Math 3704 Lecture Notes

Total Page:16

File Type:pdf, Size:1020Kb

Math 3704 Lecture Notes Math 3704 Lecture Notes Minhyong Kim, based on notes by Richard Hill October 13, 2008 Please let me ([email protected]) know of any misprints or mistakes that you ¯nd. Contents 1 Introduction 2 1.1 Prerequisites for the course . 3 1.2 Course Books . 3 2 Background Material 3 2.1 Polynomial Rings . 3 2.1.1 Euclid's Algorithm . 7 2.1.2 Ideals . 7 2.1.3 Quotient rings . 8 2.1.4 Homomorphisms of rings . 8 2.2 Field extensions . 9 2.3 Degrees of extensions . 11 2.4 Symmetric polynomials . 14 2.5 k-Homomorphisms * . 15 2.6 Splitting ¯elds and Galois groups * . 16 2.7 Calculating Galois groups * . 17 3 Algebraic Number Fields 18 3.1 Field embeddings . 18 3.2 Norm, Trace and Discriminant . 20 3.3 Algebraic Integers . 23 3.4 Integral Bases . 25 3.5 Integral bases in quadratic ¯elds . 27 3.6 Cubic ¯elds . 28 3.7 More tricks for calculating integral bases . 32 3.8 More examples of integral bases . 33 3.9 Prime Cyclotomic Fields . 34 4 Factorization in ok 36 4.1 Units and irreducible elements in ok .............................. 36 4.2 Prime ideals . 39 4.3 Uniqueness of Factorization into ideals . 41 4.4 Norms of ideals . 46 4.5 Norms of prime ideals . 48 4.6 Factorizing Ideals into Maximal Ideals . 51 4.7 The Class Group . 51 4.8 The Minkowski constant . 52 1 4.9 Geometry of numbers and Minkowski's Lemma . 53 4.10 The Minkowski Space . 54 4.11 Calculating class groups . 57 4.12 Dirichlet's Unit Theorem . 60 2 Lecture 1 1 Introduction Three ¯elds that occur in nature are Q, the ¯eld of rational numbers, the ¯eld R of real numbers, and the ¯eld C of complex numbers. The ¯rst ¯eld is eventually forced on you as you proceed through arithmetic operations on counting numbers. The latter two arise in describing rigorously the continuous objects of the universe, as well as the microscopic world. In spite of many outstanding problems in number theory, the internal structure of Q is in some sense well-motivated and clear. However, the construction of R and C are mysterious. These are extremely large objects comprising many layers of complexity that are constructed, in some sense, all at one go starting from the rationals. Eventually, there arises a need to bridge the enormous gap visible in the inclusion Q ½ C: One way to think about this issue is in terms of various intermediate objects Q ½ F1 ½ F2 ½ ¢ ¢ ¢ ½ C that we try to construct at a slower pace, keep track of various properties as we go. Many such interme- diate ¯elds are of great interest, but a good starting point is to consider intermediate ¯elds consisting of algebraic numbers. Algebraic numbers are special or even universal in that copies of these numbers exist inside any su±ciently rich number system wherein we can count naturally. A number ® 2 C is said to be algebraic if there is a non-zero polynomial f 2 Q[X] such that f(®) = 0. An algebraic number ¯eld is a ¯eld of the form ½ ¾ f(®) Q(®) = : f; g 2 Q[X]; g(®) 6= 0 ; g(®) i.e. the ¯eld generated by Q and ®. For example p p Q( 2) = fx + y 2 : x; y 2 Qg; p p p Q( 3 2) = fx + y 3 2 + z 3 4 : x; y 2 Qg: In any algebraic number ¯eld k there is a ring of algebraic integers o. An algebraic number is called an algebraic integer, if it is a zero of a monic polynomial with integer coe±cients. Examples of these rings of algebraic integers are: p p Z[ 2] ½ Q( 2); where Z[®] = ff(®): f 2 Z[X]g: The sort of questions that we'll deal with in this course are: ² Does the ring o have unique factorization? ² Is o a principal ideal domain? ² If o is not a principal ideal domain, then how far is it from being a principal ideal domain? ² If p is a prime number, how does p factorize in o? For example in Z[i] we have 5 = (2 + i)(2 ¡ i), but 7 does not factorize in Z[i]. p p p p ² What are the units in o? For example inp Z[ 2] we have ( 2 + 1)( 2 ¡ 1) = 1, so 2 + 1 is a unit. On the other hand the only units in Z[ ¡5] are 1 and ¡1. 