Mineral Reactions in the Sedimentary Deposits of the Lake Magadi Region, Kenya

Total Page:16

File Type:pdf, Size:1020Kb

Mineral Reactions in the Sedimentary Deposits of the Lake Magadi Region, Kenya Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya RONALD C. SURD AM Department of Geology, University of Wyoming, Laramie, Wyoming 82071 HANS P. EUGSTER Department of Earth and Planetary Science, Johns Hopkins University, Baltimore, Maryland 21218 ABSTRACT hand, the initial alkalic zeolite that will form in a specific alkaline lake environment cannot yet be predicted with confidence. Among The authigenic minerals, principally zeolites, in the Pleistocene to the many parameters controlling zeolite distribution, the compo- Holocene consolidated and unconsolidated sediments of the sitions of the volcanic glasses and of the alkaline solutions are cer- Magadi basin in the Eastern Rift Valley of Kenya have been inves- tainly of primary importance. tigated. Samples were available from outcrops as well as drill cores. Most zeolite studies are concerned with fossil alkaline lakes. The following reactions can be documented: (1) trachytic glass + While it is generally easy to establish the composition of the vol- H20 —» erionite, (2) trachytic glass + Na-rich brine —* Na-Al-Si gel, canic glass, the brines responsible for the authigenic reactions have + + (3) erionite + Na analcime + K + Si02 + H20, (4) Na-Al-Si long since disappeared. To overcome this handicap, it is desirable gelanalcime + H20, (5) calcite + F-rich brine—> fluorite + C03 , to investigate an alkaline lake environment for which glass as well (6) calcite + Na-rich brine —» gaylussite, and (7) magadiite —• as brine compositions can be determined — in other words, a + quartz + Na + H20. Erionite is the most common zeolite present, modern alkaline lake environment. Such an environment is Lake but minor amounts of chabazite, clinoptilolite, mordenite, and Magadi of Kenya. The Magadi basin is unique because the compo- phillipsite were also recognized. Erionite can form directly from sition and evolution of its waters have been very carefully trachytic glass by the addition of H20 only. It is characteristic of the documented (Eugster, 1970; Jones and others, 1976). Magadi basin because of the low content of alkaline earths in the This paper describes the authigenic mineral suite that is now volcanic glasses and in the solutions interacting with them. forming in Lake Magadi and that has formed in its Pleistocene pre- Analcime is common in outcrops of the High Magadi and cursors and interprets the reactions responsible for these as- Oloronga Beds. It forms from erionite by a reaction probably ini- semblages in terms of glass chemistry and brine chemistry. We tiated by a lowering of the silica activity, which results from the hope that this approach will result in a better understanding of the transformation of magadiite to chert. Analcime in the drill-core interdependence between authigenic silicates and aqueous samples grew at the expense of a Na-Al-Si gel. This gel forms at the geochemistry. lake shore and is washed into the lake during flooding conditions. Fluorite is common in the core samples and can be explained by STRATIGRAPHY AND LITHOLOGIES reaction of the fluoride-rich brines with calcium in the sediments, principally detrital calcite. Authigenic albite and potassium The Pleistocene and Holocene history of the Magadi basin sedi- feldspar were not recognized, probably for reasons of reaction ments was described in detail by Baker (1958, 1963) and Eugster kinetics. (1969). Lake Magadi is located in the lowest part of the Eastern The presence of authigenic minerals can be accounted for by Rift Valley in Kenya, just north of the Tanzania border. It is mainly considering the chemical compositions of the starting materials, a trona-precipitating saline lake, which is fed by alkaline hot mainly volcanic glasses, and the brines they come in contact with. springs issuing at the perimeter of the basin. The sediments ac- Lake Magadi represents a unique opportunity for studies of cumulating