Revisiting Silicate Authigenesis in the Pliocene–Pleistocene Lake Tecopa Beds, Southeastern California: Depositional and Hydrological Controls

Total Page:16

File Type:pdf, Size:1020Kb

Revisiting Silicate Authigenesis in the Pliocene–Pleistocene Lake Tecopa Beds, Southeastern California: Depositional and Hydrological Controls Revisiting silicate authigenesis in the Pliocene–Pleistocene Lake Tecopa beds, southeastern California: Depositional and hydrological controls Daniel Larsen* Department of Earth Sciences, University of Memphis, Memphis, Tennessee 38152, USA ABSTRACT Keywords: saline, alkaline lake, Pliocene– (especially marker beds) and three-dimensional Pleistocene, zeolite, depositional facies, authi- analysis of lateral facies variations. The hyper- The Pliocene–Pleistocene Lake Tecopa genic minerals. arid climate of the southwestern Great Basin has beds present a well-documented example of preserved much of the authigenic mineralogy, authigenic silicate diagenesis in an ancient INTRODUCTION although the most soluble salts, such as halite saline, alkaline lake environment. Controls and trona, are largely absent from surface expo- on authigenic mineral formation and dis- The Pliocene–Pleistocene Lake Tecopa beds sures due to dissolution during weathering. The tributions were investigated in nine strati- represent a classic example of concentric distri- stratigraphic and mineralogical results are used graphic sections aligned along a north-south butions of authigenic silicate minerals (Fig. 1) to (1) construct a conceptual model emphasiz- transect in the Tecopa basin. Specifi cally, attributed to diagenetic reactions in saline, alka- ing controls on authigenic silicate distributions potential depositional and hydrologic con- line lake deposits (Hay, 1966; Sheppard and in saline, alkaline lake deposits, and (2) discuss trols on mineral assemblages and distribu- Gude, 1968, 1969, 1973; Surdam and Parker, the paleohydrologic and paleoclimatic informa- tions were addressed by correlating detailed 1972). Past studies of silicate authigenesis tion recorded by authigenic silicate distributions sedimentological data and basin hydrology in saline, alkaline lake deposits have largely in such deposits. with authigenic mineral facies distributions. focused on the types and distributions of zeo- Deposition occurred within the Lake lites (Sheppard and Gude, 1968, 1973; Surdam AUTHIGENIC SILICATE MINERAL Tecopa basin in environments ranging from and Parker, 1972; Ratterman and Surdam, 1981; DISTRIBUTIONS IN SALINE, alluvial and eolian around the basin margin Sheppard, 1994) and pore-water chemistry ALKALINE LAKES to lake margin, mudfl at, and shallow and (Jones, 1966; Eugster, 1970; Surdam and Eug- perennial lacustrine in the basin center. The ster, 1976; Eugster and Hardie, 1978; Taylor and In most cases, saline lake basins are partially authigenic silicate minerals include trioc- Surdam, 1981). Several studies, mainly from or completely hydrologically closed all or most tahedral smectite, phillipsite, clinoptilolite, East Africa, have attempted to establish relation- of the time, so that evaporation leads to forma- opal C-T (cristobalite-tridymite), potas- ships, if present, between specifi c sedimentary tion of concentrated water compositions that sium feldspar, illite, albite, and searlesite, as facies in basins containing saline, alkaline lake may ultimately become brines (Jones, 1966; well as many other minor or less commonly deposits and their authigenic silicate mineralogy for a review, see Jones and Deocampo, 2003). observed phases. Authigenic mineral distri- (Hay, 1976; Bellanca et al., 1992; Renaut and The chemical evolution of evaporating waters butions along the margin of the basin are Tiercelin, 1994; Ingles et al., 1998; Deocampo is most sensitive to the balance of Ca2+ and 2+ strongly controlled by sediment composition and Ashley, 1999; Ashley and Driese, 2000; bicarbonate contents (Ca -HCO3–chemical (primarily tuffaceous component) and lake- Hay and Kyser, 2001; Hover and Ashley, 2003). divide; Hardie and Eugster, 1970). Water com- level variations. Authigenic mineral composi- Because distributions and types of sedimentary positions in which the bicarbonate equivalents tions in the center of the basin are dominated facies in lake basins are fundamentally related exceed the calcium equivalents (2m – > HCO3 by feldspar, illite, and searlesite, and are less to basin hydrology and climate (Smoot and mCa2+) lead to calcium-poor, bicarbonate-rich infl uenced by sediment composition or short- Lowenstein, 1991; Rosen, 1994), relationships water