WO 2013/171100 Al 21 November 2013 (21.11.2013) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2013/171100 Al 21 November 2013 (21.11.2013) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/171100 Al 21 November 2013 (21.11.2013) P O P C T (51) International Patent Classification: (74) Agent: STREHLKE, Ingo, K.; VON ROHR PAT- A61K 31/56 (2006.01) A61K 36/73 (2006.01) ENTANWALTE PARTNERSCHAFT, Ruttenscheider Strasse 62, 45130 Essen (DE). (21) International Application Number: PCT/EP2013/0595 13 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 7 May 2013 (07.05.2013) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 61/647,617 16 May 2012 (16.05.2012) US NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (72) Inventors; and TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (71) Applicants : HANS, Joachim [DE/DE]; Olgastrasse 5, ZM, ZW. 4414 1 Dortmund (DE). GROTHE, Torsten [DE/DE]; Hernerstrasse 212, 44809 Bochum (DE). (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (72) Inventors; and GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicants (for US only): WOHRLE, Ingo [DE/DE]; UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Ortli 9, 44265 Dortmund (DE). MOLDENHAUER, Jana TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, [DE/DE]; Feldbank 72, 44265 Dortmund (DE). KOP- EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV, CKE, Barbel [DE/DE]; Baroper Schulstrasse 1A, 44225 MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, Dortmund (DE). KUPER, Thomas [DE/DE]; Stephan- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, strasse 28, 48734 Reken (DE). BITZER, Jens [DE/DE]; ML, MR, NE, SN, TD, TG). Wildrosenstrasse 30, 44225 Dortmund (DE). REIN- HARDT, Kathrin [DE/DE]; Am Beisenufer 12, 44225 Dortmund (DE). [Continued on nextpage] (54) Title: POLYHYDROXYLATED PENTACYCLIC TRITERPENE ACIDS AS HMG-COA REDUCTASE INHIBITORS (57) Abstract: The present invention relates to certain polyhydroxylated pentacyclic triterpene acids of formula (I) for use as HMG-Co A re ductase inhibitors in the prophylactic and/or therapeutic treatment of a disease, disorder or condition that responds to a reduction of the HMG-Co A reductase activity in a mammal, preferably a human being. The present invention further relates to certain mixtures and plant ex tracts comprising euscaphic acid and tormentic acid, wherein the amount of euscaphic acid to tormentic acid exceeds a certain ratio. Further, the present invention also relates to a formula tion, preferably pharmaceutical or nutraceutical formulation, comprising one or more of said compounds of formula (I), a composition ac cording to the present invention or a plant ex tract according to the present invention. Also, the present invention relates to a process for ob o taining certain polyhydroxylated pentacyclic o triterpene acids of formula (I), a composition ac cording to the present invention or a plant ex (I) tract according to the present invention. w o 2013/171100 A i llll II II 11III III 1 1 III II I II II III II I II Declarations under Rule 4.17: before the expiration of the time limit for amending the — as to the applicant's entitlement to claim the priority of claims and to be republished in the event of receipt of the earlier application (Rule 4.17(Hi)) amendments (Rule 48.2(h)) Published: Polyhydroxylated pentacyclic triterpene acids as HMG-CoA reductase inhibitors The present invention relates to certain polyhydroxylated pentacyclic triterpene acids of formula (I), particularly of formula (l-A), defined hereinafter for use as HMG-CoA reductase inhibitors in the prophylactic and/or therapeutic treatment of a disease, disorder or condition that responds to a reduction of the HMG-CoA reductase activity in a mammal, preferably a human being. The present invention further relates to certain mixtures and plant extracts comprising euscaphic acid and tormentic acid, wherein the amount of euscaphic acid to tormentic acid exceeds a certain ratio. Further, the present invention also relates to a formulation, preferably pharmaceutical or nutraceutical formulation, comprising one or more of said compounds of formula (I), a composition according to the present invention or a plant extract according to the present invention. Also, the present invention relates to a process for obtaining certain polyhydroxylated pentacyclic triterpene acids of formula (I), a composition according to the present invention or a plant extract according to the present invention. Cholesterol is mainly an issue because blood total cholesterol and low density lipoprotein correlate strongly with coronary heart disease. Cholesterol homeostasis is maintained by a complex mechanism of