now belong to the Evaporite Series (see Table 1), and diagenesis because authigenic minerals are forming there at the present time and because the evolution of its waters is well known. TABLE 1. STRAT1GRAPHIC UNITS, TECTONIC EVENTS, AND ABSOLUTE AGES OF INTRODUCTION FORMATIONS FOUND IN THE MAGADI BASIN Zeolites are among the most common authigenic silicates of Units Age Lake sedimentary rocks (Hay, 1966). Among the most detailed studies (yr) are those of zeolites from saline alkaline lake environments (see Evaporite Series Sheppard and Gude, 1968, 1969a, 1973; Hay, 1970; Surdam and (slight tilting) 0 Magadi Parker, 1972). These zeolites generally formed by reaction of vol- canic glass with saline alkaline solutions. The alkalic zeolites that High Magadi Beds (minor faulting?) High Magadi result from such reactions are commonly phillipsite, erionite, 9,100 clinoptilolite, and, to a lesser extent, mordenite and chabazite. Trachyte flows (minor) These zeolites may subsequently be transformed to analcime (as in caliche 780,000 the Big Sandy, Barstow, and Green River Formations) or to potas- Oloronga Beds sium feldspar (as in Pleistocene Lake Tecopa). Analcime may also (extensive grid faulting) >780,000 Oloronga react to form potassium feldspar (as in the Big Sandy, Barstow, and Plateau trachyte flows -1,000,000 Green River Formations). (extensive) to 1,700,000 The paragenetic sequence of volcanic glass —» alkalic zeolite —* Note: Data from Eugster (in prep.). analcime —» potassium feldspar is well established. On the other Geological Society of America Bulletin, v. 87, p. 1739-1752, 11 figs., December 1976, Doc. no. 61208. 1739 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/87/12/1739/3418402/i0016-7606-87-12-1739.pdf by guest on 27 September 2021 1740 SURDAM AND EUGSTER the area of the active lake covers about 60 km2. There is evidence High Magadi and Oloronga Beds are discussed separately. The drill for the existence of two larger precursor lakes in the basin. The cores penetrated a very much thicker section of lake sediments than shoreline of the lake from which the High Magadi Beds were de- is available in the outcrops at the margin of the basin. Exact corre- posited is still visible, and the High Magadi Beds have been dated lation of the stratigraphic units from outcrop to drill core is as 9,100 yr. old (Butzer and others, 1972). The older lake is repre- difficult. Therefore, the drill-core mineralogy is tabulated sepa- sented by the Oloronga Beds, which have been dated by K-A meas- rately from the outcrop mineralogy. A tentative correlation will be urements on a glassy trachyte flow as at least 780,000 yr. old discussed later. (Fairhead and others, 1972; Eugster, in prep.). Below the Oloronga Beds are the extensive plateau trachyte flows that cover the Rift MINERALOGY AND CHEMISTRY OF Valley floor and are as old as 1.7 m.y. (Baker, 1958; Baker and HIGH MAGADI AND OLORONGA BEDS others, 1971). Outcrops of High Magadi and Oloronga Beds occur abundantly High Magadi Beds, Outcrop Samples in the alluvial flats and at the foot of the hills surrounding Lake Magadi (for sample locations, see Fig. 1). The detailed distribution The mineralogy of the High Magadi Beds is characterized by the of the two sets of lake beds is rather complex, because there is a following groups of minerals: (1) detrital silicates, (2) saline miner- considerable region of overlap. However, good Oloronga outcrops als, (3) calcite, (4) sodium silicates and quartz, and (5) authigenic are most common southwest, northwest, and northeast of Lake zeolites. The most abundant detrital silicate is anorthoclase, which Magadi, whereas the High Magadi Beds can best be studied east occurs as fragments of single crystals. These are generally fresh or and southeast of the lake. A detailed account of the stratigraphy, slightly altered to clay minerals and (or) calcite. These fragments lithologies, and sedimentary history will be published elsewhere are identical in mineralogy with the phenocrysts in the trachytic (Eugster, in prep.), and a brief summary will suffice