compositions during evaporation and term changes in lake level. The authigenic between sedimentary facies and authigenic min- associated precipitation of calcium carbon- silicate mineral composition in the central eral distributions provide information regarding ate. Because Mg carbonates do not precipitate part of the basin is interpreted to be a result hydrological processes in saline, alkaline lake readily, bicarbonate concentrations increase of chemical interaction with a saline, alkaline basins and, indirectly, paleoclimatic conditions. with evaporation until oversaturation with brine that moved in accord with lake-level In this study, the stratigraphy and authigenic alkali–alkali earth carbonates and bicarbon- changes and induced density-driven circula- mineralogy of the Pliocene–Pleistocene Lake ates (e.g., gaylussite, trona) is reached (Eug- tion. The results suggest that distributions of Tecopa Beds were examined to assess the vary- ster and Hardie, 1978). Assuming that the pH authigenic silicate minerals in saline, alkaline ing roles of sedimentary, chemical, and hydro- is controlled by the carbonate system, the pH lake deposits are complexly related to depo- logical processes in controlling the types and increases through evaporative concentration of sitional and hydrologic processes and may distributions of authigenic minerals. The incised such waters until bicarbonate mineral precipi- be of limited utility in resolving lake-level badlands exposures in the Tecopa basin pro- tation and hydrolysate complexation (e.g., sili- changes in ancient lacustrine systems. vide relatively easy lateral correlation of beds cic acid) buffer the pH (Eugster, 1980). *[email protected] Geosphere; June 2008; v. 4; no. 3; p. 612–639; doi: 10.1130/GES00152.1; 11 fi gures; 2 tables; 2 plates. 612 For permission to copy, contact [email protected] © 2008 Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/4/3/612/3339499/i1553-040X-4-3-612.pdf by guest on 25 September 2021 Revisiting silicate authigenesis in the Pliocene–Pleistocene Lake Tecopa beds Figure 1. (A) Map of region surrounding the Tecopa basin, illustrating mountains, streams, and general groundwater fl ow directions. (B) Map of the Tecopa basin illustrating the locations of measured stratigraphic sections and correlated sections (line A-A' in Plates 1 and 2, line B-B' in Figs. 3 and 9, and line C-C' in Fig. 10). Note that line A-A' in Plate 2 includes section LT-1 rather than LT-8. Also shown are the authigenic mineral facies identifi ed in the B tuff by Sheppard and Gude (1968). Geosphere, June 2008 613 Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/4/3/612/3339499/i1553-040X-4-3-612.pdf by guest on 25 September 2021 Larsen The unique combination of evaporative con- tors of paleoclimatic change (Street-Perrott METHODS centration and bicarbonate-rich water compo- and Harrison, 1985; Cohen, 2003). Based on sitions in saline, alkaline lakes leads to condi- this reasoning, variations in lake level, or more Stratigraphic sections were measured in tions favoring rapid hydrolysis of labile silicate specifi cally lake surface area, should also affect areas with moderate to good exposure and minerals and volcanic glass (Hay, 1966). The in a systematic manner clay mineral and zeolite were trenched or scraped to reveal stratigraphic resulting high pH water (pH commonly >9) distributions through time, assuming that all detail. Samples for mineralogical analysis were leads to solubilization of silica and aluminum other factors are equal. collected on a meter to submeter scale in the from relatively unstable mineral phases, which sections, depending on the degree of lithologic subsequently drives chemical oversaturation of STUDY AREA variability. The samples were split visually into the water with stable minerals such as quartz, representative fractions for X-ray diffraction alkali feldspar, and muscovite. In saline, alka- The Pliocene–Pleistocene Lake Tecopa Beds (XRD), petrographic, and scanning electron line lakes, the stable minerals cannot precipitate (Allogroup of Morrison, 1999) of southeastern microscope (SEM) analysis. quickly enough to keep pace with evaporation California (Fig. 1) are a Pliocene–Pleistocene Samples for XRD analysis were initially and hydrolysis; thus, precipitation of metastable basin-fi ll sequence that has been extensively crushed to disaggregate the sample and then zeolite and clay mineral phases from gels par- dissected by late Pleistocene incision of the ground to a fi ne powder using a mechanical tially decreases the chemical energy of the sys- Amargosa River (Morrison, 1991, 1999). Prior mortar and pestle. Bulk sample powder was tem (Dibble and Tiller, 1981). Ultimately, the to middle or late Pleistocene breaching of the quantitatively mixed with crystalline CeO2 stable minerals, such as quartz, alkali feldspar, Tecopa basin, Lake Tecopa was the terminal mineral standard using a 9:1 ratio of sample and muscovite, are believed to replace the ear- lake for discharge of the ancestral Amargosa to standard. Mineral standards for most phases lier formed zeolites and clays. Zeolites are not River during Quaternary and late Tertiary time present in the Lake Tecopa