sterol absorption, anabolism, catabolism and excretion. Hypocholesteremic agents, i.e. agents that lower the (plasma) cholesterol level by influencing the cholesterol metabolism, are considered to be beneficial for the health of mammals, in particular human beings. For example, by avoiding an increase in arterial cholesterol and preferably by lowering the plasma cholesterol level, the formation of precursors of fatty streak, an early lesion in the atherosclerotic process, may beneficially be influenced. Cholesterol metabolism is complex and hitherto several different approaches using different pathways have been proposed to positively influence the (plasma) cholesterol level in mammals and avoid or reduce hypercholesterolemia, foam cells, fatty streak, atherosclerotic lesion, atheroma and ultimately atherosclerosis. Generally speaking, cholesterol-lowering functional foods and nutraceuticals may be classified into several different types, mainly based on their respective mechanistic activity. These mechanistic types include intestinal acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors, 3-hydroxy-3-methylglutaryl (HMG-CoA) reductase inhibitors, LDL receptor up- regulators, bile acid reabsorption inhibitors, and cholesterol-7a-hydroxylase (CYP7A1 ) activators. For example, grape seed proanthocyanidin extract is reportedly cholesterol-lowering nutraceutical. The hypocholesterolemic activity of grape seed proanthocyanidin is probably mediated by enhancement of bile acid excretion and up-regulation of CYP7A1 . HMG-CoA reductase (3-Hydroxy-3-Methyl-Glutaryl-CoA reductase; enzyme commission designation EC 1. 1 . 1 .88) is the rate-controlling enzyme of the mevalonate pathway, the metabolic pathway that produces cholesterol in mammals. Normally, in mammalian cells this enzyme is suppressed by cholesterol derived from the internalization and degradation of low density lipoprotein (LDL, the "bad" cholesterol) via the LDL receptor as well as oxidized species of cholesterol. Competitive inhibitors of the reductase induce the expression of LDL receptors in the liver, which in turn increases the catabolism of plasma LDL and lowers the plasma concentration of cholesterol, an important determinant of atherosclerosis. HMG-CoA reductase is anchored in the membrane of the endoplasmic reticulum. HMG-CoA reductase is a polytopic, transmembrane protein that catalyzes a key step in the mevalonate pathway, which is inter alia involved in the synthesis of sterols. In mammals, in particular in human beings, the step involving HMG-CoA reductase in the metabolic pathway of the cholesterol synthesis is rate-limiting and therefore represents a major drug target for contemporary cholesterol-lowering drugs. The medical significance of HMG-CoA reductase has continued to expand beyond its direct role in cholesterol synthesis following the discovery that it can offer cardiovascular health benefits independent of cholesterol reduction. Statins are used to lower serum cholesterol levels as a means of reducing the risk for cardiovascular disease by potently inhibiting the enzyme HMG-CoA reductase, which plays a central role in the production of cholesterol in the liver. Increased cholesterol levels have been associated with cardiovascular diseases, and statins are therefore used in the prevention of these diseases. Statins are very effective for treating cardiovascular disease, with questionable benefit in those without previous cardiovascular disease but with elevated cholesterol levels. Statins are currently the most widely used drugs for prevention and treatment of atherosclerosis. However, statins are reported to have adverse side effects such as hepatotoxicity, muscle pain, kidney damage and weakness. Statins include for example rosuvastatin, lovastatin, atorvastatin, pravastatin, fluvastatin and simvastatin. Several cholesterol-lowering statins are naturally occurring. Red yeast rice contains statins known as monacolins, including mevastatin and the highly active lovastatin; the latter can also be found in oyster mushrooms. Acyl-CoA: cholesterol acyltransferase [ACAT; also referred to as sterol O-acyltransferase (SOAT); enzyme commission designation EC 2.3.1 .26] catalyzes the acylation of cholesterol to cholesteryl ester with long chain fatty acids and ACAT inhibition is also an useful
Recommended publications
  • Regulation of Photosynthesis by a Potassium Transporter in the Diatom Phaeodactylum Tricornutum Claire Seydoux