3 Instead of factorizing elements of o we shall factorize ideals. If o is a principal ideal domain then this is the same thing. We shall show that every ideal of o can be uniquely factorized into prime ideals of o. Therefore if o is a principal ideal domain then we have uniqueness of factorization of elements. If o is not a principal ideal domain then we can measure how far it is from being a principal ideal domain by calculating the class group: Cl = fidealsg=fprincipal idealsg: This turns out to be a ¯nite group that measures the complexity of the ¯eld k and the ring o in pretty much the same way that the homology groups in algebraic topology measure the complexity of a space. A rather speci¯c aim of the course is for you to be able to calculate this group for some simple algebraic number ¯elds. Eventually, you should try to produce yourself ¯elds of various complexity. 1.1 Prerequisites for the course Elementary linear algebra. Group theory and ring theory from MATH 7202, in particular ideals, quotient rings, polynomial rings over a ¯eld. A willingness to think flexibly with diverse mathematical notions. 1.2 Course Books There are many books on algebraic number theory. The one by Stewart and Tall listed on the syllabus is a rather elementary introduction intended to be user-friendly at the undergraduate level. There is a book by Ireland and Rosen `A classical invitation to modern number theory' that attempts to reach a similar readership, but contains a more sophisticated viewpoint. A book called `Fermat's Dream' by Kazuya Kato et. al. adopts a highly inspirational approach emphasizing the role of zeta functions. `A course in arithmetic' by J.-P. Serre deals with some rather sophisticated topics in a self-contained way. There is a set of online notes by James Milne available at www.jamesmilne.org that develops algebraic number theory in a fairly systematic manner at the post-graduate level. 2 Background Material 2.1 Polynomial Rings In this course all rings will be commutative rings with 1. Let k be a ¯eld. We shall write k[X] for the ring of polynomials in the variable X with coe±cients in k. Recall that in any ring R there are three kinds of elements: ² The units; ² The reducible elements; ² The irreducible elements. 1 Proposition k[X] is an integral domain Proof. Let f(X) and g(X) be non-zero. Then they have the form n f(X) = a0 + a1X + ¢ ¢ ¢ + anX and m g(X) = b0 + b1X + ¢ ¢ ¢ + bmX with an 6= 0 and bm 6= 0. But then the highest term of f(X)g(X) is anbm 6= 0. So f(X)g(X) 6= 0. 2 4 We will frequently take a polynomial f(X) 2 Z[X] and consider its reduction modulo p for a prime p. ¹ This is the polynomial f(X) 2 Fp[X] obtained by reducing all the coe±cients of f mod p. For example, if f(X) = 5X4 + 9X3 + 2X + 3, then for the prime 3, we have ¹ 4 f = [2]X + [2]X 2 F3[X]: Here, we are writing [2] for the congruence class in F3 of 2. But much of the time, we will omit the square brackets when the context makes the reduction clear. Also, in the notation f¹, we will not indicate the prime p separately. It also will be indicated by the context. For any polynomial f(X) 2 Q[X], we will denote by f1(X) 2 Z[X] the unique constant multiple of f with the property that (1) f1 is primitive, that is, its coe±cients are coprime. (2) Its leading coe±cient is positive. One obtains f1(X) from f(X) by ¯rst multiplying f by an integer c so that cf(X) 2 Z[X]. One then divides by the highest common factor r of the coe±cients of cf to obtain (c=r)f(X) 2 Z[X] primitive. One then multiplies (c=r)f by 1 or ¡1 in order to make its leading coe±cient positive. For example, if f(X) = (¡4)X2 + (2=3)X + 10; then one goes to (¡12)X2 + 2X + 30 to ¡6X2 + X + 15 to 2 f1 = 6X ¡ X ¡ 15: Exercise: Given f 2 Q[X] show that f1(X) with the two properties above is unique. In the ring k[X] the units are the non-zero constant polynomials, i.e. the elements of k£. There are various ways of deciding whether elements of Q[X] are irreducible or not. 2 Gauss' Lemma Suppose f 2 Z[X] and assume that f is not constant. If f is irreducible as an element of Z[X] then f is irreducible as an element of Q[X]. Proof. Suppose f(X) = g(X)h(X) in Q[X]. We have g = ag1 and h = bh1 for some constants a; b 2 Q, so that f(X) = abg1(X)h1(X): Claim: g1(X)h1(X) is primitive. Suppose some p divided all the coe±cients of g1(X)h1(X).
