Mechanical Properties of Different Bamboo Species

Total Page:16

File Type:pdf, Size:1020Kb

Mechanical Properties of Different Bamboo Species MATEC Web of Conferences 138, 01024 (2017) DOI: 10.1051/matecconf/201713801024 EACEF 2017 Mechanical properties of different bamboo species Dinie Awalluddin1, Mohd Azreen Mohd Ariffin1,2*, Mohd Hanim Osman1,2, Mohd Warid Hussin1, Mohamed A. Ismail3, Han-Seung Lee4, and Nor Hasanah Abdul Shukor Lim1. 1Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. 2Forensic Engineering Centre, Institute for Smart Infrastructure Innovative Construction, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia 3Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Sarawak, CDT 250, Miri 98009, Sarawak, Malaysia. 4Department of Architectural Engineering, Hanyang University, 1271 Sa 3-dong, Sangrok-gu, Ansan 426-791, Korea. Abstract. Bamboo is a rapid renewable plant that has a fast growth rate as compared to trees, which increases its suitability to be used as a sustainable source for wood industry, especially in construction works. Due to the lack of understanding on bamboo properties, the utilization of bamboo in construction has always been neglected. This paper presents an investigation on the mechanical properties of four species of treated bamboos that are available in Malaysia, which include Bambusa Vulgaris, Dendrocalamus Asper, Schizostachyum Grande, and Gigantochloa Scortechinii. A mechanical testing was carried out in various parts along the culm of these bamboo species in order to examine the differences of their compressive strength and tensile strength. The strength development and moisture content of these bamboo species were also monitored at a five-month interval. The results showed that Bambusa Vulgaris, Dendrocalamus Asper, and Gigantochloa Scortechinii possess excellent mechanical properties in compression and tensile strength, which indicate a good quality to be used as a construction material. As bamboo offers promising advantages, thus, it is suitable to be used as a substitute in place of structural timber in construction, which indirectly facilitates the preservation of the global environment. 1 Introduction Being classified as a grass member of a larger grass family [1], bamboo can be easily found in tropical and some temperate areas of the world. ____________________________ * Corresponding author: [email protected] © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). MATEC Web of Conferences 138, 01024 (2017) DOI: 10.1051/matecconf/201713801024 EACEF 2017 Bamboo has a nature form comprising a cylindrical pole with jointed stem known as a culm. There are over 1500 identified bamboo species in the world [2]. As one of the fastest growing plants, bamboo can reach a full height ranging from 15-30m in a period of two to four months [3]. All bamboo species has a similar anatomy, which consists of nodes, internodes, and diaphragm as shown in Figure 1. Each species can be identified according to their root system, in which there are three known root systems including, sympodial, monopodial, and amphodial [4]. The thickness of a bamboo decreases along the height of the culm, while the fibres density increases from the bamboo culm’s inner wall to outer wall. Fig.1 Bamboo anatomy Bamboo forest has a higher harvest cycle, with up to four times of carbon density per hectare in comparison to spruce forest [5]. This means that bamboo can be harvested in a short period of time, in addition to having a high rate of carbon absorption as compared to timber. Recently, there is a growing interest in using bamboo as a construction material, in place of timber. In China, contractors have utilized bamboo as scaffoldings, while in Bali, bamboo is used to construct a Green School [6], where all structural components of the building is sourced from a local bamboo supplier. In contrast, in other developing country, the utilization of bamboo as a construction material is scarce, even with an abundance of bamboo source available. Lack of study concerning the mechanical properties of bamboo is known to be one of the factors that is associated with a low utilization of bamboo in construction. The ability and capacity of bamboo to withstand the force applied onto it is very important. The strength and moisture content of the bamboo are among the most important factors, which determine both ability and capacity of full bamboo culm. Bamboo with a moisture content of 15% or lower tends to have good mechanical properties and is less vulnerable to fungus attack [7]. In determining the strength of bamboo, 12% of moisture content in air-dry condition has been regarded as a standard and reference [8]. In terms of 2 MATEC Web of Conferences 138, 01024 (2017) DOI: 10.1051/matecconf/201713801024 EACEF 2017 Bamboo