THE BECKMAN CENTER for the HISTORY of CHEMISTRY HERMAN E. SCHROEDER Transcript of Interviews Conducted by Raymond C. Ferguson In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fluorinated Polymers As Smart Materials for Advanced Biomedical Applications
polymers Review Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications Vanessa F. Cardoso 1,2,* ID , Daniela M. Correia 3,4, Clarisse Ribeiro 1,5 ID , Margarida M. Fernandes 1,5 and Senentxu Lanceros-Méndez 4,6 1 Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal; cribeiro@fisica.uminho.pt (C.R.); margaridafernandes@fisica.uminho.pt (M.M.F.) 2 CMEMS-UMinho, Universidade do Minho, DEI, 4800-058 Guimaraes, Portugal 3 Departamento de Química e CQ-VR, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal; [email protected] 4 BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; [email protected] 5 CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal 6 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain * Correspondence: [email protected]; Tel.: +351-253-60-40-73 Received: 11 January 2018; Accepted: 6 February 2018; Published: 8 February 2018 Abstract: Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. -
DUPONT DATA BOOK SCIENCE-BASED SOLUTIONS Dupont Investor Relations Contents 1 Dupont Overview
DUPONT DATA BOOK SCIENCE-BASED SOLUTIONS DuPont Investor Relations Contents 1 DuPont Overview 2 Corporate Financial Data Consolidated Income Statements Greg Friedman Tim Johnson Jennifer Driscoll Consolidated Balance Sheets Vice President Director Director Consolidated Statements of Cash Flows (302) 999-5504 (515) 535-2177 (302) 999-5510 6 DuPont Science & Technology 8 Business Segments Agriculture Electronics & Communications Industrial Biosciences Nutrition & Health Performance Materials Ann Giancristoforo Pat Esham Manager Specialist Safety & Protection (302) 999-5511 (302) 999-5513 20 Corporate Financial Data Segment Information The DuPont Data Book has been prepared to assist financial analysts, portfolio managers and others in Selected Additional Data understanding and evaluating the company. This book presents graphics, tabular and other statistical data about the consolidated company and its business segments. Inside Back Cover Forward-Looking Statements Board of Directors and This Data Book contains forward-looking statements which may be identified by their use of words like “plans,” “expects,” “will,” “believes,” “intends,” “estimates,” “anticipates” or other words of similar meaning. All DuPont Senior Leadership statements that address expectations or projections about the future, including statements about the company’s strategy for growth, product development, regulatory approval, market position, anticipated benefits of recent acquisitions, timing of anticipated benefits from restructuring actions, outcome of contingencies, such as litigation and environmental matters, expenditures and financial results, are forward looking statements. Forward-looking statements are not guarantees of future performance and are based on certain assumptions and expectations of future events which may not be realized. Forward-looking statements also involve risks and uncertainties, many of which are beyond the company’s control. -
Dupont Company Engineering Department Photographs 1982.300
DuPont Company Engineering Department photographs 1982.300 This finding aid was produced using ArchivesSpace on September 14, 2021. Description is written in: English. Describing Archives: A Content Standard Audiovisual Collections PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library DuPont Company Engineering Department photographs 1982.300 Table of Contents Summary Information .................................................................................................................................... 8 Historical Note ............................................................................................................................................... 8 Scope and Content ......................................................................................................................................... 9 Administrative Information .......................................................................................................................... 11 Controlled Access Headings ........................................................................................................................ 11 Collection Inventory ..................................................................................................................................... 11 Alabama Ordnance Works ........................................................................................................................ 11 Argentine Rayon Construction ................................................................................................................. -
Dynamic Crosslinked Poly(Styrene-Block-Butadiene-Block-Styrene) Via
