Foundations of Biostatistics Foundations of Biostatistics M

Total Page:16

File Type:pdf, Size:1020Kb

Foundations of Biostatistics Foundations of Biostatistics M M. Ataharul Islam Abdullah Al-Shiha Foundations of Biostatistics Foundations of Biostatistics M. Ataharul Islam • Abdullah Al-Shiha Foundations of Biostatistics 123 M. Ataharul Islam Abdullah Al-Shiha ISRT Department of Statistics and Operations University of Dhaka Research Dhaka College of Science, King Saud University Bangladesh Riyadh Saudi Arabia ISBN 978-981-10-8626-7 ISBN 978-981-10-8627-4 (eBook) https://doi.org/10.1007/978-981-10-8627-4 Library of Congress Control Number: 2018939003 © Springer Nature Singapore Pte Ltd. 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. part of Springer Nature The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface The importance of learning biostatistics has been growing very fast due to its increasing usage in addressing challenges in life sciences – in particular biomedical and biological sciences. There are challenges, both old and new, in nature, mostly attributable to interactive developments in the fields of life sciences, statistics, and computer science. The developments in statistics and biostatistics have been complementary to each other, biostatistics being focused to address the challenges in the field of biomedical sciences including its close links with epidemiology, health, biological science, and other life sciences. Despite the focus on biomedical-related problems, the need for addressing important issues of concern in the life science problems has been the source of some major developments in the theory of statistics. The current trend in the development of data science indicates that biostatistics will be in greater demand in the future. The compelling motivation behind writing this book stemmed from our long experience of teaching the foundation course on biostatistics in different universities to students having varied background. The students seek a thorough knowledge with adequate background in both theory and applications, employing a more cohesive approach such that all the relevant foundation concepts can be linked as a building block. This book provides a careful presentation of topics in a sequence necessary to make the students and users of the book proficient in foundations of biostatistics. In other words, the understanding of any of the foundation materials is not left to the unfamiliar domain. In biostatistics, all these foundation materials are deeply interconnected and even a single source of unfamiliarity may cause difficulty in understanding and applying the techniques properly. In this textbook, immense emphasis is given on coverage of relevant topics with adequate details, to facilitate easy understanding of these topics by the students and users. We have used mostly elementary mathematics with minor exceptions in a few sections in order to provide a more comprehensive view of the foundations of biostatistics that are expected from a biostatistician in real-life situations. v vi Preface There are 11 chapters in this book. Chapter 1 introduces basic concepts, and organizing and displaying data. One section includes the introduction to designing of sample surveys to make the students familiar with the steps necessary for col- lecting data. Chapter 2 provides a thorough background on basic summary statis- tics. The fundamental concepts and their applications are illustrated. In Chap. 3, basic probability concepts are discussed and illustrated with the help of suitable examples. The concepts are introduced in a self-explanatory manner. The appli- cations to biomedical sciences are highlighted. The fundamental concepts of probability distributions are included in Chap. 4. All examples are self-explanatory and will help students and users to learn the basics without difficulty. Chapter 5 includes a brief introduction of continuous probability distributions, mainly normal and standard normal distributions. In this chapter, emphasis is given mostly to the appropriate understanding and knowledge about applications of these two distri- butions to the problems in biomedical science. The sampling distribution plays a vital role in inferential procedures of biostatistics. Without understanding the concepts of sampling distribution, students and users of biostatistics would not be able to face the challenges in comprehensive applications of biostatistical tech- niques. In Chap. 6, concepts of sampling distribution are illustrated with very simple examples. This chapter provides a useful link between descriptive statistics in Chap. 2 with inferential statistics in Chaps. 