Class Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Class Field Theory Franz Lemmermeyer Class Field Theory April 30, 2007 Franz Lemmermeyer email [email protected] http://www.rzuser.uni-heidelberg.de/~hb3/ Preface Class field theory has a reputation of being an extremely beautiful part of number theory and an extremely difficult subject at the same time. For some- one with a good background in local fields, Galois cohomology and profinite groups there exist accounts of class field theory that reach the summit (exis- tence theorems and Artin reciprocity) quite quickly; in fact Neukirch’s books show that it is nowadays possible to cover the main theorems of class field theory in a single semester. Students who have just finished a standard course on algebraic number theory, however, rarely have the necessary familiarity with the more advanced tools of the trade. They are looking for sources that include motivational material, routine exercises, problems, and applications. These notes aim at serving this audience. I have chosen the classical ap- proach to class field theory for the following reasons: 1. Zeta functions and L-series are an important tool not only in algebraic number theory, but also in algebraic geometry. 2. The analytic proof of the first inequality is very simple once you know that the Dedekind zeta function has a pole of order 1 at s = 1. 3. The algebraic techniques involved in the classical proof of the second inequality give us results for free that have to be derived from class field theory in the idelic approach; among the is the ambiguous class number formula, Hilbert’s Theorem 94, or Furtw¨angler’s principal genus theorem. 4. Many of the central unsolved problems in modern number theory are directly connected to analytic objects. Let me just mention the Riemann conjecture for various L-functions, the Stark conjectures, the conjecture of Birch and Swinnerton-Dyer, and the whole Langlands program. I also have tried to approach certain central results by first treating special cases; this is not particularly elegant, but it helps students to see how some of the more technical proofs evolved from relatively simple considerations. vi Table of Contents Part I. Dirichlet’s Analytic Methods 1. Dirichlet Series for Quadratic Characters ................. 3 1.1 Euler . 3 1.2 Basic Properties of the Riemann Zeta Function . 7 1.3 Quadratic Number Fields . 12 1.4 Gauss . 13 1.5 Dirichlet’s L-series . 15 2. The Nonvanishing of L(1, χ) for Quadratic Characters .... 21 2.1 Dirichlet’s Proof for Prime Discriminants . 21 2.2 Nonvanishing of Dirichlet’s L-functions . 27 2.3 Computation of L(1, χ) ................................. 29 3. Primes in Arithmetic Progression......................... 41 3.1 Characters. 42 3.2 Primes in Arithmetic Progression . 45 3.3 Cyclotomic Number Fields . 47 4. Dirichlet .................................................. 53 4.1 Dirichlet’s L-series for Quadratic Forms . 53 4.2 Genus Theory for Quadratic Number Fields. 55 4.3 Primes with Prescribed Residue Characters . 56 4.4 Primes Represented by Binary Quadratic Forms . 58 5. Algebraic Number Fields ................................. 61 5.1 Archimedean Valuations of a Number Field . 61 5.2 Arithmetic of Number Fields . 62 5.3 Prime Decomposition in Relative Extensions . 65 5.4 Prime Ideals in Galois Extensions . 67 5.5 Minkowski Bounds. 70 6. Dirichlet’s Unit Theorem ................................. 77 6.1 Units in Quadratic Number Fields . 77 6.2 Dirichlet’s Unit Theorem . 79 viii Table of Contents 6.3 The Unit Theorems of Minkowski and Herbrand . 82 7. Dedekind’s Zeta Function ................................. 87 7.1 Distribution of Ideals . 88 7.2 Dirichlet’s Class Number Formula . 95 7.3 Cyclotomic Fields . 