here. lavas and were derived either from pyroclastic ash falls or directly The sedimentary rocks that constitute the High Magadi and from the lavas. Similar anorthoclase fragments are abundant in the Oloronga Beds are very similar; however, the Oloronga Beds are modern muds. Another common detrital mineral is amphibole. The commonly more indurated, and they are capped by a thick caliche amphibole also occurs as crystal fragments, many of which are al- (Kunkar) limestone (50 to 75 cm thick). This caliche is an im- portant stratigraphic marker because it occurs throughout the ba- sin, whereas the post-Oloronga lava flows are restricted to the northwest area (loc. 665 and 696). The sedimentary rocks are prin- LITTLE cipally bedded chert and tuffaceous material. The High Magadi MAGADI cherts have clearly been derived from magadiite horizons (Eugster, 1969), and the Oloronga cherts probably had a similar origin. The tuffaceous material varies greatly. Some tuffs must have formed from pyroclastic debris associated with individual volcanic events. Figure 1. Index and sample-locality map Such tuffs may contain pumice fragments as much as 1 cm in of Lake Magadi region, Kenya, East Africa. diameter. Others also contain detrital material and range from coarse, cross-bedded sandstone to finely laminated mudstone. However, even the clearly detrital components are of volcanic deri- vation. In fact, the sediments of the lower sequence of the High Magadi Beds (Eugster, 1969) may consist principally of eroded Oloronga material. There are no perennial rivers flowing into the Magadi Basin at present, and this condition probably also applied to High Magadi and, perhaps, even Oloronga time. Hence, the sediments in the basin were either derived from within the basin or were carried in by wind. Since the sediments are all underlain by thick sequences of trachytic flows, most of the sediments, except for the cherts, calcite, and organic fractions, are obviously of volcanic origin. EXPLANATION SAMPLING AND SAMPLE LOCATIONS OLORONGA BEDS Samples were obtained from outcrops, shallow pits, and drill HIGH MAGADI BEDS cores.
Recommended publications
  • The Archaeology and Paleoclimate of the Mud Lake Basin, Nye County, Nevada
    University of Nevada, Reno Changing Landscapes During the Terminal Pleistocene/Early Holocene: The Archaeology and Paleoclimate of the Mud Lake Basin, Nye County, Nevada A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Arts in Anthropology By Lindsay A. Fenner Dr. Geoffrey M. Smith/Thesis Advisor May, 2011 © by Lindsay A. Fenner 2011 All Rights Reserved THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by LINDSAY A. FENNER entitled Changing Landscapes During The Terminal Pleistocene/Early Holocene: The Archaeology And Paleoclimate Of The Mud Lake Basin, Nye County, Nevada be accepted in partial fulfillment of the requirements for the degree of MASTER OF ARTS Geoffrey M. Smith, Ph.D., Advisor Gary Haynes, Ph.D., Committee Member Kenneth D. Adams, Ph.D., Graduate School Representative Marsha H. Read, Ph. D., Associate Dean, Graduate School May, 2011 i ABSTRACT Archaeological investigation along Pleistocene lakeshores is a longstanding and common approach to prehistoric research in the Great Basin. Continuing in this tradition, this thesis considers the archaeological remains present from pluvial Mud Lake, Nye County, Nevada coupled with an examination of paleoclimatic conditions to assess land-use patters during the terminal Pleistocene/early Holocene. Temporally diagnostic lithic assemblages from 44 localities in the Mud Lake basin provide the framework for which environmental proxy records are considered. Overwhelmingly occupied by Prearchaic groups, comprising 76.6% of all diagnostic artifacts present, Mud Lake was intensively utilized right up to its desiccation after the Younger Dryas, estimated at 9,000 radiocarbon years before present. Intermittently occupied through the remainder of the Holocene, different land-use strategies were employed as a result of shifting subsistence resources reacting to an ever changing environment.
