Class Numbers of the Simplest Cubic Fields
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dirichlet Series Associated to Cubic Fields with Given Quadratic Resolvent 3
DIRICHLET SERIES ASSOCIATED TO CUBIC FIELDS WITH GIVEN QUADRATIC RESOLVENT HENRI COHEN AND FRANK THORNE s Abstract. Let k be a quadratic field. We give an explicit formula for the Dirichlet series P Disc(K) − , K | | where the sum is over isomorphism classes of all cubic fields whose quadratic resolvent field is iso- morphic to k. Our work is a sequel to [11] (see also [15]), where such formulas are proved in a more general setting, in terms of sums over characters of certain groups related to ray class groups. In the present paper we carry the analysis further and prove explicit formulas for these Dirichlet series over Q, and in a companion paper we do the same for quartic fields having a given cubic resolvent. As an application, we compute tables of the number of S3-sextic fields E with Disc(E) < X, | | for X ranging up to 1023. An accompanying PARI/GP implementation is available from the second author’s website. 1. Introduction A classical problem in algebraic number theory is that of enumerating number fields by discrim- inant. Let Nd±(X) denote the number of isomorphism classes of number fields K with deg(K)= d and 0 < Disc(K) < X. The quantity Nd±(X) has seen a great deal of study; see (for example) [10, 7, 23]± for surveys of classical and more recent work. It is widely believed that Nd±(X)= Cd±X +o(X) for all d 2. For d = 2 this is classical, and the case d = 3 was proved in 1971 work of Davenport and Heilbronn≥ [13]. -
The Fundamental System of Units for Cubic Number Fields
University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 2020 The Fundamental System of Units for Cubic Number Fields Janik Huth University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Other Mathematics Commons Recommended Citation Huth, Janik, "The Fundamental System of Units for Cubic Number Fields" (2020). Theses and Dissertations. 2385. https://dc.uwm.edu/etd/2385 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. THE FUNDAMENTAL SYSTEM OF UNITS FOR CUBIC NUMBER FIELDS by Janik Huth A Thesis Submitted in Partial Fulllment of the Requirements for the Degree of Master of Science in Mathematics at The University of Wisconsin-Milwaukee May 2020 ABSTRACT THE FUNDAMENTAL SYSTEM OF UNITS FOR CUBIC NUMBER FIELDS by Janik Huth The University of Wisconsin-Milwaukee, 2020 Under the Supervision of Professor Allen D. Bell Let K be a number eld of degree n. An element α 2 K is called integral, if the minimal polynomial of α has integer coecients. The set of all integral elements of K is denoted by OK . We will prove several properties of this set, e.g. that OK is a ring and that it has an integral basis. By using a fundamental theorem from algebraic number theory, Dirichlet's Unit Theorem, we can study the unit group × , dened as the set of all invertible elements OK of OK . -
P-INTEGRAL BASES of a CUBIC FIELD 1. Introduction Let K = Q(Θ
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 7, July 1998, Pages 1949{1953 S 0002-9939(98)04422-0 p-INTEGRAL BASES OF A CUBIC FIELD S¸ABAN ALACA (Communicated by William W. Adams) Abstract. A p-integral basis of a cubic field K is determined for each rational prime p, and then an integral basis of K and its discriminant d(K)areobtained from its p-integral bases. 1. Introduction Let K = Q(θ) be an algebraic number field of degree n, and let OK denote the ring of integral elements of K.IfOK=α1Z+α2Z+ +αnZ,then α1,α2,...,αn is said to be an integral basis of K. For each prime··· ideal P and each{ nonzero ideal} A of K, νP (A) denotes the exponent of P in the prime ideal decomposition of A. Let P be a prime ideal of K,letpbe a rational prime, and let α K.If ∈ νP(α) 0, then α is called a P -integral element of K.Ifαis P -integral for each prime≥ ideal P of K such that P pO ,thenαis called a p-integral element | K of K.Let!1;!2;:::;!n be a basis of K over Q,whereeach!i (1 i n)isap-integral{ element} of K.Ifeveryp-integral element α of K is given≤ as≤ α = a ! + a ! + +a ! ,wherethea are p-integral elements of Q,then 1 1 2 2 ··· n n i !1;!2;:::;!n is called a p-integral basis of K. { In Theorem} 2.1 a p-integral basis of a cubic field K is determined for every rational prime p, and in Theorem 2.2 an integral basis of K is obtained from its p-integral bases. -
Arizona Winter School 2014 Course Outline and Project Description: Asymptotics for Number Fields and Class Groups