    Regulation of photosynthesis by a potassium transporter in the diatom Phaeodactylum tricornutum Claire Seydoux To cite this version: Claire Seydoux. Regulation of photosynthesis by a potassium transporter in the diatom Phaeo- dactylum tricornutum. Vegetal Biology. Université Grenoble Alpes [2020-..], 2020. English. NNT : 2020GRALV031. tel-03172222 HAL Id: tel-03172222 https://tel.archives-ouvertes.fr/tel-03172222 Submitted on 17 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES Spécialité : Biologie Végétale Arrêté ministériel : 25 mai 2016 Présentée par Claire SEYDOUX Thèse dirigée par Florence COURTOIS, Maitre de conferences, Université Grenoble Alpes et codirigée par Giovanni FINAZZI, Université Grenoble Alpes préparée au sein du Laboratoire Laboratoire de Physiologie Cellulaire Végétale dans l'École Doctorale Chimie et Sciences du Vivant Régulation de la photosynthèse par un transporteur de potassium chez la diatomée Phaeodactylum tricornutum Regulation of photosynthesis
    [Show full text]
  • Diverse Biosynthetic Pathways and Protective Functions Against Environmental Stress of Antioxidants in Microalgae
    plants Review Diverse Biosynthetic Pathways and Protective Functions against Environmental Stress of Antioxidants in Microalgae Shun Tamaki 1,* , Keiichi Mochida 1,2,3,4 and Kengo Suzuki 1,5 1 Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; [email protected] (K.M.); [email protected] (K.S.) 2 RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan 3 Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan 4 School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan 5 euglena Co., Ltd., Tokyo 108-0014, Japan * Correspondence: [email protected]; Tel.: +81-45-503-9576 Abstract: Eukaryotic microalgae have been classified into several biological divisions and have evo- lutionarily acquired diverse morphologies, metabolisms, and life cycles. They are naturally exposed to environmental stresses that cause oxidative damage due to reactive oxygen species accumulation. To cope with environmental stresses, microalgae contain various antioxidants, including carotenoids, ascorbate (AsA), and glutathione (GSH). Carotenoids are hydrophobic pigments required for light harvesting, photoprotection, and phototaxis. AsA constitutes the AsA-GSH cycle together with GSH and is responsible for photooxidative stress defense. GSH contributes not only to ROS scavenging, but also to heavy metal detoxification and thiol-based redox regulation. The evolutionary diversity of microalgae influences the composition and biosynthetic pathways of these antioxidants. For example, α-carotene and its derivatives are specific to Chlorophyta, whereas diadinoxanthin and fucoxanthin are found in Heterokontophyta, Haptophyta, and Dinophyta. It has been suggested that Citation: Tamaki, S.; Mochida, K.; Suzuki, K. Diverse Biosynthetic AsA is biosynthesized via the plant pathway in Chlorophyta and Rhodophyta and via the Euglena Pathways and Protective Functions pathway in Euglenophyta, Heterokontophyta, and Haptophyta.
    [Show full text]
  • Changes in Honey Bee Head Proteome in Response to Dietary 24-Methylenecholesterol
    insects Article Changes in Honey Bee Head Proteome in Response to Dietary 24-Methylenecholesterol Priyadarshini Chakrabarti * and Ramesh R. Sagili * Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA * Correspondence: [email protected] (P.C.); [email protected] (R.R.S.); Tel.: +1-541-737-0628 (P.C.); Tel.: +1-541-737-5460 (R.R.S.) Received: 27 August 2020; Accepted: 27 October 2020; Published: 29 October 2020 Simple Summary: Phytosterols are important micronutrients that are essential for production of insect molting hormones and cellular membrane integrity. Past research has shown that the key phytosterol that honey bees need is 24-methylenecholesterol. This phytosterol improves honey bee longevity and sustains brood production. Hence, it is important to understand how 24-methylenecholesterol can shape honey bee physiology by altering protein profiles of vital honey bee tissues. Nurse bees secrete glandular secretions (brood food) using hypopharyngeal and mandibular glands in their head regions. Further, it has been shown that this sterol is selectively accumulated in nurse bee heads. Thus, it is imperative to examine the protein profiles of nurse bee heads, in response to dietary 24-methylenecholesterol manipulation. In this study, groups of newly emerged nurse bees were fed with varying concentrations of dietary 24-methylenecholesterol, while the control groups received no sterol. We found that dietary sterol manipulation altered the protein profiles in nurse bee heads, with important nutritional marker proteins being upregulated in high dietary sterol groups. The important proteins identified in this study may serve as vital markers of nutritional stress related to sterols in honey bees, paving the way for future research on bee nutrition.