Recommended publications
  • Dust, Volcanic Ash, and the Evolution of the South Pacific Gyre Through the Cenozoic
    Dust, volcanic ash, and the evolution of the South Pacific Gyre through the Cenozoic Dunlea, A. G., Murray, R. W., Sauvage, J., Spivack, A. J., Harris, R. N., & D'Hondt, S. (2015). Dust, volcanic ash, and the evolution of the South Pacific Gyre through the Cenozoic. Paleoceanography, 30(8), 1078-1099. doi:10.1002/2015PA002829 10.1002/2015PA002829 John Wiley & Sons, Inc. Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse PUBLICATIONS Paleoceanography RESEARCH ARTICLE Dust, volcanic ash, and the evolution of the South 10.1002/2015PA002829 Pacific Gyre through the Cenozoic Key Points: Ann G. Dunlea1, Richard W. Murray1, Justine Sauvage2, Arthur J. Spivack2, Robert N. Harris3, • Forty-seven element concentrations ’ 2 in 206 bulk sediment samples from and Steven D Hondt fi seven sites in the South Paci c 1 2 • Multivariate statistical models quantify Department of Earth and Environment, Boston University, Boston, Massachusetts, USA, Graduate School of 3 dust, ash, and other fluxes 100–0Ma Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA, College of Earth, Ocean, and Atmospheric • Dust and ash records climate and Sciences, Oregon State University, Corvallis, Oregon, USA meridional shifts in atmospheric circulation Abstract We examine the 0–100 Ma paleoceanographic record retained in pelagic clay from the South Supporting Information: Pacific Gyre (SPG) by analyzing 47 major, trace, and rare earth elements in bulk sediment in 206 samples • Readme from seven sites drilled during Integrated Ocean Drilling Program Expedition 329. We use multivariate statistical • Figure S1 • Table S1 analyses (Q-mode factor analysis and multiple linear regression) of the geochemical data to construct a model • Table S2 of bulk pelagic clay composition and mass accumulation rates (MAR) of six end-members, (post-Archean • Table S3 average Australian shale, rhyolite, basalt, Fe-Mn-oxyhydroxides, apatite, and excess Si).
    [Show full text]
  • The Archaeology and Paleoclimate of the Mud Lake Basin, Nye County, Nevada
    University of Nevada, Reno Changing Landscapes During the Terminal Pleistocene/Early Holocene: The Archaeology and Paleoclimate of the Mud Lake Basin, Nye County, Nevada A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Arts in Anthropology By Lindsay A. Fenner Dr. Geoffrey M. Smith/Thesis Advisor May, 2011 © by Lindsay A. Fenner 2011 All Rights Reserved THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by LINDSAY A. FENNER entitled Changing Landscapes During The Terminal Pleistocene/Early Holocene: The Archaeology And Paleoclimate Of The Mud Lake Basin, Nye County, Nevada be accepted in partial fulfillment of the requirements for the degree of MASTER OF ARTS Geoffrey M. Smith, Ph.D., Advisor Gary Haynes, Ph.D., Committee Member Kenneth D. Adams, Ph.D., Graduate School Representative Marsha H. Read, Ph. D., Associate Dean, Graduate School May, 2011 i ABSTRACT Archaeological investigation along Pleistocene lakeshores is a longstanding and common approach to prehistoric research in the Great Basin. Continuing in this tradition, this thesis considers the archaeological remains present from pluvial Mud Lake, Nye County, Nevada coupled with an examination of paleoclimatic conditions to assess land-use patters during the terminal Pleistocene/early Holocene. Temporally diagnostic lithic assemblages from 44 localities in the Mud Lake basin provide the framework for which environmental proxy records are considered. Overwhelmingly occupied by Prearchaic groups, comprising 76.6% of all diagnostic artifacts present, Mud Lake was intensively utilized right up to its desiccation after the Younger Dryas, estimated at 9,000 radiocarbon years before present. Intermittently occupied through the remainder of the Holocene, different land-use strategies were employed as a result of shifting subsistence resources reacting to an ever changing environment.