RSC Advances Dynamic crosslinked poly(styrene -block -butadiene -block - styrene) via Diels-Alder chemistry: An ideal method to improve solvent resistance and mechanical properties without losing its thermal plastic behavior Journal: RSC Advances Manuscript ID: RA-ART-05-2015-008719 Article Type: Paper Date Submitted by the Author: 11-May-2015 Complete List of Authors: Bai, Jing; Shanghai Jiao Tong University, School of chemistry and chemical engineering, Li, Hui; Shanghai Jiao Tong University, School of chemistry and chemical engineering, Shi, Zixing; Shanghai Jiao Tong University, School of chemistry and chemical engineering Tian, Ming; Beijing University of Chemical Technology, Yin, Jie; Shanghai Jiao Tong University, School of chemistry and chemical engineering Page 1 of 18 RSC Advances Dynamic crosslinked poly(styrene-block-butadiene-block-styrene) via Diels-Alder chemistry: An ideal method to improve solvent resistance and mechanical properties without losing its thermal plastic behavior Jing Baia, Hui Lia, Zixing Shi*a, Ming Tianb and Jie Yina a School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composite Materials, Shanghai Key Lab of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China Shanghai, 200240, China. E-mail: [email protected]; Fax: + 86-21-54747445; Tel: + 86-21-54743268 b State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China [email protected]; Abstract Poly(styrene-block-butadiene-block-styrene)(SBS) is a typical example of thermal plastic elastomers (TPE). People usually meet a well-known paradox for SBS, RSC Advances Page 2 of 18 where improving its poor solvent resistance and low mechanical properties usually suffer from losing its thermal plastic remolding ability, one of most important characters for TPE. -
Dupont™ Chemical Guidebook
Chemical manufacturing Personal protective solutions for chemical manufacturing industry applications Because everyone Our brands Nomex® has someone ™ ® DuPont Nomex offers a tested and proven portfolio of protective solutions that continues to meet or exceed global standards for heat, flame and depending on them * electric arc flash protection. to get home safely Kevlar® Gloves made with DuPont™ Kevlar® offer industry-leading cut protection, built-in DuPont is more focused than ever on providing heat and flame resistance and electric arc flash protection, while providing the innovative protection solutions and expert technical dexterity and comfort workers want. support tailored to meet the specific needs of workers in chemical manufacturing industries Tyvek® around the world. DuPont™ Tyvek® garments provide workers with superior protection from small-sized hazardous particles, including lead, asbestos and mold. And because Because their safety is our business, workers in the protection is built into the fabric itself, there are no films or laminates to chemical manufacturing industries can rely on the abrade or wear away. world-class people, products and innovation that have made DuPont a trusted partner in personal protection. Tychem® DuPont™ Tychem® garments deliver durable protection and offer strong With a wide range of industry-leading personal permeation barrier against a wide range of chemicals. Together with Tychem® protective equipment (PPE) solutions and a global gloves and tape, they create the Tychem® Trusted Chemical System™ network of PPE specialists, technical experts and for complete protection. manufacturing, DuPont is uniquely suited to provide the protection and comfort every worker deserves to face a range of workplace hazards with confidence. -
Thermoplastic Elastomer Filaments and Their Application in 3D Printing
32 elastomery termoplastyczne w technologii druku 3D Agnieszka Przybytek*, Justyna Kucińska-Lipka* 1, Helena Janik* Thermoplastic elastomer filaments and their application in 3D printing The paper provides an overview on the materials used in the 3D printing technology (the Polish and foreign market) with a particular focus on flexible filaments and their possible application in the industry. There are described the techniques of 3D printing and modern filaments available on the market. There is observed the increase of interest in the production of products from filaments based on thermoplastic elastomers (TPE), including the applications in the electronics and medicine, especially in tissue engineering. Ability to modify the physical and mechanical properties of thermoplastic elastomers, combined with their unique elastic and processability properties, opens new possibilities for engineers, designers and bio-engineers. The possibility to use new materials in 3D printing can contribute to faster development of research and accelerates implementation of innovative products. Keywords: 3D printing, flexible filaments, thermoplastic elastomers (TPE), thermoplastic polyurethanes (TPU). Mgr inż. Agnieszka Przybytek ukończyła studia Dr inż. Justyna Kucińska-Lipka ukończyła studia w 2015 roku na Politechnice Gdańskiej (studia w 2003 roku na Wydziale Technologii i Materiało- inżynierskie – Wydział Fizyki Technicznej i Ma- znawstwa (specjalizacja: chemia technologia poli- tematyki Stosowanej, studia magisterskie – Wy- merów) Politechniki Radomskiej. -
Rubber Division ACS Best Paper Awards