    [Show full text]
  • Cation Sieve Properties of the Opei{ Zeolites Chabazite
    THE AMERICAN MINERALOGIST, VOL. 46, SEPTEMBER-OCTOBER, 1961 CATION SIEVE PROPERTIES OF THE OPEI{ ZEOLITES CHABAZITE. MORDENITE, ERIONITE AND CLINOPTILOLITE L. L. Aues, ly., GeneralElectric Company, R'ichland, Washington. Ansrnecr The partial cation sieve properties of the "open" zeolites chabazite, mordenite, erionite and clinoptilolite were studied in an efiort to determine the mechanism responsible for the type and intensity of the observed cation replacement series. It was found that neither the hydration state of the cations before entering the zeolite structure nor relative loading rates had any significant efiect on the type or intensity of alkali metal or alkaline earth metal cation replacement series. Molten salt experiments with Csw-containing zeolites demonstrated that at higher temperatures the normal hydrated type replacement series could be reversed to a coulombic replacement series without destruction of the alumino- silicate framework. The above results were interpreted as being caused by the presence or absence of structural water. Additional stereochemical studies are necessarv to determine the details of the mechanism. INrnonucrroN There are at least three mechanisms responsible for the cation sieve properties exhibited by natural zeolites.One such mechanism is the posi- tive exclusion of certain cations due to the inability of these larger ca- tions to enter the zeolite Iattice in significant amounts. The sieve effect shown by analcite for Cs+ is an exampleof such an exclusionbased dn cation size (Barrer, 1950). A second mechanism for a cation sieve effect is the inability of the negative charge distribution on the zeolite structure to accommodate a given cation. An example of this mechanism is given in the difficulty of obtaining calcium or barium-rich analcites(Barrer, 1950)or sodium-rich heulandites(Mumpton, 1960) by cation exchange.Determination of a third mechanism constitutes the object of this paper.
    [Show full text]
  • Case Report Erionite-Associated Malignant Pleural Mesothelioma in Mexico
    Int J Clin Exp Pathol 2016;9(5):5722-5732 www.ijcep.com /ISSN:1936-2625/IJCEP0027993 Case Report Erionite-associated malignant pleural mesothelioma in Mexico Elizabeth A Oczypok1, Matthew S Sanchez2, Drew R Van Orden2, Gerald J Berry3, Kristina Pourtabib4, Mickey E Gunter4, Victor L Roggli5, Alyssa M Kraynie5, Tim D Oury1 1Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213; 2RJ Lee Group, Inc., Monroeville, PA, 15146; 3Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305; 4Department of Geological Sciences, University of Idaho, Moscow, ID, 83844; 5Department of Pathology, Duke University School of Medicine, Durham, NC, 27710 Received March 11, 2016; Accepted March 28, 2016; Epub May 1, 2016; Published May 15, 2016 Abstract: Malignant mesothelioma is a highly fatal cancer of the visceral and parietal pleura most often caused by asbestos exposure. However, studies over the past thirty-five to forty years have shown that a fibrous zeolite mineral found in the soil, erionite, is a strong causative agent of malignant mesothelioma as well. Cases of erionite- associated pleural mesothelioma have been widely reported in Turkey, but only one case has been documented in North America. Here we report a new North American case of epithelial malignant pleural mesothelioma in a vehicle repairman who was raised on a farm in the Mexican Volcanic Belt region. The complexities of the case highlight the importance of objective lung digestion studies to uncover the causative agents of mesotheliomas. It also highlights a need for increased environmental precautions and medical vigilance for mesotheliomas in erionite-rich regions of the United States and Mexico.
    [Show full text]
  • Study of the Asbestos Bodies and Chemical-Physical Modifi- Cation of Mineral Fibres in Rat Histological Tissues Using Scan
    Microscopie.qxp_Hrev_master 27/03/18 13:22 Pagina 23 SCIENTIFIC ARTICLES Study of the asbestos bodies and chemical-physical modifi- cation of mineral fibres in rat histological tissues using scan- ning electron microscopy, and high-resolution transmission electron microscopy Nicola Bursi Gandolfi Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy Corresponding author: Nicola Bursi Gandolfi, Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy. Tel. +39.059.2058497 E-mail: [email protected] Key words: Asbestos; erionite; in vivo; asbestos bodies; SEM; TEM. Conflict of interest: The Author declares no conflict of interest. SUMMARY This work presents a systematic FEG-SEM and HR-TEM characterization of the morpho-chemical char- acteristics of both asbestos bodies and fibres found in the tissues of Sprague Dawley rats after an intrapleural injection of UICC chrysotile, UICC crocidolite and erionite from Jersey, Nevada (USA). The characterization of the fibrous materials and asbestos bodies within the organic tissues, were performed using a FEI Nova NanoSEM 450 FEG-SEM located at the CIGS (Centro Interdipartimentale Grandi Strumenti) of University of Modena. Parts of histological tissue were dissolved, and the mineral fibres recovered were subsequently analysed with a FEI TECNAI G2 200kv TEM located at The Friedrich Schiller University of Jena, and with a JEOL ARM 200F TEM located at National Institute of Chemistry of Ljubljana. Notwithstanding, the results of this study may help to better understand the mechanism of formation of asbestos bodies and why do they not form on the fibrous erionite specimen used for this study.