    [Show full text]
  • September 24-25, 2004 FORWARD
    Flow and Transport: Characterization and Modeling from Pore to Reservoir Scales C=0.2 C=0.4 Figure from Robert Glass Gaithersburg Marriott Washingtonian Center Gaithersburg, MD September 24-25, 2004 FORWARD “Flow and Transport: Characterization and Modeling from Pore to Reservoir Scales” is the eleventh in a series of Geosciences Research Program Symposia dating from 1995. These symposia are topically focused meetings for principal investigators in the program and provide opportunities for our investigators to give presentations to one another and to discuss their Office of Basic Energy Sciences’ supported research. In addition to the recognition the symposium gives to all of the investigators, we traditionally also recognize one outstanding contribution from a DOE Laboratory Project and one from a University Project. The outstanding contributions are selected by our session chairpersons. We are fortunate to have as guest session co-chairs Professor Roger Beckie from the University of British Columbia, Professor Ronald Falta from Clemson University, Professor Mario Ioannidis from the University of Waterloo, and Dr. Michael J. King from BP. They join our Principal Investigator co-chairs Professor Katherine McCall of the University of Nevada, Professor Amos Nur of Stanford University, Dr. Karsten Pruess of the Lawrence Berkeley National Laboratory, Dr. Wenlu Zhu of the Woods Hole Oceanographic Institution. For their efforts on behalf of the investigators I thank them all. We are looking forward to an outstanding series of presentations. Nicholas B. Woodward Geosciences Research Program Office of Basic Energy Sciences U.S. Department of Energy * * * * * Table of Contents Agenda…………………………………………………………………………………… 3 Abstracts (listed in chronological order) Session 1 (September 24, A.M.)………………….……………………………… 7 Session 2 (September 24, P.M.).………………………………………………… 16 Session 3 (September 25, A.M.)…………………...............................................
    [Show full text]
  • 1. Cenozoic and Mesozoic Sediments from the Pigafetta Basin, Leg
    Larson, R. L., Lancelot, Y., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 129 1. CENOZOIC AND MESOZOIC SEDIMENTS FROM THE PIGAFETTA BASIN, LEG 129, SITES 800 AND 801: MINERALOGICAL AND GEOCHEMICAL TRENDS OF THE DEPOSITS OVERLYING THE OLDEST OCEANIC CRUST1 Anne Marie Karpoff2 ABSTRACT Sites 800 and 801 in the Pigafetta Basin allow the sedimentary history over the oldest remaining Pacific oceanic crust to be established. Six major deposition stages and events are defined by the main lithologic units from both sites. Mineralogical and chemical investigations were run on a large set of samples from these units. The data enable the evolution of the sediments and their depositional environments to be characterized in relation to the paleolatitudinal motion of the sites. The upper part of the basaltic crust at Site 801 displays a complex hydrothermal and alteration evolution expressed particularly by an ochre siliceous deposit comparable to that found in the Cyprus ophiolite. The oldest sedimentary cover at Site 801 was formed during the Callovian-Bathonian (stage 1) with red basal siliceous and metalliferous sediments similar to those found in supraophiolite sequences, and formed near an active ridge axis in an open ocean. Biosiliceous sedimentation prevailed throughout the Oxfordian to Campanian, with rare incursions of calcareous input during the middle Cretaceous (stages 2, 4, and 5). The biosiliceous sedimentation was drastically interrupted during the Aptian-Albian by thick volcaniclastic turbidite deposits (stage 3). The volcanogenic phases are pervasively altered and the successive secondary mineral parageneses (with smectites, celadonite, clinoptilolite, phillipsite, analcime, calcite, and quartz) define a "mineral stratigraphy" within these deposits.