7 and 8. Chapters 7 and 8 provide inferential procedures, estimation, and tests of hypothesis, respectively. As a pre- lude to Chap. 6 along with Chaps. 7 and 8, Chaps. 3–5 provide very important background support in understanding the underlying concepts of biostatistics. All these chapters are presented in a very simple manner and the linkages are easily understandable by students and users. Chapters 9–11 cover the most extensively employed models and techniques that provide any biostatistician the necessary understanding and knowledge to explore the underlying association between risk or prognostic factors with outcome variables. Chapter 9 includes correlation and regression, and Chap. 10 introduces essential techniques of analysis of variance. The most useful techniques of survival analysis are introduced in Chap. 11 which includes a brief discussion about topics on study designs in biomedical science, measures of association such as odds ratio and relative risk, logistic regression and proportional hazards model. With clear understanding of the concepts illustrated in Chaps. 1–8, students and users will find the last three chapters very useful and meaningful to obtain a comprehensive background of foundations of biostatistics. We want to express our gratitude to Halida Hanum Akhtar and Mahbub Elahi Chowdhury for the BIRPERHT data on pregnancy-related complications, the Health and Retirement Study (HRS), USA, M. Lichman, Machine Learning Repository (http://archive.ics.uci.edu/ml) of the Center for Machine Learning and Intelligent Systems, UCI, W. H. Wolberg, W. N. Street, and O. L. Mangasarian of the University of Wisconsin, Creators of the Breast Cancer Wisconsin Data Set, and NIPORT for BDHS 2014 and BMMS 2010 data. We would like to express our deep gratitude to the Royal Statistical Society for permission to reproduce the statistical tables included in the appendix, and our special thanks to Atinuke Phillips for her help. We also acknowledge that one table has been reproduced from Preface vii C. Dougherty’s tables that have been computed to accompany the text ‘Introduction to Econometrics’ (second edition 2002, Oxford University Press, Oxford). We are grateful to our colleagues and students at the King Saud University and the University of Dhaka. The idea of writing this book has stemmed from teaching and supervising research students at the King Saud University. We want to express our heartiest gratitude to the faculty members and the students of the Department of Statistics and Operations Research of the King Saud University and to the Institute of Statistical Research and Training (ISRT) of the University of Dhaka. Our special thanks to ISRT for providing every possible support for completing this book. We want to thank Shahariar Huda for his continued support to our work. We extend our deepest gratitude to Rafiqul I. Chowdhury for his immense help at different stages of writing this book. We want to express our gratitude to F. M. Arifur Rahman for his unconditional support to our work whenever we needed. We would like to thank Mahfuzur Rahman for his contribution in preparing the manuscript. Our special thanks to Amiya Atahar for her unconditional help during the final stage of writing this book. Further, we acknowledge gratefully the continued support from Tahmina Khatun, Jayati Atahar, and Shainur Ahsan. We acknowledge with deep gratitude that without help from Mahfuza Begum, this work would be difficult to complete. We extend our deep gratitude to Syed Shahadat Hossain, Azmeri Khan, Jahida Gulshan, Shafiqur Rahman, Israt Rayhan, Mushtaque Raza Chowdhury, Lutfor Rahman, Rosihan M. Ali, Adam Baharum, V. Ravichandran, and A. A. Kamil for their support. We are
Recommended publications
  • Recent Outlier Detection Methods with Illustrations Loss Reserving Context
    Recent outlier detection methods with illustrations in loss reserving Benjamin Avanzi, Mark Lavender, Greg Taylor, Bernard Wong School of Risk and Actuarial Studies, UNSW Sydney Insights, 18 September 2017 Recent outlier detection methods with illustrations loss reserving Context Context Reserving Robustness and Outliers Robust Statistical Techniques Robustness criteria Heuristic Tools Robust M-estimation Outlier Detection Techniques Robust Reserving Overview Illustration - Robust Bivariate Chain Ladder Robust N-Dimensional Chain-Ladder Summary and Conclusions References 1/46 Recent outlier detection methods with illustrations loss reserving Context Reserving Context Reserving Robustness and Outliers Robust Statistical Techniques Robustness criteria Heuristic Tools Robust M-estimation Outlier Detection Techniques Robust Reserving Overview Illustration - Robust Bivariate Chain Ladder Robust N-Dimensional Chain-Ladder Summary and Conclusions References 1/46 Recent outlier detection methods with illustrations loss reserving Context Reserving The Reserving Problem i/j 1 2 ··· j ··· I 1 X1;1 X1;2 ··· X1;j ··· X1;J 2 X2;1 X2;2 ··· X2;j ··· . i Xi;1 Xi;2 ··· Xi;j . I XI ;1 Figure: Aggregate claims run-off triangle I Complete the square (or rectangle) I Also - multivariate extensions. 