    [Show full text]
  • The Synthesis and Biological Evaluation of Potential ABA-Like Analogues: Prospective Substrates to Control Berry Ripening of Wine Grapes
    The Synthesis and Biological Evaluation of Potential ABA-Like Analogues: Prospective Substrates to Control Berry Ripening of Wine Grapes. A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy Ruyi Li BSc (Bio-Eng), MSc (Vit./Oen.) Northwest A&F University The University of Adelaide School of Agriculture, Food and Wine July 2012 Table of Contents Abstract........................................................................................................................... iii Declaration...................................................................................................................... vi Acknowledgements......................................................................................................... vii Abbreviations.................................................................................................................. ix Figures, Schemes and Tables......................................................................................... xi CHAPTER 1: INTRODUCTION................................................................................ 1 1.1 General Introduction................................................................................................... 1 1.2 Carotenoids................................................................................................................. 3 1.2.1 Definition, types and identification of carotenoids................................................. 3 1.2.2 Factors influencing the concentration of carotenoids
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,834.855 B2 Johnsen Et Al
    USOO8834.855B2 (12) United States Patent (10) Patent No.: US 8,834.855 B2 Johnsen et al. (45) Date of Patent: Sep. 16, 2014 (54) SUNSCREEN COMPOSITIONS COMPRISING (56) References Cited CAROTENOIDS U.S. PATENT DOCUMENTS (75) Inventors: Geir Johnsen, Trondheim (NO); Per Age Lysaa, Oslo (NO); KristinO O Aamodt, 4,699,7815,210,186 A 10/19875/1993 MikalsenGoupil et al. Oslo (NO) 5,308,759 A 5/1994 Gierhart 5,352,793 A 10, 1994 Bird et al. (73) Assignee: Promar AS (NO) 5,382,714 A 1/1995 Khachik 5,648,564 A 7/1997 AuSich et al. (*) Notice: Subject to any disclaimer, the term of this 5,654,488 A 8/1997 Krause et al. patent is extended or adjusted under 35 5,705,146 A 1, 1998 Lindquist U.S.C. 154(b) by 1255 days. (Continued) (21) Appl. No.: 11/795,668 FOREIGN PATENT DOCUMENTS (22) PCT Filed:1-1. Jan. 23, 2006 CA 21777521310969 12/199612/1992 (86). PCT No.: PCT/GB2OO6/OOO220 (Continued) S371 (c)(1), OTHER PUBLICATIONS (2), (4) Date: Apr. 15, 2008 “A UV absorbing compound in HPLC pigment chromatograms (87) PCT Pub. No.: WO2006/077433 obtained from Iceland Basin Phytoplankton'. Liewellyn et al., PCT Pub. Date: Jul.e 27,af f 9 2006 Marine Ecology Progress Series, vol. 158.:283-287, 1997.* (65) Prior Publication Data (Continued)Continued US 2008/O260662 A1 Oct. 23, 2008 Primary Examiner — Ernst V Arnold (30) Foreign Application Priority Data Assistant Examiner — Hong Yu (74) Attorney, Agent, or Firm — Schwegman Lundberg & Jan. 21, 2005 (GB) ..................................
    [Show full text]
  • Altered Xanthophyll Compositions Adversely Affect Chlorophyll Accumulation and Nonphotochemical Quenching in Arabidopsis Mutants
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13324–13329, October 1998 Plant Biology Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants BARRY J. POGSON*, KRISHNA K. NIYOGI†,OLLE BJO¨RKMAN‡, AND DEAN DELLAPENNA§¶ *Department of Plant Biology, Arizona State University, Tempe, AZ 85287-1601; †Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102; ‡Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305-4101; and §Department of Biochemistry, University of Nevada, Reno, NV 89557-0014 Contributed by Olle Bjo¨rkman, September 4, 1998 ABSTRACT Collectively, the xanthophyll class of carote- thin, are enriched in the LHCs, where they contribute to noids perform a variety of critical roles in light harvesting assembly, light harvesting, and photoprotection (2–8). antenna assembly and function. The xanthophyll composition A summary of the carotenoid biosynthetic pathway of higher of higher plant photosystems (lutein, violaxanthin, and neox- plants and relevant chemical structures is shown in Fig. 1. anthin) is remarkably conserved, suggesting important func- Lycopene is cyclized twice by the enzyme lycopene b-cyclase tional roles for each. We have taken a molecular genetic to form b-carotene. The two beta rings of b-carotene are approach in Arabidopsis toward defining the respective roles of subjected to identical hydroxylation reactions to yield zeaxan- individual xanthophylls in vivo by using a series of mutant thin, which in turn is epoxidated once to form antheraxanthin lines that selectively eliminate and substitute a range of and twice to form violaxanthin. Neoxanthin is derived from xanthophylls. The mutations, lut1 and lut2 (lut 5 lutein violaxanthin by an additional rearrangement (9).