    [Show full text]
  • Adamsite-(Y), a New Sodium–Yttrium Carbonate Mineral
    1457 The Canadian Mineralogist Vol. 38, pp. 1457-1466 (2000) ADAMSITE-(Y), A NEW SODIUM–YTTRIUM CARBONATE MINERAL SPECIES FROM MONT SAINT-HILAIRE, QUEBEC JOEL D. GRICE§ and ROBERT A. GAULT Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada MARK A. COOPER Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT Adamsite-(Y), ideally NaY(CO3)2•6H2O, is a newly identified mineral from the Poudrette quarry, Mont Saint-Hilaire, Quebec. It occurs as groups of colorless to white and pale pink, rarely pale purple, flat, acicular to fibrous crystals. These crystals are up to 2.5 cm in length and form spherical radiating aggregates. Associated minerals include aegirine, albite, analcime, ancylite-(Ce), calcite, catapleiite, dawsonite, donnayite-(Y), elpidite, epididymite, eudialyte, eudidymite, fluorite, franconite, gaidonnayite, galena, genthelvite, gmelinite, gonnardite, horváthite-(Y), kupletskite, leifite, microcline, molybdenite, narsarsukite, natrolite, nenadkevichite, petersenite-(Ce), polylithionite, pyrochlore, quartz, rhodochrosite, rutile, sabinaite, sérandite, siderite, sphalerite, thomasclarkite-(Y), zircon and an unidentified Na–REE carbonate (UK 91). The transparent to translucent mineral has a vitreous to pearly luster and a white streak. It is soft (Mohs hardness 3) and brittle with perfect {001} and good {100} and {010} cleav- ␣ ␤ ␥ ° ° ages. Adamsite-(Y) is biaxial positive, = V 1.480(4), = 1.498(2), = 1.571(4), 2Vmeas. = 53(3) , 2Vcalc. = 55 and is nonpleochroic. Optical orientation: X = [001], Y = b, Z a = 14° (in ␤ obtuse). It is triclinic, space group P1,¯ with unit-cell parameters refined from powder data: a 6.262(2), b 13.047(6), c 13.220(5) Å, ␣ 91.17(4), ␤ 103.70(4), ␥ 89.99(4)°, V 1049.1(5) Å3 and Z = 4.
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • Adsorption of RNA on Mineral Surfaces and Mineral Precipitates
    Adsorption of RNA on mineral surfaces and mineral precipitates Elisa Biondi1,2, Yoshihiro Furukawa3, Jun Kawai4 and Steven A. Benner*1,2,5 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2017, 13, 393–404. 1Foundation for Applied Molecular Evolution, 13709 Progress doi:10.3762/bjoc.13.42 Boulevard, Alachua, FL, 32615, USA, 2Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL, 32615, USA, Received: 23 November 2016 3Department of Earth Science, Tohoku University, 2 Chome-1-1 Accepted: 15 February 2017 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577, Japan, Published: 01 March 2017 4Department of Material Science and Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama This article is part of the Thematic Series "From prebiotic chemistry to 240-8501, Japan and 5The Westheimer Institute for Science and molecular evolution". Technology, 13709 Progress Boulevard, Alachua, FL, 32615, USA Guest Editor: L. Cronin Email: Steven A. Benner* - [email protected] © 2017 Biondi et al.; licensee Beilstein-Institut. License and terms: see end of document. * Corresponding author Keywords: carbonates; natural minerals; origins of life; RNA adsorption; synthetic minerals Abstract The prebiotic significance of laboratory experiments that study the interactions between oligomeric RNA and mineral species is difficult to know. Natural exemplars of specific minerals can differ widely depending on their provenance. While laboratory-gener- ated samples of synthetic minerals can have controlled compositions, they are often viewed as "unnatural". Here, we show how trends in the interaction of RNA with natural mineral specimens, synthetic mineral specimens, and co-precipitated pairs of synthe- tic minerals, can make a persuasive case that the observed interactions reflect the composition of the minerals themselves, rather than their being simply examples of large molecules associating nonspecifically with large surfaces.