Recommended publications
  • Dirichlet Series Associated to Cubic Fields with Given Quadratic Resolvent 3
    DIRICHLET SERIES ASSOCIATED TO CUBIC FIELDS WITH GIVEN QUADRATIC RESOLVENT HENRI COHEN AND FRANK THORNE s Abstract. Let k be a quadratic field. We give an explicit formula for the Dirichlet series P Disc(K) − , K | | where the sum is over isomorphism classes of all cubic fields whose quadratic resolvent field is iso- morphic to k. Our work is a sequel to [11] (see also [15]), where such formulas are proved in a more general setting, in terms of sums over characters of certain groups related to ray class groups. In the present paper we carry the analysis further and prove explicit formulas for these Dirichlet series over Q, and in a companion paper we do the same for quartic fields having a given cubic resolvent. As an application, we compute tables of the number of S3-sextic fields E with Disc(E) < X, | | for X ranging up to 1023. An accompanying PARI/GP implementation is available from the second author’s website. 1. Introduction A classical problem in algebraic number theory is that of enumerating number fields by discrim- inant. Let Nd±(X) denote the number of isomorphism classes of number fields K with deg(K)= d and 0 < Disc(K) < X. The quantity Nd±(X) has seen a great deal of study; see (for example) [10, 7, 23]± for surveys of classical and more recent work. It is widely believed that Nd±(X)= Cd±X +o(X) for all d 2. For d = 2 this is classical, and the case d = 3 was proved in 1971 work of Davenport and Heilbronn≥ [13].
    [Show full text]
  • The Fundamental System of Units for Cubic Number Fields
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 2020 The Fundamental System of Units for Cubic Number Fields Janik Huth University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Other Mathematics Commons Recommended Citation Huth, Janik, "The Fundamental System of Units for Cubic Number Fields" (2020). Theses and Dissertations. 2385. https://dc.uwm.edu/etd/2385 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. THE FUNDAMENTAL SYSTEM OF UNITS FOR CUBIC NUMBER FIELDS by Janik Huth A Thesis Submitted in Partial Fulllment of the Requirements for the Degree of Master of Science in Mathematics at The University of Wisconsin-Milwaukee May 2020 ABSTRACT THE FUNDAMENTAL SYSTEM OF UNITS FOR CUBIC NUMBER FIELDS by Janik Huth The University of Wisconsin-Milwaukee, 2020 Under the Supervision of Professor Allen D. Bell Let K be a number eld of degree n. An element α 2 K is called integral, if the minimal polynomial of α has integer coecients. The set of all integral elements of K is denoted by OK . We will prove several properties of this set, e.g. that OK is a ring and that it has an integral basis. By using a fundamental theorem from algebraic number theory, Dirichlet's Unit Theorem, we can study the unit group × , dened as the set of all invertible elements OK of OK .
