• Degradation and biosynthesis of fatty acids • Ketonebodies Fatty acids (FA)

• primary fuel molecules inthe fat category • main useis for longtermenergy storage • high level of energy storage:fats 38kJ/g, 16kJ/g

Primary sources of FA : dietary triacylglycerols triacylglycerols synthesized inthe triacylglycerols stored inadipocytes

FAmust be delivered tocells where βoxidation occurs :

β FA cell oxidation ATP • liver • heart • skeletal muscles degradation βoxidation

• FAare delivered tocells bydiffusion from blood capillaries • upon entry into the cellFAare immediately activated bylinking them as toCoASH • activation is coupled with FAtransport through the mitochondrial membrane

βββoxidation : twocarbon fragments successively removed from the carboxyl end of activated FAproducing acetylCoA entry into TCAcycle ATP

lokalized inthe (>18Cperixosomes)

difusion activation FA entry into the cell (cytosol) acylCoA

transportacross the inner mmitochondrialmembrane( shuttle )

acylCoA βoxidace acetylCoA TCAcycle

ATP

Fatty acid activation – formation of acyl–CoA:

O AMP+PP ATP i O C C ~SCoA OH CoASH

fatty acylsynthetase Carnitine shuttle – transportof longchain FA (>12C) into the mitochondrial matrix

Carnitineacylcarnitine

CATI

CATII

CAT – carnitine carnitine (carnitine palmitoyltransferase) FA activation and transport across inner mitochondrial membrane βOxidation of fatty acids – spiral pathway

Dehydrogenation/ oxidation

Thiolytic Hydration cleavage

ETchain 2ATP

Dehydrogenation/ oxidation ETchain 3ATP Combination of FAactivation,transportinto the mitochondrial matrix, βoxidation and TCAcycle Energy yield from βoxidation of saturated FA

example:stearic acid ,18C 9acetylCoa, 8turns of βoxidation ATP/ unit ATP produced

activation 1(2) 1(2) 9 acetylCoA TCA 12 108

8 FADH 2 2 16 8 (NADH +H +)3 24

total ATP 147 (146) ββoxidationoxidation of of unsaturated unsaturated fatty fatty acids acids requiresrequires additional additional enzymes– – ,NADPHdependent isomerase,NADPHdependent reductasereductase (2,4dienoylCoA (2,4dienoylCoA ),epimerase reductase),epimerase O O

SCoA SCoA

NADPH + H +

Enoyl-CoA 2,4-Dienoyl-CoA isomerase reductase

NADP + O SCoA

SCoA O Example : Oleic acid O C ~SCoA

3turns of βoxidation cisdoublebond γγγ β O α C ~SCoA 3 2 1

isomerase ∆3 cis ∆2 trans

O β α C ~SCoA 3 2 1

hydration dehydrogenation ….

Unsaturated FA provide less energy than saturated FA–

less reducing equivalents (FADH 2)areproduced βoxidationofFA with anoddnumberofcarbon

Theycanbehandlednormallyuntilthelaststep wherepropionyl CoA isproduced. Threereactionsarerequiredtoconvertpropionyl CoA tosuccinyl CoA whichcanenter tothe TCAcycle.

ATP+ AMP+ - H HCO PP COO O 3 i O H3CCC H3CCC propionylCoA H SCoA carboxylase H SCoA propionyl-CoA D-methylmalonyl-CoA

methylmalonyl CoA epimerase

H H H O O -OOC CCC H3CCC methylmalonyl SCoA - H H CoA COO SCoA succinyl-CoA L-methylmalonyl-CoA KetonebodiesKetonebodies

• Afterdegradationofafattyacid,acetylCoA is furtheroxidizedinthecitricacidcycle.

• Firststepinthecitricacidcycle

• acetylCoA +oxaloacetate citrate

• IftoomuchacetylCoA isproducedfromβoxidation, someisconvertedto ketone bodies . Ketonebodies

O CH 3CCH 2COO CH 3CHCH 2COO O OH CH 3CCH 3

acetacetate βhydroxybutyrate acetone synthesis = ketogenesis localization: liver , mitochondrial matrix initial substrate: acetylCoA function: energy source physiological conditions myocard starvation skeletal muscles brain Formation and utilization of ketonebodies

enters into TCAcycle ATP Ketogenesis O 2 CH C SCoA liver (mitochondrial matrix ) 3 acetoacetylCoA thiolase CoASH CoASH acetoacetylCoA O O O

CH 3CSCoA CH 3CCH 2CSCoA

O OH O HMGCoA β α CoASH OCCH 2CCH 2CSCoA 5 3 1 βββhydroxyβββmethylglutarylCoA (HMGCoA ) CH 3 HMGCoA O O O CH CCH CO CH CSCoA 3 2 acetoacetate 3

CO 2 O NADH+H + CH 3CHCH 2COO acetone + CH 3CCH 3 NAD OH βββhydroxybutyrate StarvationandStarvationand ketonebodies ketonebodies

hydroxybutyrate acetoacetate

7 6 5 4 3 2

(millimolar) 1 0 Blood Concentration Blood 0 1 2 3 4 Weeks of Starvation FateofketoneFateofketone bodies bodies • Acetoacetate andβhydroxybutyrate Producedintheliver,diffuse inbloodtoothertissues. Primarily transportedtomusclesandbrainforuseasenergy sources after reconveriontoacetylCoA • Acetone Onlyproducedinsmallamounts,eliminated inurineorbreath . H+