1/46 Recent outlier detection methods with illustrations loss reserving Context Reserving Common Reserving Techniques I Deterministic Chain-Ladder I Stochastic Chain-Ladder (Hachmeister and Stanard, 1975; England and Verrall, 2002) I Mack’s Model (Mack, 1993) I GLMs
    [Show full text]
  • Download from the Resource and Environment Data Cloud Platform (
    sustainability Article Quantitative Assessment for the Dynamics of the Main Ecosystem Services and their Interactions in the Northwestern Arid Area, China Tingting Kang 1,2, Shuai Yang 1,2, Jingyi Bu 1,2 , Jiahao Chen 1,2 and Yanchun Gao 1,* 1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, P.O. Box 9719, Beijing 100101, China; [email protected] (T.K.); [email protected] (S.Y.); [email protected] (J.B.); [email protected] (J.C.) 2 University of the Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] Received: 21 November 2019; Accepted: 13 January 2020; Published: 21 January 2020 Abstract: Evaluating changes in the spatial–temporal patterns of ecosystem services (ESs) and their interrelationships provide an opportunity to understand the links among them, as well as to inform ecosystem-service-based decision making and governance. To research the development trajectory of ecosystem services over time and space in the northwestern arid area of China, three main ecosystem services (carbon sequestration, soil retention, and sand fixation) and their relationships were analyzed using Pearson’s coefficient and a time-lagged cross-correlation analysis based on the mountain–oasis–desert zonal scale. The results of this study were as follows: (1) The carbon sequestration of most subregions improved, and that of the oasis continuously increased from 1990 to 2015. Sand fixation decreased in the whole region except for in the Alxa Plateau–Hexi Corridor area, which experienced an “increase–decrease” trend before 2000 and after 2000; (2) the synergies and trade-off relationships of the ES pairs varied with time and space, but carbon sequestration and soil retention in the most arid area had a synergistic relationship, and most oases retained their synergies between carbon sequestration and sand fixation over time.
    [Show full text]
  • Of Typicality and Predictive Distributions in Discriminant Function Analysis Lyle W
    Wayne State University Human Biology Open Access Pre-Prints WSU Press 8-22-2018 Of Typicality and Predictive Distributions in Discriminant Function Analysis Lyle W. Konigsberg Department of Anthropology, University of Illinois at Urbana–Champaign, [email protected] Susan R. Frankenberg Department of Anthropology, University of Illinois at Urbana–Champaign Recommended Citation Konigsberg, Lyle W. and Frankenberg, Susan R., "Of Typicality and Predictive Distributions in Discriminant Function Analysis" (2018). Human Biology Open Access Pre-Prints. 130. https://digitalcommons.wayne.edu/humbiol_preprints/130 This Open Access Article is brought to you for free and open access by the WSU Press at DigitalCommons@WayneState. It has been accepted for inclusion in Human Biology Open Access Pre-Prints by an authorized administrator of DigitalCommons@WayneState. Of Typicality and Predictive Distributions in Discriminant Function Analysis Lyle W. Konigsberg1* and Susan R. Frankenberg1 1Department of Anthropology, University of Illinois at Urbana–Champaign, Urbana, Illinois, USA. *Correspondence to: Lyle W. Konigsberg, Department of Anthropology, University of Illinois at Urbana–Champaign, 607 S. Mathews Ave, Urbana, IL 61801 USA. E-mail: [email protected]. Short Title: Typicality and Predictive Distributions in Discriminant Functions KEY WORDS: ADMIXTURE, POSTERIOR PROBABILITY, BAYESIAN ANALYSIS, OUTLIERS, TUKEY DEPTH Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. Abstract While discriminant function analysis is an inherently Bayesian method, researchers attempting to estimate ancestry in human skeletal samples often follow discriminant function analysis with the calculation of frequentist-based typicalities for assigning group membership. Such an approach is problematic in that it fails to account for admixture and for variation in why individuals may be classified as outliers, or non-members of particular groups.
