGURE 8. PVDF fittings are one example of and cables made with PVDF are injection-molded pieces where PVDF materials are specified to widely specified in the plenum areas bring long-lasting solutions. of buildings. Electrofusion is a spe- to bind the PVDF to another mate- Piping systems. PVDF piping sys- cialized pipe-joining technique for rial, such as polyurethane or poly- tems (Figure 5) have a UL RTI rating that industry, where built-in electric ethylene. With PVDF as the fluid of 150°C (302°F) and are available in heating elements are used to weld contact layer on the inside and an various forms: solid piping, lined metal the joint together, thereby minimizing engineering polymer material on the piping and fiberglass-reinforced dual human error in fabrication. outside, the cost of the multilayer laminate piping. Unlike metals, PVDF While PVDF piping systems are construction may be more econom- is non-rusting and lightweight, mak- used in areas where high mechani- ical for some applications. ing installation easier. cal rigidity is crucial, flexible tub- Injection molded components. PVDF piping systems can be ing options are also available that Piping systems and flexible tubing joined by various welding tech- take advantage of PVDF copolymer are usually created via profile extru- niques. Socket fusion is a recom- technology (Figure 7). With flexural sion but injection molding is another mended method in the CPI, as the moduli down to 10,000 psi, tubing method to create components in strong weld creates a lap joint that is important in applications like bev- specialized shapes and dimensions. can resist harsh chemistries, such erage and fuel lines that can be uti- From pumps, nozzles, and valves, as hydrochloric, sulfuric, and nitric lized in many market segments. The PVDF components can be mass in- acids. Butt fusion, one of the easiest beverage industry appreciates mini- jection molded (Figure 8). Recently, types of joining methods, is a choice mal cross-contamination of taste, PVDF components are being molded in areas where the chemistries are making PVDF tubing a long-lasting for conveyor belting for food-pro- more benign. Beadless and smooth choice. Several PVDF copolymers cessing facilities. inner bore systems leave no weld- are FDA compliant per Title 21 CFR Traditional materials used in plas- ing bump, which make them ideal 177.2600 and are listed to NSF 51 tic modular belting have faced scru- methods for the pharmaceutical for food contact. For fuel applica- tiny recently due to plastic bits con- and semiconductor industries. Both tions, the barrier properties of PVDF taminating food [9]. With PVDF, the of these industries need a smooth are used for low permeation of hy- higher mechanical and abrasion surface to minimize bacterial hang- drocarbons in flexible fuel pipes, resistance combined with outstand- ups and ensure the highest levels such as applications compliant with ing chemical resistance have proven of purity. Mechanically joined and UL 971 Nonmetallic Underground to be a longer-lasting solution. Both threaded systems are utilized for ap- Piping for Flammable Liquids. Fluid rigid and copolymer grades of PVDF plications where systems are taken handling systems with PVDF can apart to be cleaned. PVDF piping also be created in multilayer con- can withstand sterilization with satu- structions, where a tie layer is used rated steam at temperatures [6] up to 150°C depending on the joining method and design. Flexible tubing. Flame and smoke additives can be added to PVDF res- ins to meet the
Recommended publications
  • Fluorinated Polymers As Smart Materials for Advanced Biomedical Applications
    polymers Review Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications Vanessa F. Cardoso 1,2,* ID , Daniela M. Correia 3,4, Clarisse Ribeiro 1,5 ID , Margarida M. Fernandes 1,5 and Senentxu Lanceros-Méndez 4,6 1 Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal; cribeiro@fisica.uminho.pt (C.R.); margaridafernandes@fisica.uminho.pt (M.M.F.) 2 CMEMS-UMinho, Universidade do Minho, DEI, 4800-058 Guimaraes, Portugal 3 Departamento de Química e CQ-VR, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal; [email protected] 4 BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; [email protected] 5 CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal 6 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain * Correspondence: [email protected]; Tel.: +351-253-60-40-73 Received: 11 January 2018; Accepted: 6 February 2018; Published: 8 February 2018 Abstract: Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others.