    [Show full text]
  • Erionite Information
    Erionite Information What you need to Know about Erionite Erionite is a naturally occurring zeolite typically formed by the alteration of volcanic rocks. Zeolites are a group of hydrated aluminum silicates that contain alkaline and alkaline-earth metals. Because of their inherent properties such as the ability to absorb large quantities of water, zeolites are used widely as pet litter, animal feed and other horticultural applications. Several hundred occurrences of zeolite deposits have been recorded worldwide. Erionite has an average formula of K2 (Na,Ca0.5)8[Al10Si26O72] 30H2O. However, the large chemical variability in the chemical structure of erionite can become an issue during EDS analysis. In fact, in 1997 erionite was elevated to a “series” status in an attempt to better categorize the wide chemical ranges observed for erionite. Three different species names have been created according to the most abundant extra framework cation present:erionite- Na, erionite-K and erionite-Ca. Why analyze for Erionite? Erionite has been associated with an increased risk of developing malignant mesothelioma in villages in Turkey, where people have built their homes out of erionite bearing rock. In the U.S. erionite deposits have been found in at least 13 states. A study conducted in 2011, concluded that the physical and chemical properties of erionite from Turkey and North Dakota are very similar and show identical biological activities.1 Erionite is classified as an IARC Class I carcinogen by the WHO and IARC but is currently not regulated by the U.S. EPA in the same way as asbestos. Currently there are no established exposure limits for erionite.
    [Show full text]
  • Origin of Analcime in the Neogene Arikli Tuff, Biga Peninsula, NW Turkey
    N. Jb. Miner. Abh. 189/1, 21 –34 Article Published online November 2011 Origin of analcime in the Neogene Arikli Tuff, Biga Peninsula, NW Turkey Sevgi Ozen and M. Cemal Goncuoglu With 8 fi gures and 3 tables Abstract: The Arikli Tuff in the Behram Volcanics, NW Anatolia, is characterized by its dominance of authigenic analcime. It was studied by optical microscopy, XRD, SEM/EDX, and ICP for a better understanding of the analcime formation, which occurs as coarse-grained euhedral to subhedral crystals in pores and pumice fragments as well as in clusters or fi ne-grained single crystals embedded in the matrix. Besides analcime, K-feldspar, dolomite, and smectite are found as further authigenic minerals. Based on the dominance of these authigenic minerals, the tuffs are petrographically separated into phyllosilicate-bearing vitric tuff, dolomite- rich vitric tuff, and K-feldspar-dominated vitric tuff. No precursor of zeolites other than analcime was detected. Petrographical and SEM investigations indicate that euhedral to subhedral analcime crystals found as a coarse-grained fi lling cement in voids and pumice fragments are precipitated from pore water, whereas fi ne-grained disseminated crystals are formed by the dissolution- precipitation of glassy material. Hydrolysis of glassy material that is similar in composition to analcime provides the additional Na, Al, Si, and K elements which are necessary for the formation of analcime. Key words: Alteration, analcime, Neogene tuff, NW Turkey, volcanic glass. Introduction (Kopenez), Kirka (Karaoren), Urla, Bahcecik-Golpazari- Goynuk, Nallihan-Cayirhan-Beypazari-Mihaliccik, Ka- Tuffs deposited in lacustrine conditions present a unique lecik-Hasayaz-Sabanozu-Candir, Polatli-Mülk-Oglakci- opportunity to study the zeolite-forming processes.