    [Show full text]
  • Rainbow Plots, Bagplots and Boxplots for Functional Data
    Rainbow plots, bagplots and boxplots for functional data Rob J Hyndman and Han Lin Shang Department of Econometrics and Business Statistics, Monash University, Clayton, Australia June 5, 2009 Abstract We propose new tools for visualizing large amounts of functional data in the form of smooth curves. The proposed tools include functional versions of the bagplot and boxplot, and make use of the first two robust principal component scores, Tukey's data depth and highest density regions. By-products of our graphical displays are outlier detection methods for functional data. We compare these new outlier detection methods with existing methods for detecting outliers in functional data, and show that our methods are better able to identify the outliers. An R-package containing computer code and data sets is available in the online supple- ments. Keywords: Highest density regions, Robust principal component analysis, Kernel density estima- tion, Outlier detection, Tukey's halfspace depth. 1 Introduction Functional data are becoming increasingly common in a wide range of fields, and there is a need to develop new statistical tools for analyzing such data. In this paper, we are interested in visualizing data comprising smooth curves (e.g., Ramsay & Silverman, 2005; Locantore et al., 1999). Such functional data may be age-specific mortality or fertility rates (Hyndman & Ullah, 2007), term- structured yield curves (Kargin & Onatski, 2008), spectrometry data (Reiss & Ogden, 2007), or one of the many applications described by Ramsay & Silverman (2002). Ramsay & Silverman (2005) and Ferraty & Vieu (2006) provide detailed surveys of the many parametric and nonparametric techniques for analyzing functional data. 1 Visualization methods help in the discovery of characteristics that might not have been ap- parent using mathematical models and summary statistics; and yet this area of research has not received much attention in the functional data analysis literature to date.
    [Show full text]
  • Detection of Outliers in Pollutant Emissions from the Soto De Ribera Coal-Fired Plant Using Functional Data Analysis: a Case Study in Northern Spain †
    Proceedings Detection of Outliers in Pollutant Emissions from the Soto de Ribera Coal-Fired Plant Using Functional Data Analysis: A Case Study in Northern Spain † Fernando Sánchez Lasheras 1,*, Celestino Ordóñez Galán 2, Paulino José García Nieto 1 and Esperanza García-Gonzalo 1 1 Department of Mathematics, University of Oviedo, 33007 Oviedo, Spain; [email protected] (P.J.G.N.), [email protected] (E.G.-G.) 2 Department of Prospection and Mining Exploitation, University of Oviedo, 3004 Oviedo, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-985-10-3338 † Presented at the 2nd International Research Conference on Sustainable Energy, Engineering, Materials and Environment (IRCSEEME), Mieres, Spain, 25–27 July 2018. Published: 5 November 2018 Abstract: The present research uses two different functional data analysis methods called functional high-density region (HDR) boxplot and functional bagplot. Both methodologies were applied for the outlier detection in the time pollutant emissions curves that were built using as inputs the discrete information available from an air quality monitoring data record station. Although the record of pollutant emissions is made in a discrete way, these methodologies consider pollutant emissions over time as curves, with outliers obtained by a comparison of curves instead of vectors. Then the concept of outlier passes from been a point to a curve that employed the functional depth as the indicator of curve distances. In this study, the referred methodologies are applied to the detection of outliers in pollutant emissions from the Soto de Ribera coal-fired plant which is in the nearby of the city of Oviedo, located in the Principality of Asturias, Spain.