    [Show full text]
  • ECTFE Data Sheet
    ECTFE Fluoropolymer Extruded Films ETHYLENE-CHLOROTRIFLUOROETHYLENE FILM FOR USE IN HIGH-PERFORMANCE APPLICATIONS TCI’s ECTFE films are produced from HALAR® Ethylene-ChloroTrifluoroEthylene resins by a melt extrusion casting process. These films have the typical fluoropolymer traits of being resistant to harsh thermal, chemical, and ultraviolet environments. TCI’s ECTFE films offer excellent weatherability, chemical abrasion resistance, tear resistance, non-stick properties, and resistance to high-energy radiation. ECTFE films can be heat-sealed, thermoformed, and laminated to various substrates. TCI’s ECTFE films are utilized in a variety of industries: Chemical Processing TCI’s ECTFE Films Characteristics: Due to its superior chemical resistance to most acids and solvents over a broad temperature range Highest abrasion and tear resistance among all fluoropolymer films and low permeability to solvents and gases, ECTFE films applications include: chemical tank linings, pump Outstanding weatherability and resistance to diaphragms, chlorine cells, water treatment, spray UV radiation shielding applications for pipe joints, and semi- Chemically inert conductor processing environments. Excellent fire resistance, UL V-0 rating Outdoor Protection Superior anti-stick and low friction properties Excellent weatherability, non-stick properties, U-V Highest dielectric strength of all fluoropolymer stability, abrasion resistance, tear resistance, and high films light transmission make ECTFE film very effective for outdoor protective applications. Thermoformable and heat-sealable Continuous service temperature from Photovoltaic Panels -200°C (-328°F) up to 165°C (330°F) TCI’s ECTFE films offer excellent dielectric perfor- mance, superior water vapor barrier properties, fire resistance, and high solar transmittance. These films TCI’s ECTFE Films General Availability: are ideally suited for use in the back sheet and front Thickness range from 0.0005" to 0.010" sheet glazing of PV panels.
    [Show full text]
  • Chemical Resistance
    Materials - Chemical Resistance Please note: Substances All information in our catalogue is based on current technical knowledge, Substance Conc. PTFE PFA FEP ETFE ECTFE PVDF PP PA PS PMMA experience and manufacturers’ data. Users should check the suitability of at +20 °C in % parts and materials described in the catalogue before purchase. Accumulator acid 20 + + + + + + + – + – Acetaldehyde 100 + + + + + + ° –– ° BOLA does not accept any warranty claims as to suitability and fitness of Acetamide 100 + + + + + + + + + ° purpose of the materials and products described in this catalogue. Users Acetic acid 100 + + + + + + + – ° – should avoid making any assumptions on, or interpretation of, the data Acetic acid amide 100 + + + + + + + + + ° herein. Therefore we cannot provide warranty and cannot accept Acetic acid anhydride 100 + + + + + – ° ––– responsibility for any damage. Acetic acid butyl ester 100 + + + + + + ° + –– Acetic acid chloride 100 + + + + + + ° ° –– Acetic acid ethyl ester 100 + + + + + – ° + –– Acetic acid pentyl ester 100 + + + + + + + + – + Acetic anhydride 100 + + + + + – ° ––– Acetone 100 + + + + + – + + –– Acetonitrile 100 + + + + + ° + + –– Acetophenone 100 + + + + + + + ––– Acetyl benzene 100 + + + + + + + ––– Acetyl chloride 100 + + + + + + ° ° –– Acetylene tetrachloride 100 + + + –– + – + –– Acetylsalicylic acid 100 + + + + + + + + + – Acetone-2 100 + + + + + – + + –– Acrylic acid butyl ester 100 + + + + + ° ° + –– Acrylic acid ethylic ester 100 + + + + + ° ° + –– Acrylonitrile 100 + + + + + ° ° + –– Adipic acid
    [Show full text]
  • Safety Data Sheet (SDS) Hydrogen Peroxide Solution, 30 - 32% W/W
    Safety Data Sheet (SDS) Hydrogen Peroxide Solution, 30 - 32% w/w SECTION 1: Identification Product Identifier: BASELINE Hydrogen Peroxide Solution Master Product Number(s): S021001 EU Index Number: 008-003-00-9 Synonyms: Dihydrogen dioxide; Hydrogen dioxide; Hydroperoxide Chemical Names: DE Wasserstoffperoxid in Lösung; ES Peróxido de hidrógeno en disolución (Agua oxigenada); FR Peroxyde d'hydrogène en solution (Eau oxygénée); IT Perossido di idrogeno soluzione (Acqua ossigenata); NL Waterstofperoxide in oplossing Identified Uses: For laboratory use only. Not for drug, food, or household use. Manufacturer: SEASTAR CHEMICALS ULC 2061 Henry Avenue West, Sidney, BC V8L 5Z6 CANADA 1-250-655-5880 Emergency Number: CANUTEC (CAN): 1-613-996-6666 (24-hour) SECTION 2: Hazard identification GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) / WHMIS HPR / Regulation (EC) No 1272/2008 For the full text of the H-Statement(s) and P-Statement(s) mentioned in this Section, see Section 16. Classification: Serious eye damage – Category 1 Acute toxicity, Oral – Category 4 Acute toxicity, Inhalation – Category 4 GHS Label Elements Pictograms: Signal Word: Danger Hazard H318: Causes serious eye damage. Statements: H302 + H332: Harmful if swallowed or if inhaled. Precautionary P261: Avoid breathing fume/gas/mist/vapours/spray. Statements: P280: Wear protective gloves/protective clothing/eye protection/face protection. P301 + P312: IF SWALLOWED: Call a POISON CENTER or doctor if you feel unwell. P304 + P340: IF INHALED: Remove person to fresh air and keep comfortable for breathing. P305 + P351 + P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.