    [Show full text]
  • Rocks and Minerals Make up Your World
    Rocks and Minerals Make up Your World Rock and Mineral 10-Specimen Kit Companion Book Presented in Partnership by This mineral kit was also made possible through the generosity of the mining companies who supplied the minerals. If you have any questions or comments about this kit please contact the SME Pittsburgh Section Chair at www.smepittsburgh.org. For more information about mining, visit the following web sites: www.smepittsburgh.org or www.cdc.gov/niosh/mining Updated August 2011 CONTENTS Click on any section name to jump directly to that section. If you want to come back to the contents page, you can click the page number at the bottom of any page. INTRODUCTION 3 MINERAL IDENTIFICATION 5 PHYSICAL PROPERTIES 6 FUELS 10 BITUMINOUS COAL 12 ANTHRACITE COAL 13 BASE METAL ORES 14 IRON ORE 15 COPPER ORE 16 PRECIOUS METAL ORE 17 GOLD ORE 18 ROCKS AND INDUSTRIAL MINERALS 19 GYPSUM 21 LIMESTONE 22 MARBLE 23 SALT 24 ZEOLITE 25 INTRODUCTION The effect rocks and minerals have on our daily lives is not always obvious, but this book will help explain how essential they really are. If you don’t think you come in contact with minerals every day, think about these facts below and see if you change your mind. • Every American (including you!) uses an average of 43,000 pounds of newly mined materials each year. • Coal produces over half of U.S. electricity, and every year you use 3.7 tons of coal. • When you talk on a land-line telephone you’re holding as many as 42 different minerals, including aluminum, beryllium, coal, copper, gold, iron, limestone, silica, silver, talc, and wollastonite.
    [Show full text]
  • Mineralogical Study of the Fibrous Zeolites Erionite and Offretite and Hazard Assessment
    Department of Pure and Applied Sciences Dipartimento di Scienze Pure e Applicate Philosophy Degree in Basic Sciences and Applications Curriculum Earth Sciences Corso di Dottorato in Scienze di Base e Applicazioni Curriculum Scienze della Terra XXIX Ciclo Titolo della tesi: Mineralogical study of the fibrous zeolites erionite and offretite and hazard assessment Studio mineralogico delle zeoliti fibrose erionite ed offretite e valutazione della pericolosità Settore Scientifico Disciplinare SSD: GEO/06 Dottorando Relatore Matteo Giordani Prof. Michele Mattioli Anno Accademico 2015/2016 Department of Pure and Applied Sciences Dipartimento di Scienze Pure e Applicate Philosophy Degree in Basic Sciences and Applications Curriculum Earth Sciences Corso di Dottorato in Scienze di Base e Applicazioni Curriculum Scienze della Terra XXIX Ciclo Titolo della tesi: Mineralogical study of the fibrous zeolites erionite and offretite and hazard assessment Studio mineralogico delle zeoliti fibrose erionite ed offretite e valutazione della pericolosità Settore Scientifico Disciplinare SSD: GEO/06 Dottorando Relatore Matteo Giordani Prof. Michele Mattioli Anno Accademico 2015/2016 A mio padre List of contents 1. GENERAL INTRODUCTION AND SUMMARY 1 Introduzione generale e Sommario 3 2. POTENTIALLY CARCINOGENIC ERIONITE FROM LESSINI MOUNTAINS, NE ITALY: MORPHOLOGICAL, MINERALOGICAL AND CHEMICAL CHARACTERIZATION 2.1 Introduction 7 2.2 Mineralogical background 8 2.3 Materials and methods 9 2.3.1 Materials 9 2.3.2 Environmental Scanning Electron Microscope (ESEM) 9 2.3.3 Electron Micro Probe Analysis (EMPA) 10 2.3.4 X-ray Powder Diffraction (XRPD) 11 2.4 Results 11 2.4.1 Morphology 11 2.4.2 Mineralogical composition 13 2.4.3 Morphometry 14 2.4.4 Chemical data 15 2.5 Discussion 15 2.5.1 Environmental occurrence of erionite and risk assessment in Italy 19 2.6 Conclusion 20 3.