ARIZONA WINTER SCHOOL 2014 COURSE OUTLINE AND PROJECT DESCRIPTION: ASYMPTOTICS FOR NUMBER FIELDS AND CLASS GROUPS MELANIE MATCHETT WOOD ASSISTED BY: ROB HARRON 1. Course Outline This course will cover the questions of counting number fields and determining the distri- bution of class groups of number fields. The starting point is the very basic question: how many number fields are there? This is commonly interpreted as determining the aymptotics in X for #fK ⊂ Q¯ j jDisc(K)j ≤ Xg: A typical refinement is to determine the asymptotics for number fields with a fixed Galois group G, i.e. for #fK ⊂ Q¯ j Gal(K=Q) ' G; jDisc(K)j ≤ Xg: For class groups, what do random class groups look like? For instance, if A is a fixed odd finite abelian group and Cl(K)odd denotes the odd part of the class group of K, what proportion of quadratic fields have Cl(K)odd ' A, i.e. what is #fK ⊂ ¯ j [K : ] = 2; jDisc(K)j ≤ X; Cl(K) ' Ag lim Q Q odd ? X!1 #fK ⊂ Q¯ j [K : Q] = 2; jDisc(K)j ≤ Xg We will discuss the various heuristics and conjectures that address such questions and their generalizations, as well as the relationship between the distribution of number fields and the distribution of class groups. For two specific questions, we will go into detail to show what can actually be proven and how. We will also provide an overview of what the most recent results are in the area. Here is an outline of the course: • Introduction { State the questions of counting number fields and class groups asymptotically { Connection between counting number fields and counting class groups -
Numerical Verification of the Cohen-Lenstra-Martinet Heuristics and of Greenberg’S P-Rationality Conjecture Razvan Barbulescu, Jishnu Ray
Numerical verification of the Cohen-Lenstra-Martinet heuristics and of Greenberg’s p-rationality conjecture Razvan Barbulescu, Jishnu Ray To cite this version: Razvan Barbulescu, Jishnu Ray. Numerical verification of the Cohen-Lenstra-Martinet heuristics and of Greenberg’s p-rationality conjecture. Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, In press, 32 (1), pp.159-177. hal-01534050v3 HAL Id: hal-01534050 https://hal.archives-ouvertes.fr/hal-01534050v3 Submitted on 18 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Numerical verification of the Cohen-Lenstra-Martinet heuristics and of Greenberg’s p-rationality conjecture par Razvan Barbulescu et Jishnu Ray Résumé. Dans cet article nous apportons des éléments en faveur de la conjecture de Greenberg d’existence de corps p-rationnels à groupe de Galois connu. Nous intruisons une famille de corps biquadratiques p-rationnels et nous donnons des nouveaux exemples numériques de corps p-rationnels multiquadratiques de grand degré. Dans le cas des corps multiquadratiques et multicubiques on prouve que la conjec- ture est une conséquence de la conjonction de l’heuristique de Cohen- Lenstra-Martinet et d’une conjecture de Hofmann et Zhang portant sur le régulateur p-adique; nous apportons des nouveauz résultats numériques en faveur de ces conjectures. -
Unit 3 Cubic and Biquadratic Equations
UNIT 3 CUBIC AND BIQUADRATIC EQUATIONS Structure 3.1 Introduction Objectives 3.2 Let Us Recall Linear Equations Quadratic Equations 3.3 Cubic Equations Cardano's Solution Roots And Their Relation With Coefficients 3.4 Biquadratic Equations Ferrari's Solution Descartes' Solution Roots And Their Relation With Coeftlcients 3.5 Summary - 3.1 INTRODUCTION In this unit we will look at an aspect of algebra that has exercised the minds of several ~nntllematicians through the ages. We are talking about the solution of polynomial equations over It. The ancient Hindu, Arabic and Babylonian mathematicians had discovered methods ni solving linear and quadratic equations. The ancient Babylonians and Greeks had also discovered methods of solviilg some cubic equations. But, as we have said in Unit 2, they had llol thought of complex iiumbers. So, for them, a lot of quadratic and cubic equations had no solutioit$. hl the 16th century various Italian mathematicians were looking into the geometrical prob- lein of trisectiiig an angle by straight edge and compass. In the process they discovered a inethod for solviilg the general cubic equation. This method was divulged by Girolanlo Cardano, and hence, is named after him. This is the same Cardano who was the first to iiilroduce coinplex numbers into algebra. Cardano also publicised a method developed by his contemporary, Ferrari, for solving quartic equations. Lake, in the 17th century, the French mathematician Descartes developed another method for solving 4th degree equrtioiis. In this unit we will acquaint you with the solutions due to Cardano, Ferrari and Descartes. Rut first we will quickly cover methods for solving linear and quadratic equations. -
Reflection Theorems for Number Rings