    [Show full text]
  • Products Evolved During Hot Gas Welding of Fluoropolymers
    Health and Safety Executive Products evolved during hot gas welding of fluoropolymers Prepared by the Health and Safety Laboratory for the Health and Safety Executive 2007 RR539 Research Report Health and Safety Executive Products evolved during hot gas welding of fluoropolymers Chris Keen BSc CertOH Mike Troughton BSc PhD CPhys MInstP Derrick Wake BSc, Ian Pengelly BSc, Emma Scobbie BSc Health and Safety Laboratory Broad Lane Sheffield S3 7HQ This report details the findings of a research project which was performed as a collaboration between the Health and Safety Executive (HSE) and The Welding Institute (TWI). The project aim was to identify and measure the amounts of products evolved during the hot gas welding of common fluoropolymers, to attempt to identify the causative agents of polymer fume fever. Carbonyl fluoride and/or hydrogen fluoride were detected from certain fluoropolymers when these materials were heated to their maximum welding temperatures. Significant amounts of ultrafine particles were detected from all of the fluoropolymers investigated when they were hot gas welded. The report concludes that fluoropolymers should be hot gas welded at the lowest possible temperature to reduce the potential for causing polymer fume fever in operators. If temperature control is not sufficient to prevent episodes of polymer fume fever, a good standard of local exhaust ventilation (LEV) should also be employed. This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy. HSE Books © Crown copyright 2007 First published 2007 All rights reserved.
    [Show full text]
  • 2004/12/27-LES Prefiled Exhibit 135-M, Hydrogen Fluoride Industry
    I IJ Materials of Construction Guideline for Anhydrous Hydrogen Fluoride UPDATED: 12/27/04 LAST REVISION: January 2000 EXPIRATION DATE: 12/31/05 Dn1C.KETED USNRC February 24, 2006 (4:12pm) OFFICE OF SECRETARY RULEMAKINGS AND ADJUDICATIONS STAFF HYDROGEN FLUORIDE INDUSTRY PRACTICES INSTITUTE Docket No. 70-3103-ML Materials of Construction Task Group Materials of Construction Guideline for Anhydrous Hydrogen Fluoride The Hydrogen Fluoride Industry Practices Institute (HFIPI) is a subsidiary of the American Chemistry Council (ACC). LES Exhibit 135-M rem n/ate -se V- oea6 Materials of Construction Guideline for Anhydrous Hydrogen Fluoride UPDATED: 12/27/04 L. LAST REVISION: January 2000 EXPIRATION DATE: 12/31/05 MATERIALS OF CONSTRUCTION GUIDELINE FOR ANHYDROUS HYDROGEN FLUORIDE This document has been prepared by the "Materials of Construction Task Group" of the Hydrogen Fluoride Industry Practices Institute (HFIPI). The members of this Task Group participating in preparation of this guideline were: M. Howells (Chairman) Honeywell H. Jennings DuPont G. Navar* LCI/Norfluor E. Urban* AlliedSignal P.Wyatt Arkema Inc. William Heineken BWXT Y-12 Mike Berg Solvay Fluorides, LLC * Former Task Group member ©2004 Hydrogen Fluoride Industry Practices Institute This document cannot be copied or distributed without the express written consent of the Hydrogen Fluoride Industry Practices Institute ("HFIPI"). Copies of this document are available from the HFIPI, c/o Collier Shannon Scott, 3050 K Street, NW, Suite 400, Washington, DC 20007-5108. Materials
    [Show full text]
  • ECTFE (HALAR®) AS a NEW MATERIAL for PRIMARY SAMPLE CONTAINMENT of ASTROMATERIALS. M. J. Calaway1 and J. T. Mcconnell2. 1
    45th Lunar and Planetary Science Conference (2014) 1095.pdf ECTFE (HALAR®) AS A NEW MATERIAL FOR PRIMARY SAMPLE CONTAINMENT OF ASTROMATERIALS. M. J. Calaway1 and J. T. McConnell2. 1 Jacobs at NASA Johnson Space Center, Astromaterials Acquisition and Curation Office, Houston, TX, 77058; 2 NASA Intern at NASA Johnson Space Center, Houston, TX, Wyoming NASA Space Grant Consortium; [email protected]. Introduction: Fluoropolymers, such as Teflon® spectrometry (GC-MS), and Fourier transform (PTFE, PFA, FEP) and Viton® (FKM), have been infrared (FT-IR) spectroscopy. used for over 40 years in curating astromaterials at Particle Count Results: Liquid particle counts of NASA JSC. In general, fluoropolymers have low UPW during final rinse were taken with a HIAC outgassing and particle shedding properties that 3000A liquid syringe sampler with 8000A particle reduce cross-contamination to curated samples. counter. Figure 2 shows the results with Halar Ethylene – Chlorotrifluoroethylene (ECTFE), having