    [Show full text]
  • SOME ALGEBRAIC DEFINITIONS and CONSTRUCTIONS Definition
    SOME ALGEBRAIC DEFINITIONS AND CONSTRUCTIONS Definition 1. A monoid is a set M with an element e and an associative multipli- cation M M M for which e is a two-sided identity element: em = m = me for all m M×. A−→group is a monoid in which each element m has an inverse element m−1, so∈ that mm−1 = e = m−1m. A homomorphism f : M N of monoids is a function f such that f(mn) = −→ f(m)f(n) and f(eM )= eN . A “homomorphism” of any kind of algebraic structure is a function that preserves all of the structure that goes into the definition. When M is commutative, mn = nm for all m,n M, we often write the product as +, the identity element as 0, and the inverse of∈m as m. As a convention, it is convenient to say that a commutative monoid is “Abelian”− when we choose to think of its product as “addition”, but to use the word “commutative” when we choose to think of its product as “multiplication”; in the latter case, we write the identity element as 1. Definition 2. The Grothendieck construction on an Abelian monoid is an Abelian group G(M) together with a homomorphism of Abelian monoids i : M G(M) such that, for any Abelian group A and homomorphism of Abelian monoids−→ f : M A, there exists a unique homomorphism of Abelian groups f˜ : G(M) A −→ −→ such that f˜ i = f. ◦ We construct G(M) explicitly by taking equivalence classes of ordered pairs (m,n) of elements of M, thought of as “m n”, under the equivalence relation generated by (m,n) (m′,n′) if m + n′ = −n + m′.
    [Show full text]
  • Algebraic Number Theory
    Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai.
    [Show full text]
  • Arxiv:2004.03341V1
    RESULTANTS OVER PRINCIPAL ARTINIAN RINGS CLAUS FIEKER, TOMMY HOFMANN, AND CARLO SIRCANA Abstract. The resultant of two univariate polynomials is an invariant of great impor- tance in commutative algebra and vastly used in computer algebra systems. Here we present an algorithm to compute it over Artinian principal rings with a modified version of the Euclidean algorithm. Using the same strategy, we show how the reduced resultant and a pair of B´ezout coefficient can be computed. Particular attention is devoted to the special case of Z/nZ, where we perform a detailed analysis of the asymptotic cost of the algorithm. Finally, we illustrate how the algorithms can be exploited to improve ideal arithmetic in number fields and polynomial arithmetic over p-adic fields. 1. Introduction The computation of the resultant of two univariate polynomials is an important task in computer algebra and it is used for various purposes in algebraic number theory and commutative algebra. It is well-known that, over an effective field F, the resultant of two polynomials of degree at most d can be computed in O(M(d) log d) ([vzGG03, Section 11.2]), where M(d) is the number of operations required for the multiplication of poly- nomials of degree at most d. Whenever the coefficient ring is not a field (or an integral domain), the method to compute the resultant is given directly by the definition, via the determinant of the Sylvester matrix of the polynomials; thus the problem of determining the resultant reduces to a problem of linear algebra, which has a worse complexity.