    [Show full text]
  • International Standard Iso 23443:2020(E)
    This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-80022923 INTERNATIONAL ISO STANDARD 23443 First edition 2020-07 Infant formula and adult nutritionals — Determination of β-carotene, lycopene and lutein by reversed-phase ultra-high performance liquid chromatography (RP-UHPLC) Formules infantiles et produits nutritionnels pour adultes — Détermination du bêta-carotène, du lycopène et de la lutéine par chromatographie liquide ultra haute performance à phase inversée Reference number ISO 23443:2020(E) © ISO 2020 This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-80022923 ISO 23443:2020(E) COPYRIGHT PROTECTED DOCUMENT © ISO 2020 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone:Website: +41 www.iso.org 22 749 01 11 Email: [email protected] iiPublished in Switzerland © ISO 2020 – All rights reserved This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-80022923 ISO 23443:2020(E) Contents Page Foreword ........................................................................................................................................................................................................................................iv
    [Show full text]
  • Abscisic Acid Induced Protection Against Photoinhibition of PSII Correlates with Enhanced Activity of the Xanthophyll Cycle
    FEBS 15944 FEBS Letters 371 (1995) 61-64 Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle A.G. Ivanov a'*, M. Krol b, D. Maxwell b, N.P.A. Huner b alnstitute of Biophysics, Bulgarian Academy of Sciences, Aead. (7. Bonchev Street, bl. 21, 1113 Sofia, Bulgaria bDepartment of Plant Sciences, University of Western Ontario, London, Ont. N6A 5B7, Canada Received 22 June 1995; revised version received 24 July 1995 applied ABA on the light-dependent zeaxanthin formation, the Abstract The exogenous application of abscisic acid (ABA) to related capacity for non-photochemical chlorophyll fluores- barley seedlings resulted in partial protection of the PSII photo- cence quenching and the possible involvement of ABA in the chemistry against photoinhibition at low temperature, the effect protection of PSII photochemistry from excessive radiation at being most pronounced at 10 -s M ABA. This was accompanied low temperatures. by higher photochemical quenching (qP) in ABA-treated leaves. A considerable increase (122%) in the amount of total carotenoids 2. Materials and methods and xanthophylls (antheraxanthin, violaxanthin and zeaxanthin) was also found in the seedlings subjected to ABA. The activity Seeds of barley (Hordeum vulgare L. var. cadette) were germinated of the xanthophyll cycle measured by the epoxidation state of for 3 days and grown in aqueous solutions of ABA (10 -5 M and 10-6 M) xanthophyUs under high-light treatment was higher in ABA- as in [23]. ABA treatments lasted 7 days. The solutions were changed treated plants compared with the control. This corresponds to a daily.
    [Show full text]
  • Photosynthetic Pigments in Diatoms
    Mar. Drugs 2015, 13, 5847-5881; doi:10.3390/md13095847 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Photosynthetic Pigments in Diatoms Paulina Kuczynska 1, Malgorzata Jemiola-Rzeminska 1,2 and Kazimierz Strzalka 1,2,* 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland; E-Mails: [email protected] (P.K.); [email protected] (M.J.-R.) 2 Małopolska Centre of Biotechnology, Gronostajowa 7A, Krakow 30-387, Poland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +48-126-646-509; Fax: +48-126-646-902. Academic Editor: Véronique Martin-Jézéquel Received: 10 July 2015 / Accepted: 7 September 2015 / Published: 16 September 2015 Abstract: Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications.