96 8. Density Theorems ........................................ 97 8.1 Kronecker’s Density Theorem . 97 8.2 Frobenius Density Theorem for Abelian Extensions . 100 8.3 Kummer Extensions . 102 8.4 Decomposition Laws in Kummer Extensions . 105 8.5 Density Theorems of Kummer and Hilbert . 106 Part II. Hilbert Class Fields 9. The Hilbert Class Field ................................... 111 9.1 Weber’s Motivation√ . 111 9.2 The Field Q(√−5) ..................................... 114 9.3 The Field Q( 3)....................................... 115 9.4 Hilbert Class Field Theory II . 116 10. The First Inequality ...................................... 123 10.1 Weber’s Inequality . 123 10.2 Proof of the First Inequality . 126 10.3 Consequences of the First Inequality . 128 11. The Second Inequality .................................... 133 11.1 Preliminaries. 133 11.2 The Second Inequality for Unramified Extensions . 136 11.3 The Ambiguous Class Number Formula . 138 11.4 The Herbrand Quotient of the Unit Group . 142 12. Examples of Hilbert Class Fields ......................... 147 13. The Artin Symbol ........................................ 149 13.1 Inertia Groups . 149 13.2 The Symbols of Frobenius and Artin . 150 13.3 The Artin Isomorphism . 153 14. Frobenius Density ........................................ 157 14.1 Frobenius and his Density Theorem . 157 14.2 Group Theoretical Preliminaries . 162 14.3 Prime Ideal Decomposition in Nonnormal Extensions . 163 14.4 The Proof of Frobenius’ Density Theorem . 165 Table of Contents ix Part III. Takagi’s Class Field Theory 15. Ideal Groups ............................................. 171 15.1 Generalized Class Groups . 171 15.2 Takagi’s Class Field Theory . 175 15.3 The Fundamental Inequalities . 180 16. Artin’s Reciprocity Law .................................. 183 16.1 Cyclotomic Fields . 183 16.2 Base Change . 183 16.3 Proof of Artin’s Reciprocity Law . 183 17. The Existence Theorem .................................. 185 18. Norm Residues and Higher Ramification ................. 187 18.1 Higher Ramification Groups . 187 Part IV. Appendix A. Gamma, Theta, and Zeta ................................. 193 A.1 Euler’s Gamma Function . 193 A.2 Jacobi’s Theta Functions . 193 A.3 Riemann’s Zeta Function . 193 A.4 Quadratic Gauss Sums . 193 B. A Beginner’s Guide to Galois Cohomology................ 195 B.1 H1(G, A).............................................. 195 B.2 Hb 0(G, A).............................................. 195 B.3 Hb −1(G, A)............................................. 195 B.4 Galois Cohomology for Cyclic Groups . 195 B.5 Herbrand’s Lemma . 195 B.6 Capitulation . 195 B.7 Ambiguous Ideal Classes . 195 C. Solutions of Selected Problems ........................... 197 Bibliography .................................................. 203 x Table of Contents Part I Dirichlet’s Analytic Methods 1 1. Dirichlet Series for Quadratic Characters Analytic methods occupy a central place in algebraic number theory. In this chapter we introduce the basic tools of the trade provided by Dirichlet. Most of the results proved here will be generalized step by step in subsequent chapters until we finally will have all the techniques required for the proof of the First Inequality of class field theory. Most modern accounts of class field theory give an arithmetic proof of both the First and the Second Inequality. This approach has the additional advantage of bringing out clearly the local-global aspects of class field the- ory. On the other hand, class number formulas and the density theorems of Dirichlet, Kronecker, Frobenius and Chebotarev are central results of al- gebraic number theory which every serious student specializing in number theory must be familiar with, in particular since these analytic techniques are also needed in the theory of elliptic curves (or, more generally, abelian varieties) and modular forms. In this theory, the analog of the class number formula of Dirichlet and Dedekind is the conjecture of Birch and Swinnerton- Dyer, which – together with the Riemann hypothesis – belongs to the most important open problems in number theory. 