very low particle shedding properties. commonly called Halar® (trademark of Solvay Particle HALAR (ECTFE) UPW Baseline Solexis), is a partially fluorinated semi-crystalline Diameter Particles Per 10 ml Particles Per 10 ml (μm) Average Average copolymer in the same class of fluoropolymers with 1 7.5 ± 4.7 5.0 ± 2.1 superior abrasion resistance and extremely low 3 4.8 ± 1.0 3.5 ± 1.1 permeability to liquids, gases, and vapors than any 5 4.0 ± 0.8 2.5 ± 0.4 10 3.5 ± 1.3 2.0 ± 0.7 other fluoropolymer (fig. 1). ECTFE coatings are 25 3.0 ± 0.8 1.0 ± 0.7 becoming more popular in the nuclear, 50 2.75 ± 1.0 1.0 ± 0.7 semiconductor, and biomedical industry for lining 100 2.75 ± 1.0 1.0 ± 0.7 150 2.75 ± 1.0 1.0 ± 0.7 isolation containment gloveboxes and critical piping Figure 2: Average measured particle counts of Halar.
    [Show full text]
  • Chemical Resistance Guide
    Pure Chemicals · Mixed Chemicals PVC · CPVC · PP · PVDF · PTFE · PFA EPDM · Viton® · Nitrile · CPE ISO 9001:2008 CERTIFIED chemical resistance guide CHEMICAL RESISTANCE GUIDE chemline.com Pure Chemicals · Mixed Chemicals PVC · CPVC · PP · PVDF · PTFE · PFA EPDM · Viton® · Nitrile · CPE ISO 9001:2008 CERTIFIED chemical resistance guide Chemical Resistance Guide page Materials of Construction 3-6 Pure Chemicals 7-33 Mixed Chemicals 33-34 2 | CHEMICAL RESISTANCE GUIDE CRG 6-12 | WWW.CHEMLINE.COM ©Chemline Plastics Limited 2014 Materials of Construction Note: Properties of plastics and elastomers vary because different PP (Pigmented Polypropylene) compounds of the same material are used for different products and Polypropylene (PP) is a thermoplastic polyolefin made from the olefin components. The following materials descriptions are of a general nature. propylene. A more modern term for polyolefin is polyalkene. Chemline Chemline should be consulted for material recommendations on specific offers piping systems, valves and controls normally in pigmented PP. The applications. addition of grey-beige pigment prevents degradation due to ultraviolet light penetration. THERMOPLASTICS PP is used in a wide variety of applications from acids and alkali’s to Most plastics are made from synthetic resins (polymers) through the organic solvents as well as pure water. PP is one of the best materials to process of polymerization. Two main types of plastics are thermoplastics use for systems exposed to varying pH levels, as many plastics do not and thermosets. Thermoplastic products are injection moulded or handle both acids and bases well. It is excellent on acids such hydrochloric extruded from compound material processed under heat and pressure.
    [Show full text]
  • PTFE and PFA Similarities and Differences White Paper PTFE and PFA Similarities and Differences
    White Paper PTFE and PFA Similarities and Differences White Paper PTFE and PFA Similarities and Differences Introduction The purpose of this document is to define and compare two of the most used fluoropolymers, PTFE and PFA, in industry globally and clarify the differences between them. Defining PTFE and PFA Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene that has numerous applications. The most widely known PTFE formulation is sold under the brand name of Teflon®. PTFE was discovered by DuPont Co. in 1938. Perfluoroalkoxy alkanes (PFA) is a copolymer of hexafluoropropylene and perfluoroethers. It was developed after the discovery of PTFE by the same producer (DuPont Co.). One commonly known PFA formulation is Teflon PFA. PFA has very similar properties to PTFE, though the biggest difference between PTFE and PFA is that PFA is melt-processed. This is accomplished through conventional injection molding as well as screw extrusion techniques. Area of use PTFE is popularly used as a non-stick coating for pans and many modern items of cookware. PTFE is often used in containers and pipes for handling reactive and corrosive chemicals. This is because it has non-reactive properties. Another practical application of PTFE is as a lubricant. Used in this way, PTFE helps to reduce friction within machinery, minimize the “wear and tear,” and improve energy consumption. PFA is generally used for plastic lab equipment because of its extreme resistance to chemical attack, optical transparency, and overall flexibility. PFA is also often used as tubing for handling critical or highly corrosive processes. Other applications for PFA are as sheet linings for chemical equipment.