    [Show full text]
  • Sources of Carotenoids and Their Uses As Animal Feed
    Scientific Papers. Series D. Animal Science. Vol. LXI, Number 2, 2018 ISSN 2285-5750; ISSN CD-ROM 2285-5769; ISSN Online 2393-2260; ISSN-L 2285-5750 important role in molecular processes of cell molecules, joined in a head to tail pattern membranes whose structure, properties and (Mattea, 2009; Domonkos, 2013). Structurally, SOURCES OF CAROTENOIDS AND THEIR USES stability can be modified, leading to possible carotenoids take the form of a polyene chain AS ANIMAL FEED ADDITIVES – A REVIEW beneficial effects on human health (Zaheer, that functions as a chromophore, due to 9-11 2017). conjugated double bonds and possibly Diana PASARIN, Camelia ROVINARU Out of high production and marketability terminating in rings, what determines their reasons, carotenoids are present in the animal characteristic color in the yellow to red range National Institute for Research and Development in Chemistry and Petrochemistry kingdom, playing functions such as coloring (Vershinin, 1999). The presence of different 202 Spl. Independentei, Bucharest, Romania (pets/ornamental birds and fish, mimicking), number of conjugated double bounds leades to flavoring (scents and pollination in nature), various stereoisomers abbreviated as E- and Z- Corresponding author email: [email protected] reproduction (bird feathers and finding mates; isomers, depending on whether the double development of embryos), resistance to bonds are in the trans (E) or cis (Z) Abstract bacterial and fungal diseases, immune configuration (Vincente et al., 2017). responses (lutein connected to anti- Carotenoids are synthesized by all Carotenoids are natural pigments, widely distributed in nature, synthesized by plants, algae, fungi, and phototrophic bacteria. Carotenoids have coloring power and antioxidant properties, being used as colorants for foods, cosmetics and inflammatory natural substance in poultry), as photosynthetic organisms and some non- feeds.
    [Show full text]
  • BSI Standards Publication
    BS ISO 23443:2020 BSI Standards Publication Infant formula and adult nutritionals — Determination of β-carotene, lycopene and lutein by reversed-phase ultra-high performance liquid chromatography (RP-UHPLC) BS ISO 23443:2020 BRITISH STANDARD INTERNATIONAL ISO STANDARD 23443 National foreword This British Standard is the UK implementation of ISO 23443:2020. First edition 2020-07 The UK participation in its preparation was entrusted to Technical Committee AW/34, Food Technical Committee Chairmen. A list of organizations represented on this committee can be obtained on request to its committee manager. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2020 Published by BSI Standards Limited 2020 Infant formula and adult ISBN 978 0 539 05212 1 nutritionals — Determination of ICS 67.050 β-carotene, lycopene and lutein Compliance with a British Standard cannot confer immunity from by reversed-phase ultra-high legal obligations. performance liquid chromatography This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 July 2020. (RP-UHPLC) Formules infantiles et produits nutritionnels pour adultes — Amendments/corrigenda issued since publication Détermination du bêta-carotène, du lycopène et de la lutéine par Date Text affected chromatographie liquide ultra haute performance à phase inversée Reference number ISO 23443:2020(E) © ISO 2020 BS ISO 23443:2020 INTERNATIONAL
    [Show full text]
  • Bioactive Compounds of Tomatoes As Health Promoters
    48 Natural Bioactive Compounds from Fruits and Vegetables, 2016, Ed. 2, 48-91 CHAPTER 3 Bioactive Compounds of Tomatoes as Health Promoters José Pinela1,2, M. Beatriz P. P Oliveira2, Isabel C.F.R. Ferreira1,* 1 Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1172, 5301-855 Bragança, Portugal 2 REQUIMTE/LAQV, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal Abstract: Tomato (Lycopersicon esculentum Mill.) is one of the most consumed vegetables in the world and probably the most preferred garden crop. It is a key component of the Mediterranean diet, commonly associated with a reduced risk of chronic degenerative diseases. Currently there are a large number of tomato cultivars with different morphological and sensorial characteristics and tomato-based products, being major sources of nourishment for the world’s population. Its consumption brings health benefits, linked with its high levels of bioactive ingredients. The main compounds are carotenoids such as β-carotene, a precursor of vitamin A, and mostly lycopene, which is responsible for the red colour, vitamins in particular ascorbic acid and tocopherols, phenolic compounds including hydroxycinnamic acid derivatives and flavonoids, and lectins. The content of these compounds is variety dependent. Besides, unlike unripe tomatoes, which contain a high content of tomatine (glycoalkaloid) but no lycopene, ripe red tomatoes contain high amounts of lycopene and a lower quantity of glycoalkaloids. Current studies demonstrate the several benefits of these bioactive compounds, either isolated or in combined extracts, namely anticarcinogenic, cardioprotective and hepatoprotective effects among other health benefits, mainly due to its antioxidant and anti-inflammatory properties.
    [Show full text]