1.1 Euler One of the earliest outstanding results of Euler was the formula π2 1 1 1 = 1 + + + + .... (1.1) 6 4 9 16 This is the value ζ(2) of Riemann’s zeta function 1 1 1 ζ(s) = 1 + + + + .... 2s 3s 4s Euler’s first “proof” of (1.1) was full of holes, but very beautiful. In a nutshell, here’s what he did. sin x Fix some α ∈ R with sin α 6= 0, and consider the function f(x) = 1− sin α . This function has a Taylor expansion 4 1. Dirichlet Series for Quadratic Characters x x3 x5 f(x) = 1 − + + − .... sin α 3! sin α 5! sin α The real roots of this function are x = 2nπ + α and x = (2n + 1)π − α. Euler knew that two polynomials of degree n with equal roots and equal constant term (the value at x = 0) must be the same. Regarding f(x) as a polynomial of infinite degree, he concluded that ∞ Y x x f(x) = 1 − 1 − 2nπ + α (2n + 1)π − α n=−∞ ∞ x Y x x = 1 − 1 − 1 + α (2n − 1)π − α (2n − 1)π + α n=1 x x 1 − 1 + . 2nπ + α 2nπ − α Expanding the right hand side and comparing coefficients yields ∞ 1 1 X 1 = + sin α α (2n − 1)π − α n=1 1 1 1 − + − , (1.2) (2n − 1)π + α 2nπ + α 2nπ − α ∞ 1 1 X 1 = + 2 α2 ((2n − 1)π − α)2 sin α n=1 1 1 1 − + − . (1.3) ((2n − 1)π + α)2 (2nπ + α)2 (2nπ − α)2 π Putting α = 2 in (1.2) gives Leibniz’s series π 1 1 1 = 1 − + − ± .... 4 3 5 7 π For α = 4 , (1.2) produces π 1 1 1 1 √ = 1 + − − + + ..., 2 2 3 5 7 9 which Euler credits to Newton; in fact, this formula appears in a letter from Newton to Oldenberg from October 24, 1676. π Plugging α = 2 into (1.3) gives 1 1 π2 1 + + + ... = . 32 52 8 Euler then observes that 1 1 1 ζ(2) = 1 + + + ... + ζ(2), (1.4) 32 52 4 1.1 Euler 5 π2 and this then implies ζ(2) = 6 . Euler’s arguments for the product expansion of f(x) are not convincing for two reasons: first, he only considered real roots of f; second, the functions f(x) and exf(x) have the same roots and the same constant term, so these properties do not determine f.
Recommended publications
  • Dirichlet Series Associated to Cubic Fields with Given Quadratic Resolvent 3
    DIRICHLET SERIES ASSOCIATED TO CUBIC FIELDS WITH GIVEN QUADRATIC RESOLVENT HENRI COHEN AND FRANK THORNE s Abstract. Let k be a quadratic field. We give an explicit formula for the Dirichlet series P Disc(K) − , K | | where the sum is over isomorphism classes of all cubic fields whose quadratic resolvent field is iso- morphic to k. Our work is a sequel to [11] (see also [15]), where such formulas are proved in a more general setting, in terms of sums over characters of certain groups related to ray class groups. In the present paper we carry the analysis further and prove explicit formulas for these Dirichlet series over Q, and in a companion paper we do the same for quartic fields having a given cubic resolvent. As an application, we compute tables of the number of S3-sextic fields E with Disc(E) < X, | | for X ranging up to 1023. An accompanying PARI/GP implementation is available from the second author’s website. 1. Introduction A classical problem in algebraic number theory is that of enumerating number fields by discrim- inant. Let Nd±(X) denote the number of isomorphism classes of number fields K with deg(K)= d and 0 < Disc(K) < X. The quantity Nd±(X) has seen a great deal of study; see (for example) [10, 7, 23]± for surveys of classical and more recent work. It is widely believed that Nd±(X)= Cd±X +o(X) for all d 2. For d = 2 this is classical, and the case d = 3 was proved in 1971 work of Davenport and Heilbronn≥ [13].