    [Show full text]
  • P-INTEGRAL BASES of a CUBIC FIELD 1. Introduction Let K = Q(Θ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 7, July 1998, Pages 1949{1953 S 0002-9939(98)04422-0 p-INTEGRAL BASES OF A CUBIC FIELD S¸ABAN ALACA (Communicated by William W. Adams) Abstract. A p-integral basis of a cubic field K is determined for each rational prime p, and then an integral basis of K and its discriminant d(K)areobtained from its p-integral bases. 1. Introduction Let K = Q(θ) be an algebraic number field of degree n, and let OK denote the ring of integral elements of K.IfOK=α1Z+α2Z+ +αnZ,then α1,α2,...,αn is said to be an integral basis of K. For each prime··· ideal P and each{ nonzero ideal} A of K, νP (A) denotes the exponent of P in the prime ideal decomposition of A. Let P be a prime ideal of K,letpbe a rational prime, and let α K.If ∈ νP(α) 0, then α is called a P -integral element of K.Ifαis P -integral for each prime≥ ideal P of K such that P pO ,thenαis called a p-integral element | K of K.Let!1;!2;:::;!n be a basis of K over Q,whereeach!i (1 i n)isap-integral{ element} of K.Ifeveryp-integral element α of K is given≤ as≤ α = a ! + a ! + +a ! ,wherethea are p-integral elements of Q,then 1 1 2 2 ··· n n i !1;!2;:::;!n is called a p-integral basis of K. { In Theorem} 2.1 a p-integral basis of a cubic field K is determined for every rational prime p, and in Theorem 2.2 an integral basis of K is obtained from its p-integral bases.
    [Show full text]
  • Unimodular Elements in Projective Modules and an Analogue of a Result of Mandal 3
    UNIMODULAR ELEMENTS IN PROJECTIVE MODULES AND AN ANALOGUE OF A RESULT OF MANDAL MANOJ K. KESHARI AND MD. ALI ZINNA 1. INTRODUCTION Throughout the paper, rings are commutative Noetherian and projective modules are finitely gener- ated and of constant rank. If R is a ring of dimension n, then Serre [Se] proved that projective R-modules of rank > n contain a unimodular element. Plumstead [P] generalized this result and proved that projective R[X] = R[Z+]-modules of rank > n contain a unimodular element. Bhatwadekar and Roy r [B-R 2] generalized this result and proved that projective R[X1,...,Xr] = R[Z+]-modules of rank >n contain a unimodular element. In another direction, if A is a ring such that R[X] ⊂ A ⊂ R[X,X−1], then Bhatwadekar and Roy [B-R 1] proved that projective A-modules of rank >n contain a unimodular element. Rao [Ra] improved this result and proved that if B is a birational overring of R[X], i.e. R[X] ⊂ B ⊂ S−1R[X], where S is the set of non-zerodivisors of R[X], then projective B-modules of rank >n contain a unimodular element. Bhatwadekar, Lindel and Rao [B-L-R, Theorem 5.1, Remark r 5.3] generalized this result and proved that projective B[Z+]-modules of rank > n contain a unimodular element when B is seminormal. Bhatwadekar [Bh, Theorem 3.5] removed the hypothesis of seminormality used in [B-L-R]. All the above results are best possible in the sense that projective modules of rank n over above rings need not have a unimodular element.
    [Show full text]
  • Integer Polynomials Yufei Zhao
    MOP 2007 Black Group Integer Polynomials Yufei Zhao Integer Polynomials June 29, 2007 Yufei Zhao [email protected] We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing with integer polynomials. • Looking at the coefficients ◦ Bound the size of the coefficients ◦ Modulos reduction. In particular, a − b j P (a) − P (b) whenever P (x) 2 Z[x] and a; b are distinct integers. • Looking at the roots ◦ Bound their location on the complex plane. ◦ Examine the algebraic degree of the roots, and consider field extensions. Minimal polynomials. Many problems deal with the irreducibility of polynomials. A polynomial is reducible if it can be written as the product of two nonconstant polynomials, both with rational coefficients. Fortunately, if the origi- nal polynomial has integer coefficients, then the concepts of (ir)reducibility over the integers and over the rationals are equivalent. This is due to Gauss' Lemma. Theorem 1 (Gauss). If a polynomial with integer coefficients is reducible over Q, then it is reducible over Z. Thus, it is generally safe to talk about the reducibility of integer polynomials without being pedantic about whether we are dealing with Q or Z. Modulo Reduction It is often a good idea to look at the coefficients of the polynomial from a number theoretical standpoint. The general principle is that any polynomial equation can be reduced mod m to obtain another polynomial equation whose coefficients are the residue classes mod m. Many criterions exist for testing whether a polynomial is irreducible.