has a nature form comprising a cylindrical pole with jointed stem known as a culm. durablty, t vaes according to speces ad age aes. t s estimate that a unteated There are over 1500 identified bamboo species in the world [2]. As one of the fastest growing bamboo has a desgn lfe o approimately 10- ears i t s store apropratel, whle a plants, bamboo can reach a full height ranging from 15-30m in a period of two to four months teate bamboo wll have a much longe esgn life [9]. [3]. All bamboo species has a similar anatomy, which consists of nodes, internodes, and The stength o bamboos also deeds o ae ages ad speces, whch detemines the diaphragm as shown in Figure 1. Each species can be identified according to their root sutablty to be use constructon whe they reach maturty ae o aoun -4 eas. I system, in which there are three known root systems including, sympodial, monopodial, and maturity, bamboos ossess an optmum stegth ad ae suitable to be use fo heay-uty amphodial [4]. The thickness of a bamboo decreases along the height of the culm, while the aplcatons. It has also bee fou that bamboos’ compressive stength inceases alo their fibres density increases from the bamboo culm’s inner wall to outer wall. height, n adton to ceasing compressive stength from the inne at to the oute pat of their culm [10]–[13]. The am of ths eseach s to nvestgate o the mechancal propetes of iffeet speces o local bamboos hs eseach s a pat of a epeimetal work whch focuses on the possblty of utlng bamboo as a constucton mateal 2 Materials and methods 2.1 Preparation of the bamboo Thee ae our bamboo secies invole in ths eseach, hich ae sourced from ea, alaysa hose four bamboo speces include Dendrocalamus Asper Bambusa Vulgaris Schizostachyum Grande, and Gigantochloa Scortechinii These four bamboo speces ere selecte ad let to ry or about three weeks untl the colour of the bamboos turne yellowish from the original colour. The ere subseuetly teate by using borc acid, in orde to incease the urablty and ablty aainst fungus attac. Figure 2 shows a ple of felle bamboos athee pror to mechacal testng. Fig.1 Bamboo anatomy Bamboo forest has a higher harvest cycle, with up to four times of carbon density per hectare in comparison to spruce forest [5]. This means that bamboo can be harvested in a short period of time, in addition to having a high rate of carbon absorption as compared to timber. Recently, there is a growing interest in using bamboo as a construction material, in place of timber. In China, contractors have utilized bamboo as scaffoldings, while in Bali, bamboo is used to construct a Green School [6], where all structural components of the building is sourced from a local bamboo supplier. In contrast, in other developing country, the utilization of bamboo as a construction material is scarce, even with an abundance of Fig.2 Fou bamboo speces bamboo source available. Lack of study concerning the mechanical properties of bamboo is known to be one of the factors that is associated with a low utilization of bamboo in construction. 2.2 Mechanical testing The ability and capacity of bamboo to withstand the force applied onto it is very ll bamboo speces wee cut into small samples, i whch the samples wee taen rom the important. The strength and moisture content of the bamboo are among the most important intenode of the bamboo culm. hree tests hae been invole in ths eseach icluing, factors, which determine both ability and capacity of full bamboo culm. Bamboo with a compresson, tensle, and moisture content, in accordace wth ISO Pat [14]. moisture content of 15% or lower tends to have good mechanical properties and is less All specimens wee cut from the bottom, middle, ad top ats o the bamboo ad make vulnerable to fungus attack [7]. In determining the strength of bamboo, 12% of moisture wth lettes , , and , resectely. or compresson test ad tesle tests, all specimen content in air-dry condition has been regarded as a standard and reference [8]. In terms of wth ree odes wee selecte. The oute amete o the bamboo secimen, D, to be use or 3 MATEC Web of Conferences 138, 01024 (2017) DOI: 10.1051/matecconf/201713801024 EACEF 2017 omprsson st as masured from wo oosite onts of outer surfae. The aera dameter as recorded. verag wa thicknss, of bamboo lm as measured om for onts, sepaa by a 90º agle aound dameter of th specimen. Compresson es as arried ou by sing a Universa Tsng achine, where specimens o or bamboo specs wer sed unde a onsan a of 0.01mm/s, as sown Figur 3 aximm oad for ach specimen was recorded by si a daa ogger. Fig 3. amboo secmen nde compresson s usg nivesa Tesg achine Upon ompon of omprssion s, sma samps with a dimenson of 25mm x 5mm as shown n ur 4 were aen ad immeday from each bamboo species’ specimen o ndergo mostur ontent s Th samles wer the weighed.