    [Show full text]
  • The Fundamental System of Units for Cubic Number Fields
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 2020 The Fundamental System of Units for Cubic Number Fields Janik Huth University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Other Mathematics Commons Recommended Citation Huth, Janik, "The Fundamental System of Units for Cubic Number Fields" (2020). Theses and Dissertations. 2385. https://dc.uwm.edu/etd/2385 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. THE FUNDAMENTAL SYSTEM OF UNITS FOR CUBIC NUMBER FIELDS by Janik Huth A Thesis Submitted in Partial Fulllment of the Requirements for the Degree of Master of Science in Mathematics at The University of Wisconsin-Milwaukee May 2020 ABSTRACT THE FUNDAMENTAL SYSTEM OF UNITS FOR CUBIC NUMBER FIELDS by Janik Huth The University of Wisconsin-Milwaukee, 2020 Under the Supervision of Professor Allen D. Bell Let K be a number eld of degree n. An element α 2 K is called integral, if the minimal polynomial of α has integer coecients. The set of all integral elements of K is denoted by OK . We will prove several properties of this set, e.g. that OK is a ring and that it has an integral basis. By using a fundamental theorem from algebraic number theory, Dirichlet's Unit Theorem, we can study the unit group × , dened as the set of all invertible elements OK of OK .
    [Show full text]
  • An Introduction to Iwasawa Theory
    An Introduction to Iwasawa Theory Notes by Jim L. Brown 2 Contents 1 Introduction 5 2 Background Material 9 2.1 AlgebraicNumberTheory . 9 2.2 CyclotomicFields........................... 11 2.3 InfiniteGaloisTheory . 16 2.4 ClassFieldTheory .......................... 18 2.4.1 GlobalClassFieldTheory(ideals) . 18 2.4.2 LocalClassFieldTheory . 21 2.4.3 GlobalClassFieldTheory(ideles) . 22 3 SomeResultsontheSizesofClassGroups 25 3.1 Characters............................... 25 3.2 L-functionsandClassNumbers . 29 3.3 p-adicL-functions .......................... 31 3.4 p-adic L-functionsandClassNumbers . 34 3.5 Herbrand’sTheorem . .. .. .. .. .. .. .. .. .. .. 36 4 Zp-extensions 41 4.1 Introduction.............................. 41 4.2 PowerSeriesRings .......................... 42 4.3 A Structure Theorem on ΛO-modules ............... 45 4.4 ProofofIwasawa’stheorem . 48 5 The Iwasawa Main Conjecture 61 5.1 Introduction.............................. 61 5.2 TheMainConjectureandClassGroups . 65 5.3 ClassicalModularForms. 68 5.4 ConversetoHerbrand’sTheorem . 76 5.5 Λ-adicModularForms . 81 5.6 ProofoftheMainConjecture(outline) . 85 3 4 CONTENTS Chapter 1 Introduction These notes are the course notes from a topics course in Iwasawa theory taught at the Ohio State University autumn term of 2006. They are an amalgamation of results found elsewhere with the main two sources being [Wash] and [Skinner]. The early chapters are taken virtually directly from [Wash] with my contribution being the choice of ordering as well as adding details to some arguments. Any mistakes in the notes are mine. There are undoubtably type-o’s (and possibly mathematical errors), please send any corrections to [email protected]. As these are course notes, several proofs are omitted and left for the reader to read on his/her own time.
    [Show full text]
  • Number Theory
    Number Theory Alexander Paulin October 25, 2010 Lecture 1 What is Number Theory Number Theory is one of the oldest and deepest Mathematical disciplines. In the broadest possible sense Number Theory is the study of the arithmetic properties of Z, the integers. Z is the canonical ring. It structure as a group under addition is very simple: it is the infinite cyclic group. The mystery of Z is its structure as a monoid under multiplication and the way these two structure coalesce. As a monoid we can reduce the study of Z to that of understanding prime numbers via the following 2000 year old theorem. Theorem. Every positive integer can be written as a product of prime numbers. Moreover this product is unique up to ordering. This is 2000 year old theorem is the Fundamental Theorem of Arithmetic. In modern language this is the statement that Z is a unique factorization domain (UFD). Another deep fact, due to Euclid, is that there are infinitely many primes. As a monoid therefore Z is fairly easy to understand - the free commutative monoid with countably infinitely many generators cross the cyclic group of order 2. The point is that in isolation addition and multiplication are easy, but together when have vast hidden depth. At this point we are faced with two potential avenues of study: analytic versus algebraic. By analytic I questions like trying to understand the distribution of the primes throughout Z. By algebraic I mean understanding the structure of Z as a monoid and as an abelian group and how they interact.