    [Show full text]
  • Alkalic Rocks of Iron Hill Gunnison County, Colorado
    If yon do not need this publication after it has served your purpose, please return it to the Geological Survey, using the official mailing label at the end UNITED STATES DEPARTMENT OF THE INTERIOR ALKALIC ROCKS OF IRON HILL GUNNISON COUNTY, COLORADO GEOLOGICAL SURVEY PROFESSIONAL PAPER 197-A UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director Professional Paper 197-A ALKALIC ROCKS OF IRON HILL GUNNISON COUNTY, COLORADO BY ESPER S. LARSEN Shorter contributions to general geology, 1941 (Pages 1-64) UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1942 For sale by the Superintendent of Documents, Washington, D. C. ......... Price 40 cents CONTENTS Page Preface, by G. F. Loughlin_________________________ v Other dike rocks_______________-____________________ 29 Abstract____"_--__-___--__________________________ 1 Augite syenite and shonkinite ____.__--___--__--__ 29 Introduction. ______________________________________ 1 Olivine gabbro. ________________________________ 30 Location and topography. _______________________ 1 Carbonate veins_________----__---------__--_---___- 31 Field work and acknowledgments.________________ 2 Character __ __________________________________ 31 Geology of the surrounding area__________________ 2 Origin _______ _ ____ _ __ _.. __ __. ___ .__. 31 Age of the Iron Hill stock_____________________ 2 Hydrothermal processes- ______--_-___-_---_--__-___- 31 General geology of the Iron Hill stock _____________ 3 The hydrothermal products. _____________________
    [Show full text]
  • A Transect Across the Death Valley Extended Terrane, California Michael S
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B1, 2010, 10.1029/2001JB000239, 2002 Assessing vertical axis rotations in large-magnitude extensional settings: A transect across the Death Valley extended terrane, California Michael S. Petronis and John W. Geissman Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, USA Daniel K. Holm Department of Geology, Kent State University, Kent, Ohio, USA Brian Wernicke and Edwin Schauble Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA Received 11 September 2000; revised 7 May 2001; accepted 14 July 2001; published 18 January 2002. [1] Models for Neogene crustal deformation in the central Death Valley extended terrane, southeastern California, differ markedly in their estimates of upper crustal extension versus shear translations. Documentation of vertical axis rotations of range-scale crustal blocks (or parts thereof) is critical when attempting to reconstruct this highly extended region. To better define the magnitude, aerial extent, and timing of vertical axis rotation that could mark shear translation of the crust in this area, paleomagnetic data were obtained from Tertiary igneous and remagnetized Paleozoic carbonate rocks along a roughly east-west traverse parallel to about 36°N latitude. Sites were established in 7 to 5 Ma volcanic sequences (Greenwater Canyon and Brown’s Peak) and the 10 Ma Chocolate Sundae Mountain granite in the Greenwater Range, 8.5 to 7.5 Ma and 5 to 4 Ma basalts on the east flank of the Black Mountains, the 10.6 Ma Little Chief stock and upper Miocene(?) basalts in the eastern Panamint Mountains, and Paleozoic Pogonip Group carbonate strata in the north central Panamint Mountains.
    [Show full text]
  • Synthesis Methods and Favorable Conditions for Spherical Vaterite Precipitation: a Review
    crystals Review Synthesis Methods and Favorable Conditions for Spherical Vaterite Precipitation: A Review Donata Konopacka-Łyskawa Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gda´nskUniversity of Technology, Narutowicza 11/12, 80-233 Gda´nsk,Poland; [email protected]; Tel.: +48-58-347-2910 Received: 15 March 2019; Accepted: 18 April 2019; Published: 25 April 2019 Abstract: Vaterite is the least thermodynamically stable anhydrous calcium carbonate polymorph. Its existence is very rare in nature, e.g., in some rock formations or as a component of biominerals produced by some fishes, crustaceans, or birds. Synthetic vaterite particles are proposed as carriers of active substances in medicines, additives in cosmetic preparations as well as adsorbents. Also, their utilization as a pump for microfluidic flow is also tested. In particular, vaterite particles produced as polycrystalline spheres have large potential for application. Various methods are proposed to precipitate vaterite particles, including the conventional solution-solution synthesis, gas-liquid method as well as special routes. Precipitation conditions should be carefully selected to obtain a high concentration of vaterite in all these methods. In this review, classical and new methods used for vaterite precipitation are presented. Furthermore, the key parameters affecting the formation of spherical vaterite are discussed. Keywords: vaterite; calcium carbonate; polymorph; precipitation; synthesis; carbonation 1. Introduction Vaterite is the least thermodynamically stable anhydrous calcium carbonate polymorph and it easily transforms into more stable calcite or aragonite in the presence of water. This form of calcium carbonate mineral was named to honor the German chemist and mineralogist, Heinrich Vater, in 1903.