Rubber Division ACS Best Paper Awards The Best Paper Committee of Rubber Division, ACS seeks to improve the quality of technical presentations by evaluating and publicly recognizing the authors of outstanding papers presented our technical meetings. Each year Committee Judges and peer attendees, rate each presentation on quality of content, originality, and clarity. Winning papers are selected from the top-rated presentations after further review by the Best Paper Committee. The Best Symposium is awarded to the symposium with the highest average paper ratings and best average attendance of presentations. Meeting Year Award Authors/Moderators Affiliation Title 196th, Fall 2019 Best Paper Steven K. Henning & Fabien Total Cray Valley Silane-Terminated Liquid Poly(butadienes) in Tread Formulations: A Mechanistic Study 196th, Fall 2019 Best Symposium Ed Terrill & Crittenden ARDL, Inc. & University of Testing and Predicting Behavior of Rubber and Tires Ohlemacher Akron 194th, Fall 2018 Best Paper Nuthathai Warasitthinon and Cooper Tire & Rubber Co. The Payne Effect: Primarily Polymer-Related or Filler-Related Phenomenon? Chris Robertson 194th, Fall 2018 Pest Symposum Cal Moreland & Sy Mowdood Michelin USA & Pirelli Advances in Material and Processes of Car and Truck Tires (Retired 192nd, 2017 Best Paper Anke Blume*, Katarzyna S. University of Twente, Influence of Network Structure on Elastomer Properties Fall Bandzierz, Louis A.E.M. Netherlands Reuvekamp, Jerzy Dryzek, Wilma K. Dierkes, Dariusz M. Bielinski 192nd, 2017 Best Symposium Crittenden Ohlemacher & University of Akron & Characterization Tools for Elastomers Fall Michael Warner CCSI, Inc. 190th, Fall 2016 Best Paper Peter Mott U.S. Naval Research The Thermomechanical Response of Polyurea Laboratory, Chemistry Division 190th, Fall 2016 Honorable Mention Steven K Henning and Taejun Yoo Total Cray Valley The Synthesis and Characterization of Farnesene-Based Oligomers 190th 2016 Best Symposium Sy Mowdood and J. -
Wallace Hume Carothers Letters to Frances Gelvin Spencer 2435
Wallace Hume Carothers letters to Frances Gelvin Spencer 2435 This finding aid was produced using ArchivesSpace on September 26, 2021. Description is written in: English. Describing Archives: A Content Standard Manuscripts and Archives PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library Wallace Hume Carothers letters to Frances Gelvin Spencer 2435 Table of Contents Summary Information .................................................................................................................................... 3 Biographical Note .......................................................................................................................................... 3 Scope and Contents ........................................................................................................................................ 4 Administrative Information ............................................................................................................................ 4 Related Materials ........................................................................................................................................... 5 Controlled Access Headings .......................................................................................................................... 5 - Page 2 - Wallace Hume Carothers letters to Frances Gelvin Spencer 2435 Summary Information Repository: Manuscripts and Archives Creator - crp: Carothers, Wallace Hume, 1896-1937 Creator - rcp: Spencer, Frances -
PVDF: a Fluoropolymer for Chemical Challenges
Electronically reprinted from August 2018 PVDF: A Fluoropolymer for Chemical Challenges When it comes to selecting materials of construction, keep in mind the favorable properties of fluoropolymers for corrosive service Averie Palovcak and Jason ince its commercialization in the Pomante, mid-1960s, polyvinylidene fluoride Arkema Inc. (PVDF) has been used across a Svariety of chemical process indus- tries (CPI) sectors due to its versatility and IN BRIEF broad attributes. With flagship applications PVDF AND THE in architectural coatings and the CPI, the FLUOROPOLYMER FAMILY breadth of industries where PVDF is utilized today is expansive. PVDF components (Fig- COPOLYMERS CHANGE ures 1 and 2) are utilized and installed where FLEXURAL PROPERTIES engineers are looking to maximize longevity PVDF COMPONENTS and reliability of process parts in many CPI sectors, including semiconductor, pharma- FIGURE 1. A variety of fluoropolymer components are shown ceutical, food and beverage, petrochemi- here cal, wire and cable, and general chemicals. change the performance properties. Fluo- PVDF and the fluoropolymer family ropolymers are divided into two main cat- PVDF is a high-performance plastic that falls egories: perfluorinated and partially fluori- into the family of materials called fluoropoly- nated [1]. The partially fluorinated polymers mers. Known for robust chemical resistance, contain hydrogen or other elements, while fluoropolymers are often utilized in areas the perfluorinated (fully fluorinated) poly- where high-temperature corrosion barriers mers are derivatives or copolymers of the are crucial. In addition to being chemically tetrafluoroethylene (C2F4) monomer. Com- resistant and non-rusting, this family of poly- monly used commercial fluoropolymers mers is also considered to have high purity, include polytetrafluoroethylene (PTFE), non-stick surfaces, good flame and smoke perfluoroalkoxy polymer (PFA), fluorinated resistance, excellent weathering and ultra- ethylene propylene (FEP), polyvinylidene violet (UV) stability. -