    [Show full text]
  • Automorphic Functions and Fermat's Last Theorem(3)
    Jiang and Wiles Proofs on Fermat Last Theorem (3) Abstract D.Zagier(1984) and K.Inkeri(1990) said[7]:Jiang mathematics is true,but Jiang determinates the irrational numbers to be very difficult for prime exponent p.In 1991 Jiang studies the composite exponents n=15,21,33,…,3p and proves Fermat last theorem for prime exponenet p>3[1].In 1986 Gerhard Frey places Fermat last theorem at the elliptic curve that is Frey curve.Andrew Wiles studies Frey curve. In 1994 Wiles proves Fermat last theorem[9,10]. Conclusion:Jiang proof(1991) is direct and simple,but Wiles proof(1994) is indirect and complex.If China mathematicians had supported and recognized Jiang proof on Fermat last theorem,Wiles would not have proved Fermat last theorem,because in 1991 Jiang had proved Fermat last theorem.Wiles has received many prizes and awards,he should thank China mathematicians. - Automorphic Functions And Fermat’s Last Theorem(3) (Fermat’s Proof of FLT) 1 Chun-Xuan Jiang P. O. Box 3924, Beijing 100854, P. R. China [email protected] Abstract In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous proof, which this margin is too small to contain.” This means: xyznnnn+ =>(2) has no integer solutions, all different from 0(i.e., it has only the trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT).
    [Show full text]
  • Class Field Theory & Complex Multiplication
    Class Field Theory & Complex Multiplication S´eminairede Math´ematiquesSup´erieures,CRM, Montr´eal June 23-July 4, 2014 Eknath Ghate 1 Introduction An elliptic curve has complex multiplication (or CM for short) if it has endo- morphisms other than the obvious ones given by multiplication by integers. The main purpose of these notes is to show that the j-invariant of an elliptic curve with CM along with its torsion points can be used to explicitly generate the maximal abelian extension of an imaginary quadratic field. This result is analogous to the Kronecker-Weber theorem which states that the maximal abelian extension of Q is generated by the values of the exponential function e2πix at the torsion points Q=Z of the group C=Z. The CM theory of elliptic curves is due to many authors, including Kro- necker, Weber, Hasse, Deuring, Shimura. Our exposition is based on Chap- ters 4 and 5 of Shimura [1], and Chapter 2 of Silverman [3]. For standard facts about elliptic curves we sometimes refer the reader to Silverman [2]. 2 What is complex multiplication? Let E and E0 be elliptic curves defined over an algebraically closed field k. A homomorphism λ : E ! E0 is a rational map that is also a group homomorphism. An isogeny λ : E ! E0 is a homomorphism with finite kernel. Denote the ring of all endomorphisms of E by End(E), and set EndQ(E) = End(E) ⊗ Q. If E is an elliptic curve defined over C, then E is isomorphic to C=L for a lattice L ⊂ C.