    [Show full text]
  • An Analysis of the Impact of an Outlier on Correlation Coefficients Across Small Sample Data Where RHO Is Non-Zero
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 4-2001 An Analysis of the Impact of an Outlier on Correlation Coefficients Across Small Sample Data Where RHO is Non-Zero Maria A. Suchowski Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Epistemology Commons, and the Other Philosophy Commons Recommended Citation Suchowski, Maria A., "An Analysis of the Impact of an Outlier on Correlation Coefficients Across Small Sample Data Where RHO is Non-Zero" (2001). Dissertations. 1348. https://scholarworks.wmich.edu/dissertations/1348 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. AN ANALYSIS OF THE IMPACT OF AN OUTLIER ON CORRELATION COEFFICIENTS ACROSS SMALL SAMPLE DATA WHERE RHO IS NON-ZERO by Maria A. Suchowski A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Educational Studies W estern Michigan University Kalamazoo, Michigan April 2001 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. AN ANALYSIS OF THE IMPACT OF AN OUTLIER ON CORRELATION COEFFICIENTS ACROSS SMALL SAMPLE DATA WHERE RHO IS NON-ZERO Maria A_ Suchowski, Ph.D. Western Michigan University, 2001 This study addressed the problem of the probable effectiveness of the Pearson correlation coefficient (r) as an estimator of moderate or strong population correlation (rho) when that estimate is based on small sample data which contains an outlier.
    [Show full text]
  • The Aplpack Package
    The aplpack Package September 3, 2007 Type Package Title Another Plot PACKage: stem.leaf, bagplot, faces, spin3R, ... Version 1.1.1 Date 2007-09-03 Author Peter Wolf, Uni Bielefeld Maintainer Peter Wolf <[email protected]> Depends R (>= 2.4.0), tcltk Description set of functions for drawing some special plots: stem.leaf plots a stem and leaf plot bagplot plots a bagplot faces plots chernoff faces spin3R for an inspection of a 3-dim point cloud License This package was written by Hans Peter Wolf. This software is licensed under the GPL (version 2 or newer) terms. It is free software and comes with ABSOLUTELY NO WARRANTY. URL http://www.wiwi.uni-bielefeld.de/~wolf/software/aplpack R topics documented: aplpack-package . 1 bagplot . 2 boxplot2D . 5 faces............................................. 6 spin3R . 8 stem.leaf . 9 Index 11 1 2 bagplot aplpack-package Another PLotting Package Description this package contains functions for plotting: chernoff faces, stem and leaf plots, bagplot etc. Details Package: aplpack Type: Package Version: 1.0 Date: 2006-04-04 License: GPL bagplot plots a bagplot faces plots chernoff faces scboxplot plot a boxplot into a scatterplot spin3R enables the inspection of a 3-dim point cloud stem.leaf plots a stem and leaf display Author(s) Peter Wolf Maintainer: Peter Wolf <[email protected]> References Examples bagplot bagplot, a bivariate boxplot Description compute.bagplot() computes an object describing a bagplot of a bivariate data set. plot.bagplot() plots a bagplot object. bagplot() computes and plots a bagplot. Usage bagplot(x, y, factor = 3, na.rm = FALSE, approx.limit = 300, show.outlier = TRUE, show.whiskers = TRUE, show.looppoints = TRUE, show.bagpoints = TRUE, show.loophull = TRUE, show.baghull = TRUE, create.plot = TRUE, add = FALSE, pch = 16, cex = 0.4, bagplot 3 dkmethod = 2, precision = 1, verbose = FALSE, debug.plots = "no", col.loophull="#aaccff", col.looppoints="#3355ff", col.baghull="#7799ff", col.bagpoints="#000088", transparency=FALSE, ..
    [Show full text]
  • The Concept of Depth in Statistics
    The Concept of Depth In Statistics Maria Raquel Neto Abstract: This work aims at exploring the concept of depth in Statistics and at showing its usefulness in practice. Initially the concept of data depth is introduced. This concept is very important because it leads to a natural center-outward ordering of sample points in multivariate data sets. This notion of order in multivariate data sets enlarges the field of applications of multivariate analysis, since it allows the extension of univariate concepts based on order to the field of multivariate analysis, in particular it opens the possibility of non- parametric methods to be used in multivariate data analysis. Different depth measures with different characteristics are presented in this work. All these measures have been proposed with the same objective, to determine the data depth of an observation. Other challenges within the topic of data depth are the computational implementation of the depth measures and the graphical representation of the data depth. The field of applications of data depth is vast and is still growing. Throughout this paper references are made to some of these applications, one of the most interesting being the deepest regression, a robust linear regression method. The deepest regression is based on the regression depth, a function that allows the calculation of the depth of a regression line. The ideas and results around the notion of data depth are complex but very interesting and useful. It is expected that the studies currently under way will produce the developments that will make their practical implementation easier than they are today.