    [Show full text]
  • THE RESULTANT 1. Newton's Identities the Monic Polynomial P
    THE RESULTANT 1. Newton's identities The monic polynomial p with roots r1; : : : ; rn expands as n Y X j n−j p(T ) = (T − ri) = (−1) σjT 2 C(σ1; : : : ; σn)[T ] i=1 j2Z whose coefficients are (up to sign) the elementary symmetric functions of the roots r1; : : : ; rn, ( P Qj r for j ≥ 0 1≤i1<···<ij ≤n k=1 ik σj = σj(r1; : : : ; rn) = 0 for j < 0. In less dense notation, σ1 = r1 + ··· + rn; σ2 = r1r2 + r1r3 ··· + rn−1rn (the sum of all distinct pairwise products); σ3 = the sum of all distinct triple products; . σn = r1 ··· rn (the only distinct n-fold product): Note that σ0 = 1 and σj = 0 for j > n. The product form of p shows that the σj are invariant under all permutations of r1; : : : ; rn. The power sums of r1; : : : ; rn are (Pn j i=1 ri for j ≥ 0 sj = sj(r1; : : : ; rn) = 0 for j < 0 including s0 = n. That is, s1 = r1 + ··· + rn (= σ1); 2 2 2 s2 = r1 + r2 + ··· + rn; . n n sn = r1 + ··· + rn; and the sj for j > n do not vanish. Like the elementary symmetric functions σj, the power sums sj are invariant under all permutations of r1; : : : ; rn. We want to relate the sj to the σj. Start from the general polynomial, n Y X j n−j p(T ) = (T − ri) = (−1) σjT : i=1 j2Z 1 2 THE RESULTANT Certainly 0 X j n−j−1 p (T ) = (−1) σj(n − j)T : j2Z But also, the logarithmic derivative and geometric series formulas, n 1 p0(T ) X 1 1 X rk = and = k+1 ; p(T ) T − ri T − r T i=1 k=0 give 0 n 1 k p (T ) X X r X sk p0(T ) = p(T ) · = p(T ) i = p(T ) p(T ) T k+1 T k+1 i=1 k=0 k2Z X l n−k−l−1 = (−1) σlskT k;l2Z " # X X l n−j−1 = (−1) σlsj−l T (letting j = k + l): j2Z l2Z Equate the coefficients of the two expressions for p0 to get the formula j−1 X l j j (−1) σlsj−l + (−1) σjn = (−1) σj(n − j): l=0 Newton's identities follow, j−1 X l j (−1) σlsj−l + (−1) σjj = 0 for all j.
    [Show full text]
  • CYCLIC RESULTANTS 1. Introduction the M-Th Cyclic Resultant of A
    CYCLIC RESULTANTS CHRISTOPHER J. HILLAR Abstract. We characterize polynomials having the same set of nonzero cyclic resultants. Generically, for a polynomial f of degree d, there are exactly 2d−1 distinct degree d polynomials with the same set of cyclic resultants as f. How- ever, in the generic monic case, degree d polynomials are uniquely determined by their cyclic resultants. Moreover, two reciprocal (\palindromic") polyno- mials giving rise to the same set of nonzero cyclic resultants are equal. In the process, we also prove a unique factorization result in semigroup algebras involving products of binomials. Finally, we discuss how our results yield algo- rithms for explicit reconstruction of polynomials from their cyclic resultants. 1. Introduction The m-th cyclic resultant of a univariate polynomial f 2 C[x] is m rm = Res(f; x − 1): We are primarily interested here in the fibers of the map r : C[x] ! CN given by 1 f 7! (rm)m=0. In particular, what are the conditions for two polynomials to give rise to the same set of cyclic resultants? For technical reasons, we will only consider polynomials f that do not have a root of unity as a zero. With this restriction, a polynomial will map to a set of all nonzero cyclic resultants. Our main result gives a complete answer to this question. Theorem 1.1. Let f and g be polynomials in C[x]. Then, f and g generate the same sequence of nonzero cyclic resultants if and only if there exist u; v 2 C[x] with u(0) 6= 0 and nonnegative integers l1; l2 such that deg(u) ≡ l2 − l1 (mod 2), and f(x) = (−1)l2−l1 xl1 v(x)u(x−1)xdeg(u) g(x) = xl2 v(x)u(x): Remark 1.2.