Recommended publications
  • New Species of Schizostachyum (Poaceae–Bambusoideae) from the Andaman Islands, India
    BLUMEA 48: 187–192 Published on 7 April 2003 doi: 10.3767/000651903X686169 NEW SPECIES OF SCHIZOSTACHYUM (POACEAE–BAMBUSOIDEAE) FROM THE ANDAMAN ISLANDS, INDIA MUKTESH KUMAR & M. REMESH Botany Division, Kerala Forest Research Institute, Peechi 680-653, Trichur, Kerala, India SUMMARY Two new species of Schizostachyum Nees: S. andamanicum and S. kalpongianum, are described and illustrated. Key words: Schizostachyum, Andaman Islands, India. INTRODUCTION During the revisionary studies on Indian bamboos the authors could undertake a survey in the Andaman Islands. Five species of bamboos, namely Bambusa atra, Dinochloa an- damanica, Gigantochloa andamanica, Bambusa schizostachyoides, and Schizostachyum rogersii have so far been reported from the Andaman Islands (Munro, 1868; Gamble, 1896; Brandis, 1906; Parkinson, 1921). As a result of exploring different parts of the is lands two interesting bamboos were collected. Critical examination revealed that they belonged to the genus Schizostachyum Nees and hitherto undescribed. The genus Schizostachyum was described by Nees in 1829 based on Schizostachyum blumei. This genus is represented by about 45–50 species distributed in tropical and sub- tropical Asia from southern China throughout the Malaysian region, extending to the Pacific islands with the majority of species in Malaysia (Dransfield, 1983, 2000; Ohrnberger, 1999; Wong, 1995). The genus is characterised by sympodial rhizomes; erect or straggling thin-walled culms; many branches of the same length arising from the node; indeterminate inflores­ cence; absence of glumes in the spikelets; presence of lodicules; slender ovary with long, glabrous stiff style which is hollow around a central strand of tissue; anthers usu- ally with blunt apex. The bamboos collected from the Andaman Islands have straggling culms and are similar to Schizostachyum gracile (Munro) Holttum in certain characters but differ in several other characters.
    [Show full text]
  • Redalyc.Energetic Potential of Bamboo Culms for Industrial And
    Ciência Rural ISSN: 0103-8478 [email protected] Universidade Federal de Santa Maria Brasil Balduino Junior, Ailton Leonel; Yurgen Balduino, Thalles; Friederichs, Gustavo; Bayestorff da Cunha, Alexsandro; Brand, Martha Andreia Energetic potential of bamboo culms for industrial and domestic use in Southern Brazil Ciência Rural, vol. 46, núm. 11, noviembre, 2016, pp. 1963-1968 Universidade Federal de Santa Maria Santa Maria, Brasil Available in: http://www.redalyc.org/articulo.oa?id=33147754013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ciência Rural, Santa Maria,Energetic v.46, n.11, potential p.1963-1968, of bamboo nov, culms2016 for industrial and domestic use http://dx.doi.org/10.1590/0103-8478cr20160233 in Southern Brazil. 1963 ISSN 1678-4596 FORESTRY SCIENCE Energetic potential of bamboo culms for industrial and domestic use in Southern Brazil Potencial energético de colmos de bambu para uso industrial e doméstico na região sul do Brasil Ailton Leonel Balduino JuniorI Thalles Yurgen BalduinoII Gustavo FriederichsII Alexsandro Bayestorff da CunhaIII Martha Andreia BrandIII* ABSTRACT composição química (teor de extrativos totais (16,26%) e teor de lignina (25,76%)); a composição química imediata(teor de voláteis This study aimed to determine the energetic quality of (82,25%); teor de carbono fixo (15,26%) e cinzas (2,49%)) e poder the Bambusa vulgaris culms for combustion (in natura) and as a calorífico superior (4571kcalkg-1). No carvão vegetal, produzido charcoal.