Reflection theorems for number rings Evan O’Dorney July 13, 2021 Contents I Introduction 4 1 Introduction 4 1.1 Historicalbackground . ............ 4 1.2 Methods......................................... ....... 5 1.3 Results......................................... ........ 6 1.4 Outlineofthepaper ............................... .......... 7 1.5 Acknowledgements ................................ .......... 7 2 Examples for the lay reader 7 2.1 Reflectionforquadraticequations. ................ 7 2.2 Reflectionforcubicequations . .............. 9 2.3 Reflection for 2 n n boxes.................................... 11 2.4 Reflectionforquarticequations× × . ............... 12 3 Notation 15 II Galois cohomology 15 4 Étale algebras and their Galois groups 16 4.1 Étalealgebras................................... .......... 16 4.2 TheGaloisgroupofanétalealgebra . .............. 17 4.3 Resolvents...................................... ......... 17 4.4 Subextensionsandautomorphisms . .............. 18 4.5 Torsors ......................................... ....... 18 arXiv:2107.04727v1 [math.NT] 10 Jul 2021 4.6 AfreshlookatGaloiscohomology . ............. 20 5 Extensions of Kummer theory to explicitize Galois cohomology 23 5.1 TheTatepairingandtheHilbertsymbol. ............... 27 6 Rings over a Dedekind domain 29 6.1 Indicesoflattices............................... ............ 29 6.2 Discriminants................................... .......... 30 6.3 Quadraticrings.................................. .......... 32 6.4 Cubicrings ..................................... -
View This Volume's Front and Back Matter
i i “IrvingBook” — 2013/5/22 — 15:39 — page i — #1 i i 10.1090/clrm/043 Beyond the Quadratic Formula i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page ii — #2 i i c 2013 by the Mathematical Association of America, Inc. Library of Congress Catalog Card Number 2013940989 Print edition ISBN 978-0-88385-783-0 Electronic edition ISBN 978-1-61444-112-0 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page iii — #3 i i Beyond the Quadratic Formula Ron Irving University of Washington Published and Distributed by The Mathematical Association of America i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page iv — #4 i i Council on Publications and Communications Frank Farris, Chair Committee on Books Gerald M. Bryce, Chair Classroom Resource Materials Editorial Board Gerald M. Bryce, Editor Michael Bardzell Jennifer Bergner Diane L. Herrmann Paul R. Klingsberg Mary Morley Philip P. Mummert Mark Parker Barbara E. Reynolds Susan G. Staples Philip D. Straffin Cynthia J Woodburn i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page v — #5 i i CLASSROOM RESOURCE MATERIALS Classroom Resource Materials is intended to provide supplementary class- room material for students—laboratory exercises, projects, historical in- formation, textbooks with unusual approaches for presenting mathematical ideas, career information, etc. 101 Careers in Mathematics, 2nd edition edited by Andrew Sterrett Archimedes: What Did He Do Besides Cry Eureka?, Sherman Stein Beyond the Quadratic Formula, Ronald S. -
Cubic and Quartic Equations (Pdf File)
CUBIC AND QUARTIC EQUATIONS From the point of view of medieval mathematicians, there are actually 13 different types of cubic equations rather than just one. Basically this is because they not merely did not admit imaginary or complex numbers, but only considered positive real num- bers, so also did not admit negative numbers or zero. Thus to them ¢¡¤£¥ §¦©¨ was a different type of equation from ¢¡ ¦ £ ¨ . Now we can write a general cubic equation ¡ £££¦ ¦ (in which § or the equation is not genuinely cubic) in the form ¡ £¥ £¥£¥ ¦! "¦# after dividing by a constant. The case where ¦! leads to an inadmissible root and anyway is easily soluble, so we get different cases as $ $ $ ¦ % '& ¦ % (& ¦ % leading to 18 cases. However, the cases $ )¦ )¦!'&* % )¦ )¦!'&* are not taken seriously as cubic equations (and indeed the first has no real positive solution), while evidently the cases $ $ $ '&* (&+ $ $ )¦!'&* (&+ $ $ '&*,¦ (&+ have no real positive solution. This leaves 13 cases to be considered. The case of the cosa and the cube, in modern notation the case ¡-£¥.¦ where and are positive, was solved by Scipione del Ferro (1465–1626) early in the six- teenth century. He taught his method to his pupil Antonio Maria Fior (Florido) (dates unknown), who had a contest with Nicolo` Tartaglia (1500–1557) which resulted in the latter’s discovery of the method for solving this particular type. Girolamo Cardano (Jerome Cardan) (1501–1576) persuaded Tartaglia to tell him the solution, first in a cryptic verse and then with a full explanation, after swearing he would keep the solu- tion secret. But, after he had found the solution in the posthumous papers of del Ferro, Cardan felt free to publish, which he did in his Ars Magna (1545). -
Construction of All Cubic Fields of a Fixed Fundamental Discriminant (Renate Scheidler)