    [Show full text]
  • Introduction to L-Functions: Dedekind Zeta Functions
    Introduction to L-functions: Dedekind zeta functions Paul Voutier CIMPA-ICTP Research School, Nesin Mathematics Village June 2017 Dedekind zeta function Definition Let K be a number field. We define for Re(s) > 1 the Dedekind zeta function ζK (s) of K by the formula X −s ζK (s) = NK=Q(a) ; a where the sum is over all non-zero integral ideals, a, of OK . Euler product exists: Y −s −1 ζK (s) = 1 − NK=Q(p) ; p where the product extends over all prime ideals, p, of OK . Re(s) > 1 Proposition For any s = σ + it 2 C with σ > 1, ζK (s) converges absolutely. Proof: −n Y −s −1 Y 1 jζ (s)j = 1 − N (p) ≤ 1 − = ζ(σ)n; K K=Q pσ p p since there are at most n = [K : Q] many primes p lying above each rational prime p and NK=Q(p) ≥ p. A reminder of some algebraic number theory If [K : Q] = n, we have n embeddings of K into C. r1 embeddings into R and 2r2 embeddings into C, where n = r1 + 2r2. We will label these σ1; : : : ; σr1 ; σr1+1; σr1+1; : : : ; σr1+r2 ; σr1+r2 . If α1; : : : ; αn is a basis of OK , then 2 dK = (det (σi (αj ))) : Units in OK form a finitely-generated group of rank r = r1 + r2 − 1. Let u1;:::; ur be a set of generators. For any embedding σi , set Ni = 1 if it is real, and Ni = 2 if it is complex. Then RK = det (Ni log jσi (uj )j)1≤i;j≤r : wK is the number of roots of unity contained in K.
    [Show full text]
  • P-INTEGRAL BASES of a CUBIC FIELD 1. Introduction Let K = Q(Θ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 7, July 1998, Pages 1949{1953 S 0002-9939(98)04422-0 p-INTEGRAL BASES OF A CUBIC FIELD S¸ABAN ALACA (Communicated by William W. Adams) Abstract. A p-integral basis of a cubic field K is determined for each rational prime p, and then an integral basis of K and its discriminant d(K)areobtained from its p-integral bases. 1. Introduction Let K = Q(θ) be an algebraic number field of degree n, and let OK denote the ring of integral elements of K.IfOK=α1Z+α2Z+ +αnZ,then α1,α2,...,αn is said to be an integral basis of K. For each prime··· ideal P and each{ nonzero ideal} A of K, νP (A) denotes the exponent of P in the prime ideal decomposition of A. Let P be a prime ideal of K,letpbe a rational prime, and let α K.If ∈ νP(α) 0, then α is called a P -integral element of K.Ifαis P -integral for each prime≥ ideal P of K such that P pO ,thenαis called a p-integral element | K of K.Let!1;!2;:::;!n be a basis of K over Q,whereeach!i (1 i n)isap-integral{ element} of K.Ifeveryp-integral element α of K is given≤ as≤ α = a ! + a ! + +a ! ,wherethea are p-integral elements of Q,then 1 1 2 2 ··· n n i !1;!2;:::;!n is called a p-integral basis of K. { In Theorem} 2.1 a p-integral basis of a cubic field K is determined for every rational prime p, and in Theorem 2.2 an integral basis of K is obtained from its p-integral bases.
    [Show full text]
  • 22 Ring Class Fields and the CM Method
    18.783 Elliptic Curves Spring 2015 Lecture #22 04/30/2015 22 Ring class fields and the CM method p Let O be an imaginary quadratic order of discriminant D, let K = Q( D), and let L be the splitting field of the Hilbert class polynomial HD(X) over K. In the previous lecture we showed that there is an injective group homomorphism Ψ: Gal(L=K) ,! cl(O) that commutes with the group actions of Gal(L=K) and cl(O) on the set EllO(C) = EllO(L) of roots of HD(X) (the j-invariants of elliptic curves with CM by O). To complete the proof of the the First Main Theorem of Complex Multiplication, which asserts that Ψ is an isomorphism, we need to show that Ψ is surjective; this is equivalent to showing the HD(X) is irreducible over K. At the end of the last lecture we introduced the Artin map p 7! σp, which sends each unramified prime p of K to the unique automorphism σp 2 Gal(L=K) for which Np σp(x) ≡ x mod q; (1) for all x 2 OL and primes q of L dividing pOL (recall that σp is independent of q because Gal(L=K) ,! cl(O) is abelian). Equivalently, σp is the unique element of Gal(L=K) that Np fixes q and induces the Frobenius automorphism x 7! x of Fq := OL=q, which is a generator for Gal(Fq=Fp), where Fp := OK =p. Note that if E=C has CM by O then j(E) 2 L, and this implies that E can be defined 2 3 by a Weierstrass equation y = x + Ax + B with A; B 2 OL.