    [Show full text]
  • Certification Assessment Ecoplanet Bamboo Group
    Forest Management RA-Cert Division Headquarters 65 Millet St. Suite 201 Certification Assessment Richmond, VT 05477 USA Tel: 802-434-5491 Report for: Fax: 802-434-3116 www.rainforest-alliance.org Audit Managed by: Ecoplanet Bamboo Group, LLC Africa Regional Office 36 Abosti Street, East Legon, Accra In P>O> Box KA 9714, Airport, Accra Tel: +233008813 Kowie Bamboo Farm, South Africa Fax: Contact Person: Sandra Razanamdranto Email: Report Finalized: 12 October 2015 [email protected] Audit Dates: 29 June - 1 July 2015 Audit Team: Severinus Jembe Jeanette Clarke Certificate code: RA-FM-007293 Certificate issued: 13/10/2015 Certificate 12/10/2020 expiration: Organization Troy Wiseman, CEO, ACCREDITED Contact: EcoPlanet Bamboo Group FSC-ACC-004 Address: 3303 E. Main St., Suite 205 Barrington, IL 60010 www.ecoplanetbamboo.com FM-02 - 19 April 2012 TABLE OF CONTENTS INTRODUCTION ............................................................................................................................ 3 1. SCOPE OF THE CERTIFICATE ............................................................................................. 3 1.1. Scope of the certificate ..................................................................................................... 4 1.2. Exclusion and/or Excision of areas from the scope of certificate ....................................... 7 2. ASSESSMENT PROCESS ..................................................................................................... 8 2.1. Certification Standard Used .............................................................................................
    [Show full text]
  • Bambusa Vulgaris Leaves Rticl E William M
    E Anti-inflammatory activity of methanolic extract of Bambusa vulgaris leaves RTICL William M. Carey, Jeevan Mani Babu Dasi1, Nimmagadda V. Rao1, Krishna Mohan Gottumukkala A Deparment of Pharmacognosy and Ethnopharmacology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal and 1Department of Pharmacology, V.L. College of Pharmacy, Raichur, India Bambusa vulgaris, commonly known as “Bamboo,” possesses various pharmacological activities including anti-inflammatory activity. The present study is designed to investigate anti-inflammatory effect of methanolic extract of B. vulgaris (MEBV) on rats and mice. The anti-inflammatory effect is investigated employing acute inflammatory models: formaldehyde-induced paw edema, acetic acid-induced vascular permeability, subacute anti-inflammatory model: cotton pellet granuloma, estimation of plasma MDA and RIGINAL carrageenan-induced peritonitis. MEBV (100, 200 and 400 mg/kg, p.o) exhibited a dose-dependent and significant inhibition (P <0.01) in all the experimental models. Preliminary phytochemical screening revealed the presence of flavonoids, carbohydrates, glycosides, O proteins, and alkaloids. The extract produces no mortality in the dose up to 2000 mg/kg, p.o. The results obtained suggest marked anti-inflammatory activity of the MEBV and support the traditional use of this plant in some painful and inflammatory conditions. Key words: Bambusa vulgaris, poaceae, vascular permeability, granuloma, peritonitis, edema INTRODUCTION edema, acetic acid-induced vascular permeability, cotton pellet-induced granuloma, estimation of plasma MDA, Inflammation is a pathophysiological response and carrageenan-induced peritonitis experimental models. of living tissue to injuries that leads to the local accumulation of plasmatic fluids and blood cells. MATERIALS AND METHODS Though it is a defense mechanism, the complex events and mediators involved in the inflammatory Collection of Plant Material reaction can induce, maintain, or aggravate many The leaves of B.