    [Show full text]
  • Ectfe (Halar®) As a New Material for Primary Sample Containment of Astromaterials
    ECTFE (HALAR®) AS A NEW MATERIAL FOR PRIMARY SAMPLE CONTAINMENT OF ASTROMATERIALS. M. J. Calaway1 and J. T. McConnell2. 1 Jacobs at NASA Johnson Space Center, Astromaterials Acquisition and Curation Office, Houston, TX, 77058; 2 NASA Intern at NASA Johnson Space Center, Houston, TX, Wyoming NASA Space Grant Consortium; [email protected]. Introduction: Fluoropolymers, such as Teflon® spectrometry (GC-MS), and Fourier transform (PTFE, PFA, FEP) and Viton® (FKM), have been infrared (FT-IR) spectroscopy. used for over 40 years in curating astromaterials at Particle Count Results: Liquid particle counts of NASA JSC. In general, fluoropolymers have low UPW during final rinse were taken with a HIAC outgassing and particle shedding properties that 3000A liquid syringe sampler with 8000A particle reduce cross-contamination to curated samples. counter. Figure 2 shows the results with Halar Ethylene – Chlorotrifluoroethylene (ECTFE), having very low particle shedding properties. commonly called Halar® (trademark of Solvay Particle HALAR (ECTFE) UPW Baseline Solexis), is a partially fluorinated semi-crystalline Diameter Particles Per 10 ml Particles Per 10 ml (μm) Average Average copolymer in the same class of fluoropolymers with 1 7.5 ± 4.7 5.0 ± 2.1 superior abrasion resistance and extremely low 3 4.8 ± 1.0 3.5 ± 1.1 permeability to liquids, gases, and vapors than any 5 4.0 ± 0.8 2.5 ± 0.4 10 3.5 ± 1.3 2.0 ± 0.7 other fluoropolymer (fig. 1). ECTFE coatings are 25 3.0 ± 0.8 1.0 ± 0.7 becoming more popular in the nuclear, 50 2.75 ± 1.0 1.0 ± 0.7 semiconductor, and biomedical industry for lining 100 2.75 ± 1.0 1.0 ± 0.7 150 2.75 ± 1.0 1.0 ± 0.7 isolation containment gloveboxes and critical piping Figure 2: Average measured particle counts of Halar.
    [Show full text]
  • Page 1 of 14 Green Chemistry
    Green Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/greenchem Page 1 of 14 Green Chemistry Organofluorine Chemistry: Applications, sources and sustainability Antal Harsanyi and Graham Sandford* Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, U.K. *Corresponding author E-mail: [email protected] Manuscript Abstract Fluorine is an essential element for life in the developed world that impacts hugely on the general public because many pharmaceuticals, agrochemicals, anaesthetics, materials and air conditioning materials owe their important properties to the presence of fluorine atoms within their structures. Accepted All fluorine atoms used in organic chemistry are ultimately sourced from a mined raw material, fluorspar (CaF 2), but, given current usage and global reserve estimates, there is only sufficient fluorspar available for a further 100 years.
    [Show full text]
  • THE BECKMAN CENTER for the HISTORY of CHEMISTRY HERMAN E. SCHROEDER Transcript of Interviews Conducted by Raymond C. Ferguson In
    THE BECKMAN CENTER FOR THE HISTORY OF CHEMISTRY HERMAN E. SCHROEDER Transcript of Interviews Conducted by Raymond C. Ferguson in Greenville, Delaware on 30 December 1986 and 12 January 1987 This interview has been designated as Free Access. One may view, quote from, cite, or reproduce the oral history with the permission of CHF. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to credit CHF using the format below: Herman E. Schroeder, interview by Raymond C. Ferguson at Greenville, Delaware, 30 December 1986 and 12 January 1987 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0063). Chemical Heritage Foundation Oral History Program 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. HERMAN E. SCHROEDER 1915 Born in Brooklyn, New York on 6 July Education 1936 A.B., chemistry, Harvard University 1937 A.M., chemistry, Harvard University
    [Show full text]