    [Show full text]
  • Algebraic Number Theory Summary of Notes
    Algebraic Number Theory summary of notes Robin Chapman 3 May 2000, revised 28 March 2004, corrected 4 January 2005 This is a summary of the 1999–2000 course on algebraic number the- ory. Proofs will generally be sketched rather than presented in detail. Also, examples will be very thin on the ground. I first learnt algebraic number theory from Stewart and Tall’s textbook Algebraic Number Theory (Chapman & Hall, 1979) (latest edition retitled Algebraic Number Theory and Fermat’s Last Theorem (A. K. Peters, 2002)) and these notes owe much to this book. I am indebted to Artur Costa Steiner for pointing out an error in an earlier version. 1 Algebraic numbers and integers We say that α ∈ C is an algebraic number if f(α) = 0 for some monic polynomial f ∈ Q[X]. We say that β ∈ C is an algebraic integer if g(α) = 0 for some monic polynomial g ∈ Z[X]. We let A and B denote the sets of algebraic numbers and algebraic integers respectively. Clearly B ⊆ A, Z ⊆ B and Q ⊆ A. Lemma 1.1 Let α ∈ A. Then there is β ∈ B and a nonzero m ∈ Z with α = β/m. Proof There is a monic polynomial f ∈ Q[X] with f(α) = 0. Let m be the product of the denominators of the coefficients of f. Then g = mf ∈ Z[X]. Pn j Write g = j=0 ajX . Then an = m. Now n n−1 X n−1+j j h(X) = m g(X/m) = m ajX j=0 1 is monic with integer coefficients (the only slightly problematical coefficient n −1 n−1 is that of X which equals m Am = 1).
    [Show full text]
  • Mop 2018: Algebraic Conjugates and Number Theory (06/15, Bk)
    MOP 2018: ALGEBRAIC CONJUGATES AND NUMBER THEORY (06/15, BK) VICTOR WANG 1. Arithmetic properties of polynomials Problem 1.1. If P; Q 2 Z[x] share no (complex) roots, show that there exists a finite set of primes S such that p - gcd(P (n);Q(n)) holds for all primes p2 = S and integers n 2 Z. Problem 1.2. If P; Q 2 C[t; x] share no common factors, show that there exists a finite set S ⊂ C such that (P (t; z);Q(t; z)) 6= (0; 0) holds for all complex numbers t2 = S and z 2 C. Problem 1.3 (USA TST 2010/1). Let P 2 Z[x] be such that P (0) = 0 and gcd(P (0);P (1);P (2);::: ) = 1: Show there are infinitely many n such that gcd(P (n) − P (0);P (n + 1) − P (1);P (n + 2) − P (2);::: ) = n: Problem 1.4 (Calvin Deng). Is R[x]=(x2 + 1)2 isomorphic to C[y]=y2 as an R-algebra? Problem 1.5 (ELMO 2013, Andre Arslan, one-dimensional version). For what polynomials P 2 Z[x] can a positive integer be assigned to every integer so that for every integer n ≥ 1, the sum of the n1 integers assigned to any n consecutive integers is divisible by P (n)? 2. Algebraic conjugates and symmetry 2.1. General theory. Let Q denote the set of algebraic numbers (over Q), i.e. roots of polynomials in Q[x]. Proposition-Definition 2.1. If α 2 Q, then there is a unique monic polynomial M 2 Q[x] of lowest degree with M(α) = 0, called the minimal polynomial of α over Q.
    [Show full text]