    [Show full text]
  • Tanglin P.O. Box 101 Singapore 9124 REPUBLIC of SINGAPORE
    •' IDR.C BAMBOO/RATTAN NETWORK Tanglin P.O. Box 101 Singapore 9124 REPUBLIC OF SINGAPORE Newsletter No. 9 August, 1989 Dear Network Scientists/Project Leaders workshops and publication of proceed­ ings. Some of you have met him and his Greetings! wife, Dr. Usha, at the November 1988 Cochin Bamboo Workshop where both of I am very pleased to send you this them presented their work on Bamboo particular Newsletter as this contains Tissue Culture. He will operate from three important announcements. his base in Delhi and make frequent visits to the IDRC Singapore Office and The first one is the appointment of the your projects. I am sure you will all new Bamboo/Rattan Network Coordinator. join me in welcoming Dr. Rao to the I am pleased to advise that Dr. I. V. Network family. Ramanuja Rao, Research Scientist B, (Reader) from the Department of Botany, The Second announcement relates to the University of Delhi, Delhi 110007, attached article by Punya Poudyal on India, has agreed to take the mantle Rattan and Bamboo Resources and their from Dr Dhanarajan, who accepted a Utilization in the South Pacific. senior position with the Open Learning Given the present scarcity of bamboo/ Institute of Hongkong. Dr. Rao will rattan resources in the region, this work closely with Prof. A.N. Rao, an article will be of interest to all of Emeritus Professor who does not need us. Punya can be reached at the introduction to the Network, and myself following address if you wish to in coordinating the network activities. contact him for further information: Dr Rao is the recipient of the 'Young Mr.
    [Show full text]
  • Poaceae: Bambusoideae) Lynn G
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 26 2007 Phylogenetic Relationships Among the One- Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae) Lynn G. Clark Iowa State University, Ames Soejatmi Dransfield Royal Botanic Gardens, Kew, UK Jimmy Triplett Iowa State University, Ames J. Gabriel Sánchez-Ken Iowa State University, Ames Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Clark, Lynn G.; Dransfield, Soejatmi; Triplett, Jimmy; and Sánchez-Ken, J. Gabriel (2007) "Phylogenetic Relationships Among the One-Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 26. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/26 Aliso 23, pp. 315–332 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENETIC RELATIONSHIPS AMONG THE ONE-FLOWERED, DETERMINATE GENERA OF BAMBUSEAE (POACEAE: BAMBUSOIDEAE) LYNN G. CLARK,1,3 SOEJATMI DRANSFIELD,2 JIMMY TRIPLETT,1 AND J. GABRIEL SA´ NCHEZ-KEN1,4 1Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020, USA; 2Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK 3Corresponding author ([email protected]) ABSTRACT Bambuseae (woody bamboos), one of two tribes recognized within Bambusoideae (true bamboos), comprise over 90% of the diversity of the subfamily, yet monophyly of
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • The Hawaiian Islands Case Study Robert F
    FEATURE Origin of Horticulture in Southeast Asia and the Dispersal of Domesticated Plants to the Pacific Islands by Polynesian Voyagers: The Hawaiian Islands Case Study Robert F. Bevacqua1 Honolulu Botanical Gardens, 50 North Vineyard Boulevard, Honolulu, HI 96817 In the islands of Southeast Asia, following the valleys of the Euphrates, Tigris, and Nile tuber, and fruit crops, such as taro, yams, the Pleistocene or Ice ages, the ancestors of the rivers—and that the first horticultural crops banana, and breadfruit. Polynesians began voyages of exploration into were figs, dates, grapes, olives, lettuce, on- Chang (1976) speculates that the first hor- the Pacific Ocean (Fig. 1) that resulted in the ions, cucumbers, and melons (Halfacre and ticulturists were fishers and gatherers who settlement of the Hawaiian Islands in A.D. 300 Barden, 1979; Janick, 1979). The Greek, Ro- inhabited estuaries in tropical Southeast Asia. (Bellwood, 1987; Finney, 1979; Irwin, 1992; man, and European civilizations refined plant They lived sedentary lives and had mastered Jennings, 1979; Kirch, 1985). These skilled cultivation until it evolved into the discipline the use of canoes. The surrounding terrestrial mariners were also expert horticulturists, who we recognize as horticulture today (Halfacre environment contained a diverse flora that carried aboard their canoes many domesti- and Barden, 1979; Janick, 1979). enabled the fishers to become intimately fa- cated plants that would have a dramatic impact An opposing view associates the begin- miliar with a wide range of plant resources. on the natural environment of the Hawaiian ning of horticulture with early Chinese civili- The first plants to be domesticated were not Islands and other areas of the world.