Ball and Butterfly Valve Seat/Seal Materials
SEAT AND SEAL MATERIAL S BALL AND BUTTERFLY VAL V E SEAT /SEAL MATERIAL S SEAT MATERIALS AND APPLICATIONS Virgin PTFE (Polytetrafluoroethylene) PTFE or TFE (Teflon®) is a fluorocarbon based polymer and typically is the most chemically- resistant of all plastics while retaining excellent thermal and electrical insulation properties. TFE also has a low coefficient of friction so is ideal for many low torque applications. This material is non-contaminating and accepted by the FDA for use in food services. Although TFE’s mechanical properties are low compared to other engineered plastics, its properties remain useful over a wide temperature range Temperature range: -100°F to +450°F. Color: white Torque adder: 0% RTFE (Reinforced Polytetrafluoroethylene) RTFE (reinforced Teflon® ) is compounded with a percentage of fiber glass or filler material to provide additional strength, stability and resistance to abrasive wear, cold flow and permeation in molded seats. Reinforcement such as glass fiber permits application at higher pressures and temperatures than unfilled TFE. RTFE should not be used in applications that attack glass, such as hydrofluoric acid and hot/strong caustics. Temperature range: -320°F to 450°F. Color: off-white (“milky-white”) Torque adder: 0% TFM TFM is a modified “second generation” TFE polymer that maintains the chemical and heat resistance properties of first generation PTFE. It has a denser polymer structure than standard PTFE with better stress recovery. Temperature range: -100°F to 500°F Color: white Torque adder: approximately 10% Delrin® Delrin® is DuPont’s trademark for Polyoxy-methylene. Delrin is very rigid, does not undergo cold flow, and has an excellent combination of strength, hardness, stiffness, stability, abrasion resistance and low friction. -
Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Lins
molecules Article Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Linseed Oil for Applications in Rigid Packaging Ramon Tejada-Oliveros, Rafael Balart * , Juan Ivorra-Martinez , Jaume Gomez-Caturla, Nestor Montanes and Luis Quiles-Carrillo * Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; [email protected] (R.T.-O.); [email protected] (J.I.-M.); [email protected] (J.G.-C.); [email protected] (N.M.) * Correspondence: [email protected] (R.B.); [email protected] (L.Q.-C.); Tel.: +34-966-528-433 (L.Q.-C.) Abstract: This research work reports the potential of maleinized linseed oil (MLO) as biobased compatibilizer in polylactide (PLA) and a thermoplastic elastomer, namely, polystyrene-b-(ethylene- ran-butylene)-b-styrene (SEBS) blends (PLA/SEBS), with improved impact strength for the packaging industry. The effects of MLO are compared with a conventional polystyrene-b-poly(ethylene-ran- butylene)-b-polystyrene-graft-maleic anhydride terpolymer (SEBS-g-MA) since it is widely used in these blends. Uncompatibilized and compatibilized PLA/SEBS blends can be manufactured by extrusion and then shaped into standard samples for further characterization by mechanical, thermal, morphological, dynamical-mechanical, wetting and colour standard tests. The obtained results indi- cate that the uncompatibilized PLA/SEBS blend containing 20 wt.% SEBS gives improved toughness Citation: Tejada-Oliveros, R.; (4.8 kJ/m2) compared to neat PLA (1.3 kJ/m2). Nevertheless, the same blend compatibilized with Balart, R.; Ivorra-Martinez, J.; 2 Gomez-Caturla, J.; Montanes, N.; MLO leads to an increase in impact strength up to 6.1 kJ/m , thus giving evidence of the potential Quiles-Carrillo, L. -
AGWS3-1838 88.Pdf (7.006Mb)
- 2 - No. 77 - 5/4/45 Is research essential for social progress? Is it fundamental or superficial research that is essential? What is the essential need of fundamental research? "Permit me a few comments on the first question: Is research essential for social progress? The question tempts me to a blunt remark: Is running essen tial when you are in a stampede? In other words, with research as a tool avail able to your competitors can you ignore its power? If you doubt the power of research look about you: Who here is dressed in homespun? Who here breakfasted exclusively on unprocessed foods raised and transported without benefit of meteorology, chemistry, physics and biology? Who got here on his own feet with out the aid of airplane, train, subway, taxicab, or elevator? Can you. or any one else, stop by fiat or pious resolve the advances of technology? Not without getting left so far behind as to make the words 'social progress' a cackling mockery. I suspect that there have been societies and states in the history of the world in which life and human relationships were to the healthy participants as agreeable or more agreeable than life in these modern times is to us. But I am quite sure you wouldn't trade your life for theirs: you like to get well from a ruptured appendix, diphtheria, or an acute mania or a rodent ulcer of the face--they couldn't and they didn't. In fact, it is precisely in the field of medical science that I would insist that progress is real.