acetoacetateacetoacetate acetoneacetone

CO 2 SpontaneouslossofCO 2 fromacetoacetate. Itcanbedetectedinthebreath acetonebreath Symptomofuntreateddiabetesmellitusor starvationconditions. Utilization of ketonebodies inextrahepatic tissues βββhydroxybutyrate CH 3CHCH 2COO + NAD βhydroxybutyrate OH NADH+H + O O acetacetate sukcinylCoA CH 3CCH 2CO βketoacylCoA O O sukcinát acetoacetylCoA CH 3CCH 2CSCoA CoASH CoASH acetoacetylCoA thiolase

acetylCoA O extrahepatic tissues – energy source 2 CH 3CSCoA

•myokard at physiological conditions CC •skeletal muscles,brain instarvation

ATP Utilization of ketonebodies produced inthe liver

, HEART, (BRAIN) Abnormal production of ketonebodies :starvation,I.typediabetes mellitus,alcoholism secretion of glucagon activation of hormonesensitive inadipocyte increased in adipose tissue increased entry of FA into the liver ßoxidation

high production of acetylCoA ketogenesis + lack of oxaloacetate

ketogenesis ketoacidosis

ketonemia,ketonuria Ketonebodies – excretion from the organism plasma + CH 3CCH 2COO + H plasma O acetacetate ketoacidosis

+ CH 3CHCH 2COO + H OH acetone βhydroxybutyrate acetacetate + Na +

H2O acetacetate acetone 20% + βhydroxybutyrate + Na H O βhydroxybutyrate 2 aceton 78% 2% • increased water loss + breath moč • loss of Na urine Biosynthesis of fatty acids initial substrate : acetylCoA tissues: liver adipose tissue lactating mammary gland intracellular localization: cytosol palmitic acid (C16) ER,mitochondria elongation (C18 C24) ER desaturation – palmitooleic acid (C16) oleic acid (C18) arachidonic acid (C20)

Reactions of FAbiosynthesis reversal course of FAßoxidation ßOxidationβ α Biosynthesis R CH 2 CH 2 CO S dehydrogenation hydrogenation

R CH=CH 2 CO S

H O hydration +H 2O 2 dehydration

R CH(OH) CH 2 CO S dehydrogenation hydrogenation

R CO CH 2 CO S thiolytic cleavage CoASH condensation

R CO S + CH 3 CO SCoA Differencesbetween FA synthesis anddegradation

• Intracellular localization degradation (ßoxidation) mitochondrial matrix biosynthesis cytosol

• Activation of an acyl degradation (ßoxidation ) CoASH biosynthesis ACPSH (acylcarrier ,prosthetic group phosphopantheteine )

• Oxidoreduction cofactors degradation (ßoxidation) NAD +,FAD biosynthesis NADPH+H + • Biosynthesis growth of an FAchain catalyzed by 1multifunctional (contains aktivesites forall reactions of the synthesis)–

1.reaction of synthesis distinct from areversal reaction of degradation malonyl CoA +acetylCoA × acetylCoA +acetylCoA donorof twocarbon unitineach turn Production of cytosolic acetylCoA Transportof acetylCoA from mitochondrial matrix tocytosol inthe form of citrate

mitochondrial cytosol matrix oxalacetate acetylCoA oxalacetate acetylCoA

inner mitochondrial ADP+Pi membrane citrate lyase ATP CoA CoA citrate citrate

at high concntration of mitochondrial citrate, inhibited byATP

Sources of cytosolic NADPH pentosephosphate pathway – oxidative phase oxidation of malate – dekarboxylating (malic enzyme):

NADP + NADPH+H +

oxalacetate malate pyruvate +CO 2 TvorbamalonylCoA Twocarbon units areincorporated into agrowing chain inthe form of malonylCoA

acetylCoA carboxylase CH 3CO~CoA OO CCH 2 CO~SCoA acetylCoA malonylCoA

enzymebiotinCOO enzymebiotin

ADP+Pi

ATP+ CO 2 + enzymebiotin

AcetylCoA carboxylase kee enzymeof biosynhesis (multienzyme complex)

regulation: allosteric hormonal

+ citrate + insulin

palmitoylCoA glucagon (product) FAbiosynthesis synthesis of palmitate bythe fatty acid synthase complex source of other twocarbon units 1.twocarbon unit forchain growth Regulation of

• Supply of fatty acids liver FA ßoxidation at oxalacetate citrate ketogenesis adipocyte FA TAGsynthesis

• ATPcitrate (glucose supply – after meal,inhibited isocitrate dehydrogenase inTCAcycle)– after translocation tocytosol citrate activates acetylCoA carboxylase FAsynthesis

• MalonylCoA inhibits carnitine acyltransferase I – longchain FAcannot enter into mitochondria ßoxidation FA accumulate incytosol TAG synthesis

• PalmitoylCoA inhibits mitochndrial translocase forcitrate – citrate donotenter into cytosol FAsynthesis Regulation of fatty acid metabolism

Hormonal regulation:

• Insulin dephosphorylation of acetylCoA carboxylase (=activation) – FA synthesis

• Glukagon phosphorylation of acetylCoA carboxylase (=inaktivace) FAsynthesis imcreased lipolysis inadipose tissue entry of FAinto liver – ßoxidation

• Adaptive control changes inenzymeexpresion food supply after fasting expression of acetylCoA carboxylase,fatty acid synthase FAsynthesis Overview of fatty acid metabolism

TAG adipose tissue

HSL chylomicrones TAG GIT Liver TAG VLDL LPL LPL

TAG stored intissues FA eicosanoids complex ßoxidace biosyntéza ketonebodies cellular membranes acetylCoA HMGCoA

+ TCAcycle NADH+H ,FADH 2 of carbohydrates and amino acids

ATP respirarory chain