    [Show full text]
  • Bambusa Balcooa Roxb. and Dendrocalamus Stocksii Munro.) in Konkan Belt of Maharashtra, India
    Journal of Bamboo & Rattan 37 J.Bamboo and Rattan,Vol. 17,Nos. 2, pp. 36 - 52 (2018) © KFRI (2018) Economic analysis of cultivation of bamboo (Bambusa balcooa Roxb. and Dendrocalamus stocksii Munro.) in Konkan belt of Maharashtra, India Sruthi Subbanna1 and SyamViswanath2* 1Institute of Wood Science and Technology, Malleswaram, Bangalore 2Kerala Forest Research Institute, Peechi, Kerala ABSTRACT :The past decade has seen an increasing impetus of growing bamboo in India. There has also been an increase in availability of micropropagated plantlets in substantial quantities. Both the reasons combined is making farmers explore bamboo cultivation as an alternative to traditional agriculture and horticulture crops. In this stusy, the economics associated with growing two bamboo species viz. Bambusa balcooa Roxb., a relatively new addition in the Konkan belt of Maharashtra and Dendrocalamus stocksii Munro., traditionally grown bamboo species in the region have been studied. The study projects that the potential of economic benefit from D. stocksii (₹ 2,28,473 or $3,147 ha-1 year-1) which is relatively greater than that of B. balcooa (₹ 1,99,715 or $2,752 annually ha-1year-1) and could primarily be attributed to greater number of new culms that emerge annually in D. stocksii (16.5±0.81) as compared to B. balcooa (7.2±0.58) for medium density block plantations. The input cost for growing the two bamboo species also varies considerably and better B/C ratio (6.02 and 5.70) was observed in D. stocksii as compared to B. balcooa (4.00 and 3.93). The study indicates that although both species are beneficial to the farmers, higher culm emergence and better culm and clump characteristics makes D.
    [Show full text]
  • Download Bamboo Records (Public Information)
    Status Date Accession Number Names::PlantName Names::CommonName Names::Synonym Names::Family No. Remaining Garden Area ###########2012.0256P Sirochloa parvifolia Poaceae 1 African Garden ###########1989.0217P Thamnocalamus tessellatus mountain BamBoo; "BergBamBoes" in South Africa Poaceae 1 African Garden ###########2000.0025P Aulonemia fulgor Poaceae BamBoo Garden ###########1983.0072P BamBusa Beecheyana Beechy BamBoo Sinocalamus Beechyana Poaceae 1 BamBoo Garden ###########2003.1070P BamBusa Burmanica Poaceae 1 BamBoo Garden ###########2013.0144P BamBusa chungii White BamBoo, Tropical Blue BamBoo Poaceae 1 BamBoo Garden ###########2007.0019P BamBusa chungii var. BarBelatta BarBie BamBoo Poaceae 1 BamBoo Garden ###########1981.0471P BamBusa dolichoclada 'Stripe' Poaceae 2 BamBoo Garden ###########2001.0163D BamBusa dolichoclada 'Stripe' Poaceae 1 BamBoo Garden ###########2012.0069P BamBusa dolichoclada 'Stripe' Poaceae 1 BamBoo Garden ###########1981.0079P BamBusa dolichomerithalla 'Green Stripe' Green Stripe Blowgun BamBoo Poaceae 1 BamBoo Garden ###########1981.0084P BamBusa dolichomerithalla 'Green Stripe' Green Stripe Blowgun BamBoo Poaceae 1 BamBoo Garden ###########2000.0297P BamBusa dolichomerithalla 'Silverstripe' Blowpipe BamBoo 'Silverstripe' Poaceae 1 BamBoo Garden ###########2013.0090P BamBusa emeiensis 'Flavidovirens' Poaceae 1 BamBoo Garden ###########2011.0124P BamBusa emeiensis 'Viridiflavus' Poaceae 1 BamBoo Garden ###########1997.0152P BamBusa eutuldoides Poaceae 1 BamBoo Garden ###########2003.0158P BamBusa eutuldoides
    [Show full text]
  • Agrosilvopastoral Systems in Northern Thailand and Northern Laos: Minority Peoples’ Knowledge Versus Government Policy