    [Show full text]
  • Package 'Mrfdepth'
    Package ‘mrfDepth’ August 26, 2020 Type Package Version 1.0.13 Date 2020-08-24 Title Depth Measures in Multivariate, Regression and Functional Settings Description Tools to compute depth measures and implementations of related tasks such as outlier detection, data exploration and classification of multivariate, regression and functional data. Depends R (>= 3.6.0), ggplot2 Imports abind, geometry, grid, matrixStats, reshape2, Suggests robustbase LinkingTo RcppEigen (>= 0.3.2.9.0), Rcpp (>= 0.12.6), RcppArmadillo (>= 0.7.600.1.0) License GPL (>= 2) LazyLoad yes URL https://github.com/PSegaert/mrfDepth BugReports https://github.com/PSegaert/mrfDepth/issues RoxygenNote 6.1.0 NeedsCompilation yes Author Pieter Segaert [aut], Mia Hubert [aut], Peter Rousseeuw [aut], Jakob Raymaekers [aut, cre], Kaveh Vakili [ctb] Maintainer Jakob Raymaekers <[email protected]> Repository CRAN Date/Publication 2020-08-26 16:10:33 UTC 1 2 R topics documented: R topics documented: adjOutl . .3 bagdistance . .6 bagplot . .9 bloodfat . 11 cardata90 . 12 characterA . 13 characterI . 14 cmltest . 15 compBagplot . 16 depthContour . 19 dirOutl . 22 distSpace . 25 dprojdepth . 28 dprojmedian . 30 fheatmap . 31 fom ............................................. 32 fOutl . 34 geological . 37 glass . 37 hdepth . 38 hdepthmedian . 42 medcouple . 43 mfd ............................................. 45 mfdmedian . 47 mrainbowplot . 49 mri.............................................. 50 octane . 52 outlyingness . 52 plane . 56 plotContours . 58 projdepth . 59 projmedian . 61 rdepth . 63 rdepthmedian . 65 sdepth . 66 sprojdepth . 68 sprojmedian . 70 stars . 72 symtest . 73 tablets . 74 wine............................................. 75 Index 76 adjOutl 3 adjOutl Adjusted outlyingness of points relative to a dataset Description Computes the skew-adjusted outlyingness of p-dimensional points z relative to a p-dimensional dataset x.
    [Show full text]
  • Visualization Tools for Uncertainty and Sensitivity Analyses on Thermal-Hydraulic Transients
    Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013) La Cité des Sciences et de l’Industrie, Paris, France, October 27-31, 2013 Visualization tools for uncertainty and sensitivity analyses on thermal-hydraulic transients Anne-Laure Popelin1* and Bertrand Iooss1 1EDF R&D, Industrial Risk Management Department, 6 Quai Watier 78401 Chatou, France * Corresponding Author, E-mail: [email protected] In nuclear engineering studies, uncertainty and sensitivity analyses of simulation computer codes can be faced to the complexity of the input and/or the output variables. If these variables represent a transient or a spatial phenomenon, the difficulty is to provide tool adapted to their functional nature. In this paper, we describe useful visualization tools in the context of uncertainty analysis of model transient outputs. Our application involves thermal-hydraulic computations for safety studies of nuclear pressurized water reactors. KEYWORDS : Uncertainty and sensitivity analysis, Computer experiment, visualization I. Introduction 3. Can we detect some abnormal curves, in the sense of a strong difference from the majority of the curves (as This work is part of current research concerning engineering outliers for scalar variables)? studies of pressurized water reactor. EDF R&D and its 4. Are there some clusters which correspond to different partners develop generic probabilistic approaches for the behavior of the physical behavior of the output? uncertainty management of computer code used in safety 5. … analyses1). One of the main difficulties in uncertainty and Question 4 has been treated in a previous work by Auder et sensitivity analyses is to deal with thermal-hydraulic al.2).