Chapter 4 Construction of All Cubic Fields of a Fixed Fundamental Discriminant (Renate Scheidler) 4.1 Introduction In 1925, Berwick [19] described an approach for generating all cubic fields of a given discriminant Δ. When Δ is fundamental, Berwick’s observation, expressed in modern terminology, was that every cubic field of discriminant√ Δ arises from a 3-virtual unit in the quadratic resolvent field L = Q( Δ ) of (also fundamental) discriminant Δ = −3Δ/gcd(3,Δ)2. A 3-virtual unit of L is defined to be a gen- erator of a principal ideal that√ is the cube of some ideal in the maximal order OL of L . Suppose λ =(G + H Δ )/2, with G√,H ∈ Z non-zero, is a 3-virtual unit that is not itself a cube in L. Put λ =(G − H Δ )/2 and λλ = A3 with A ∈ Z. Then f (x)=x3 − 3Ax + G is the generating polynomial of a cubic field of discriminant Δ or −27Δ , and every cubic field of discriminant Δ arises in this way. Moreover, two 3-virtual units λ1,λ2 ∈ OL give rise to the same cubic field up to Q-isomorphism if and only if λ1/λ2 or λ1/λ 2 is a cube in L . In this case, if λi is a generator of O 3 α the L -ideal ai for i = 1,2, then a1 is equivalent to a2 or to a2, i.e., a1 =( )a2 or a1 =(α)a2 for some non-zero α ∈ L . Cubic fields of fundamental discriminant Δ can therefore be obtained from 3-virtual units in the quadratic resolvent field of discriminant Δ , or more exactly, via the cube roots of ideals belonging to 3-torsion classes in the class group of L. -
Class Field Theory
Franz Lemmermeyer Class Field Theory April 30, 2007 Franz Lemmermeyer email [email protected] http://www.rzuser.uni-heidelberg.de/~hb3/ Preface Class field theory has a reputation of being an extremely beautiful part of number theory and an extremely difficult subject at the same time. For some- one with a good background in local fields, Galois cohomology and profinite groups there exist accounts of class field theory that reach the summit (exis- tence theorems and Artin reciprocity) quite quickly; in fact Neukirch’s books show that it is nowadays possible to cover the main theorems of class field theory in a single semester. Students who have just finished a standard course on algebraic number theory, however, rarely have the necessary familiarity with the more advanced tools of the trade. They are looking for sources that include motivational material, routine exercises, problems, and applications. These notes aim at serving this audience. I have chosen the classical ap- proach to class field theory for the following reasons: 1. Zeta functions and L-series are an important tool not only in algebraic number theory, but also in algebraic geometry. 2. The analytic proof of the first inequality is very simple once you know that the Dedekind zeta function has a pole of order 1 at s = 1. 3. The algebraic techniques involved in the classical proof of the second inequality give us results for free that have to be derived from class field theory in the idelic approach; among the is the ambiguous class number formula, Hilbert’s Theorem 94, or Furtw¨angler’s principal genus theorem. -
A Simplified Expression for the Solution of Cubic Polynomial Equations
A simplified expression for the solution of cubic polynomial equations using function evaluation Ababu T. Tiruneh, University of Eswatini, Department of Env. Health Science, Swaziland. Email: [email protected] Abstract This paper presents a simplified method of expressing the solution to cubic equations in terms of function evaluation only. The method eliminates the need to manipulate the orig- inal coefficients of the cubic polynomial and makes the solution free from such coefficients. In addition, the usual substitution needed to reduce the cubics is implicit in that the final solution is expressed in terms only of the function and derivative values of the given cubic polynomial at a single point. The proposed methodology simplifies the solution to cubic equations making them easy to remember and solve. Keywords: Polynomial equations, algebra, cubic equations, solution of equations, cubic polynomials, mathematics 1 Introduction Polynomials of higher degree arise often in problems in science and engineering. According to the fundamental theorem of algebra, a polynomial equation of degree n has at most n distinct solutions [1]. The history of symbolic manipulation for solving polynomial equation notes the work of Luca Pacioli in 1494 [2] in which the basis was laid for solving linear and quadratic equations while he stated the cubic equation as impossible to solve and asking the Italian math- ematical community to take the challenge. Mathematicians seemed to have felt hitting a wall after solving quadratic equations as it took quite a while for the solution to cubic equation to be found [3]. The solution to the cubic in the depressed form x3 +bx+c was discovered by del Ferro initially but he passed it to his student instead of publishing it.