    [Show full text]
  • Notes on the Riemann Hypothesis Ricardo Pérez-Marco
    Notes on the Riemann Hypothesis Ricardo Pérez-Marco To cite this version: Ricardo Pérez-Marco. Notes on the Riemann Hypothesis. 2018. hal-01713875 HAL Id: hal-01713875 https://hal.archives-ouvertes.fr/hal-01713875 Preprint submitted on 21 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NOTES ON THE RIEMANN HYPOTHESIS RICARDO PEREZ-MARCO´ Abstract. Our aim is to give an introduction to the Riemann Hypothesis and a panoramic view of the world of zeta and L-functions. We first review Riemann's foundational article and discuss the mathematical background of the time and his possible motivations for making his famous conjecture. We discuss some of the most relevant developments after Riemann that have contributed to a better understanding of the conjecture. Contents 1. Euler transalgebraic world. 2 2. Riemann's article. 8 2.1. Meromorphic extension. 8 2.2. Value at negative integers. 10 2.3. First proof of the functional equation. 11 2.4. Second proof of the functional equation. 12 2.5. The Riemann Hypothesis. 13 2.6. The Law of Prime Numbers. 17 3. On Riemann zeta-function after Riemann.
    [Show full text]
  • Introduction. There Are at Least Three Different Problems with Which One Is Confronted in the Study of L-Functions: the Analytic
    L-Functions and Automorphic Representations∗ R. P. Langlands Introduction. There are at least three different problems with which one is confronted in the study of L•functions: the analytic continuation and functional equation; the location of the zeroes; and in some cases, the determination of the values at special points. The first may be the easiest. It is certainly the only one with which I have been closely involved. There are two kinds of L•functions, and they will be described below: motivic L•functions which generalize the Artin L•functions and are defined purely arithmetically, and automorphic L•functions, defined by data which are largely transcendental. Within the automorphic L• functions a special class can be singled out, the class of standard L•functions, which generalize the Hecke L•functions and for which the analytic continuation and functional equation can be proved directly. For the other L•functions the analytic continuation is not so easily effected. However all evidence indicates that there are fewer L•functions than the definitions suggest, and that every L•function, motivic or automorphic, is equal to a standard L•function. Such equalities are often deep, and are called reciprocity laws, for historical reasons. Once a reciprocity law can be proved for an L•function, analytic continuation follows, and so, for those who believe in the validity of the reciprocity laws, they and not analytic continuation are the focus of attention, but very few such laws have been established. The automorphic L•functions are defined representation•theoretically, and it should be no surprise that harmonic analysis can be applied to some effect in the study of reciprocity laws.
    [Show full text]
  • Modular Forms and the Hilbert Class Field
    Modular forms and the Hilbert class field Vladislav Vladilenov Petkov VIGRE 2009, Department of Mathematics University of Chicago Abstract The current article studies the relation between the j−invariant function of elliptic curves with complex multiplication and the Maximal unramified abelian extensions of imaginary quadratic fields related to these curves. In the second section we prove that the j−invariant is a modular form of weight 0 and takes algebraic values at special points in the upper halfplane related to the curves we study. In the third section we use this function to construct the Hilbert class field of an imaginary quadratic number field and we prove that the Ga- lois group of that extension is isomorphic to the Class group of the base field, giving the particular isomorphism, which is closely related to the j−invariant. Finally we give an unexpected application of those results to construct a curious approximation of π. 1 Introduction We say that an elliptic curve E has complex multiplication by an order O of a finite imaginary extension K/Q, if there exists an isomorphism between O and the ring of endomorphisms of E, which we denote by End(E). In such case E has other endomorphisms beside the ordinary ”multiplication by n”- [n], n ∈ Z. Although the theory of modular functions, which we will define in the next section, is related to general elliptic curves over C, throughout the current paper we will be interested solely in elliptic curves with complex multiplication. Further, if E is an elliptic curve over an imaginary field K we would usually assume that E has complex multiplication by the ring of integers in K.
    [Show full text]