    [Show full text]
  • Oriented Spatial Box Plot, a New Pattern for Points Clusters Laurent
    Oriented Spatial Box Plot, a New Pattern for Points Clusters Laurent Etienne Laboratory of Computer Science, Tours University, Tours, France E-mail: [email protected] Thomas Devogele Laboratory of Computer Science, Tours University, Blois, France E-mail: [email protected] Gavin McArdle National Centre for Geocomputation, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland E-mail: [email protected] Abstract: Nowadays, an abundance of sensors are used to collect very large datasets containing spatial points which can be mined and analyzed to extract meaningful patterns and information. This article examines patterns which describe the dispersion of 2D data around a central tendency. Several state of the art patterns for point cluster analysis are presented and critiqued before a new pattern, the Oriented Spatial Box Plot, is defined. The Oriented Spatial Box Plot extends the classical one-dimensional box plot for summarizing and visualizing 2D point clusters. The pattern is suitable for detecting outliers and understanding the spatial density of point clusters. Keywords: Point clusters, Oriented Spatio-Temporal Box Plot, Bagplot, Quelplot, Outlier detection, Spatio-temporal patterns. Reference to this paper should be made as follows: Etienne, L., Devogele, T. and McArdle, G. (xxxx) ’Oriented Spatial Box Plot, a New Pattern for Points Clusters’, International Journal of Business Intelligence and Data Mining, Vol. x, No. x, pp.xxx–xxx. Biographical notes: Dr Laurent Etienne is an Assistant Professor at University Francois Rabelais, Tours, France. He holds a Ph.D. in geomatics from University of Brest (France) and a M.Sc in Computer Science from University of Rennes (France).
    [Show full text]
  • Package 'Aplpack'
    Package ‘aplpack’ July 29, 2019 Title Another Plot Package: 'Bagplots', 'Iconplots', 'Summaryplots', Slider Functions and Others Version 1.3.3 Date 2019-07-26 Author Hans Peter Wolf [aut, cre] Maintainer Hans Peter Wolf <[email protected]> Depends R (>= 3.0.0) Suggests tkrplot, jpeg, png, splines, utils, tcltk Description Some functions for drawing some special plots: The function 'bagplot' plots a bagplot, 'faces' plots chernoff faces, 'iconplot' plots a representation of a frequency table or a data matrix, 'plothulls' plots hulls of a bivariate data set, 'plotsummary' plots a graphical summary of a data set, 'puticon' adds icons to a plot, 'skyline.hist' combines several histograms of a one dimensional data set in one plot, 'slider' functions supports some interactive graphics, 'spin3R' helps an inspection of a 3-dim point cloud, 'stem.leaf' plots a stem and leaf plot, 'stem.leaf.backback' plots back-to-back versions of stem and leaf plot. License GPL (>= 2) URL http://www.wiwi.uni-bielefeld.de/lehrbereiche/statoekoinf/comet/ wolf/wolf\_aplpack NeedsCompilation no Repository CRAN Date/Publication 2019-07-29 07:50:12 UTC R topics documented: bagplot . 2 bagplot.pairs . 5 1 2 bagplot boxplot2D . 6 faces............................................. 8 hdepth . 10 iconplot . 11 plothulls . 26 plotsummary . 28 puticon . 29 skyline.hist . 34 slider . 37 slider.bootstrap.lm.plot . 41 slider.brush . 42 slider.hist . 44 slider.lowess.plot . 45 slider.smooth.plot.ts . 46 slider.split.plot.ts . 47 slider.stem.leaf . 48 slider.zoom.plot.ts . 49 spin3R . 50 stem.leaf . 51 bagplot bagplot, a bivariate boxplot Description compute.bagplot() computes an object describing a bagplot of a bivariate data set.
    [Show full text]