    Land 2014, 3, 414-436; doi:10.3390/land3020414 OPEN ACCESS land ISSN 2073-445X www.mdpi.com/journal/land/ Article Agrosilvopastoral Systems in Northern Thailand and Northern Laos: Minority Peoples’ Knowledge versus Government Policy Chalathon Choocharoen 1, Andreas Neef 2,*, Pornchai Preechapanya 3 and Volker Hoffmann 1 1 Institute for Social Sciences of the Agricultural Sector, Rural Communication and Extension (430a), University of Hohenheim, 70593 Stuttgart, Germany; E-Mails: [email protected] (C.C.); [email protected] (V.H.) 2 Center for Development Studies, School of Social Sciences, Faculty of Arts, University of Auckland, Auckland 1142, New Zealand 3 Queen Sirikit Botanic Garden, Mae Rim, Chiang Mai 50180, Thailand; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +64-9-9233486; Fax: +64-9-3737439. Received: 28 January 2014; in revised form: 2 May 2014 / Accepted: 13 May 2014 / Published: 20 May 2014 Abstract: Traditional agrosilvopastoral systems have been an important component of the farming systems and livelihoods of thousands of ethnic minority people in the uplands of Mainland Southeast Asia. Drawing on a combination of qualitative and participatory inquiries in nine ethnic minority communities, this study emphasizes the complex articulation of local farmers’ knowledge which has been so far excluded from governmental development and conservation policies in the northern uplands of Thailand and Laos. Qualitative analysis of local knowledge systems is performed using the Agroecological Knowledge Toolkit (AKT5) software. Results show that ethnic minorities in the two countries perceive large ruminants to be a highly positive component of local forest agro-ecosystems due to their contribution to nutrient cycling, forest fire control, water retention, and leaf-litter dispersal.
    [Show full text]
  • Bamboo Roundtable Discussion Notes
    Towards Resilient Futures Community of Practice Workshop 2 Driving Post-mining Industrial Development through Fibrous Multi-product Value Chains Held on the 24th May 2019 at the Radisson Blu Gautrain Hotel, Johannesburg Round Table Discussion Notes: Bamboo Product Development Table Lead: Adrian Sutton Table scribe: Gregory Hangone Type of bamboo species Bamboo species can be grouped as those producing runners or those that propagate by clumping. Running species typically grow in cooler temperate climates and will shoot once per year at the beginning of spring. Tropical bamboo species tend to clump. They normally shoot at the beginning of the rainy season but will do so all year provided that they are sufficiently watered. It is commonly perceived that these species are invasive, but this is believed to be false by some experts. Tropical bamboos use more water than temperate bamboos. This, however, is a rule of thumb that requires further scientific exploration. Important factors in the cultivation and use of bamboo: Bamboo plantation and cultivation is labour intensive. As the culm is selectively harvested the process lends itself to the employment of unskilled manual labour. Uniformity is the most desirable property when cultivating bamboo for processing. The characteristics that are important when choosing bamboo for industrial use is the diameter of the culm; this varies from the diameter of a finger to that of the diameter of a bucket. Dendrocalamus synicus is one of the species with a culm of large diameter. To reach these large diameters bamboo plants need to be cultivated in optimum conditions i.e. the diameter achieved by the bamboo depends on the species and the conditions under which it grows.
    [Show full text]