    [Show full text]
  • Mineral Reactions in the Sedimentary Deposits of the Lake Magadi Region, Kenya
    Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya RONALD C. SURD AM Department of Geology, University of Wyoming, Laramie, Wyoming 82071 HANS P. EUGSTER Department of Earth and Planetary Science, Johns Hopkins University, Baltimore, Maryland 21218 ABSTRACT hand, the initial alkalic zeolite that will form in a specific alkaline lake environment cannot yet be predicted with confidence. Among The authigenic minerals, principally zeolites, in the Pleistocene to the many parameters controlling zeolite distribution, the compo- Holocene consolidated and unconsolidated sediments of the sitions of the volcanic glasses and of the alkaline solutions are cer- Magadi basin in the Eastern Rift Valley of Kenya have been inves- tainly of primary importance. tigated. Samples were available from outcrops as well as drill cores. Most zeolite studies are concerned with fossil alkaline lakes. The following reactions can be documented: (1) trachytic glass + While it is generally easy to establish the composition of the vol- H20 —» erionite, (2) trachytic glass + Na-rich brine —* Na-Al-Si gel, canic glass, the brines responsible for the authigenic reactions have + + (3) erionite + Na analcime + K + Si02 + H20, (4) Na-Al-Si long since disappeared. To overcome this handicap, it is desirable gelanalcime + H20, (5) calcite + F-rich brine—> fluorite + C03 , to investigate an alkaline lake environment for which glass as well (6) calcite + Na-rich brine —» gaylussite, and (7) magadiite —• as brine compositions can be determined — in other words, a + quartz + Na + H20. Erionite is the most common zeolite present, modern alkaline lake environment. Such an environment is Lake but minor amounts of chabazite, clinoptilolite, mordenite, and Magadi of Kenya.
    [Show full text]
  • The California Desert CONSERVATION AREA PLAN 1980 As Amended
    the California Desert CONSERVATION AREA PLAN 1980 as amended U.S. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT U.S. Department of the Interior Bureau of Land Management Desert District Riverside, California the California Desert CONSERVATION AREA PLAN 1980 as Amended IN REPLY REFER TO United States Department of the Interior BUREAU OF LAND MANAGEMENT STATE OFFICE Federal Office Building 2800 Cottage Way Sacramento, California 95825 Dear Reader: Thank you.You and many other interested citizens like you have made this California Desert Conservation Area Plan. It was conceived of your interests and concerns, born into law through your elected representatives, molded by your direct personal involvement, matured and refined through public conflict, interaction, and compromise, and completed as a result of your review, comment and advice. It is a good plan. You have reason to be proud. Perhaps, as individuals, we may say, “This is not exactly the plan I would like,” but together we can say, “This is a plan we can agree on, it is fair, and it is possible.” This is the most important part of all, because this Plan is only a beginning. A plan is a piece of paper-what counts is what happens on the ground. The California Desert Plan encompasses a tremendous area and many different resources and uses. The decisions in the Plan are major and important, but they are only general guides to site—specific actions. The job ahead of us now involves three tasks: —Site-specific plans, such as grazing allotment management plans or vehicle route designation; —On-the-ground actions, such as granting mineral leases, developing water sources for wildlife, building fences for livestock pastures or for protecting petroglyphs; and —Keeping people informed of and involved in putting the Plan to work on the ground, and in changing the Plan to meet future needs.
    [Show full text]