    [Show full text]
  • Overview of Erionite Sampling Guidelines
    OVERVIEW ERIONITE BULK SAMPLING GUIDELINES FOR NORTH DAKOTA The North Dakota Department of Health (NDDoH) has developed new guidelines on testing for the presence of erionite in existing and proposed gravel pits near the Killdeer Mountains, Chalky Buttes and Little Badlands areas in western North Dakota. Erionite is a naturally occurring, fibrous mineral. Like asbestos, erionite may pose health risks to those who breathe in the fibers. Its exposure effects appear to be similar to asbestos, with increased risks of fibrogenic lung disease, lung cancer and mesothelioma. What areas of North Dakota are affected? The NDDoH has mapped the land surrounding the Killdeer Mountains, Chalky Buttes and Little Badlands and makes the following recommendations: (1) Exclusion Radius – where no gravel should be mined, and (2) Test Radius – where appropriate testing for the presence of erionite should be conducted prior to new or continued gravel mining. (See map at right.) In addition, random sampling of areas outside of the Test Radius area is recommended if there is a concern. What type of testing is needed? Bulk sampling is recommended to contractors mining existing gravel pits or exploring new areas for gravel pits in the affected areas. Where should bulk samples be collected? Within the Test Radius area, samples should be collected from (1) each acre of land containing any areas of proposed excavation, pit exploration test holes or actual excavations; and (2) every 1,000 tons of piled gravel. How many bulk samples must be collected? To obtain accurate testing results, the number of bulk samples that must be collected depends on the type and size of the gravel pit development.
    [Show full text]
  • Rancholabrean Vertebrates from the Las Vegas Formation, Nevada
    Quaternary International xxx (2017) 1e17 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint The Tule Springs local fauna: Rancholabrean vertebrates from the Las Vegas Formation, Nevada * Eric Scott a, , Kathleen B. Springer b, James C. Sagebiel c a Dr. John D. Cooper Archaeological and Paleontological Center, California State University, Fullerton, CA 92834, USA b U.S. Geological Survey, Denver Federal Center, Box 25046, MS-980, Denver CO 80225, USA c Vertebrate Paleontology Laboratory, University of Texas at Austin R7600, 10100 Burnet Road, Building 6, Austin, TX 78758, USA article info abstract Article history: A middle to late Pleistocene sedimentary sequence in the upper Las Vegas Wash, north of Las Vegas, Received 8 March 2017 Nevada, has yielded the largest open-site Rancholabrean vertebrate fossil assemblage in the southern Received in revised form Great Basin and Mojave Deserts. Recent paleontologic field studies have led to the discovery of hundreds 19 May 2017 of fossil localities and specimens, greatly extending the geographic and temporal footprint of original Accepted 2 June 2017 investigations in the early 1960s. The significance of the deposits and their entombed fossils led to the Available online xxx preservation of 22,650 acres of the upper Las Vegas Wash as Tule Springs Fossil Beds National Monu- ment. These discoveries also warrant designation of the assemblage as a local fauna, named for the site of the original paleontologic studies at Tule Springs. The large mammal component of the Tule Springs local fauna is dominated by remains of Mammuthus columbi as well as Camelops hesternus, along with less common remains of Equus (including E.
    [Show full text]
  • Primary Igneous Analcime: the Colima Minettes
    American Mineralogist, Volume 74, pages216-223, 1989 Primary igneous analcime: The Colima minettes Jlnrns F. Lurrn Department of Earth and Planetary Sciences,Washington University, St. Louis, Missouri 63 130, U.S.A. T. Kunrrs Kvsnn Department of Geological Sciences,University of Saskatchewan,Saskatoon, Saskatchewan S7N 0W0, Canada Ansrnrcr Major-element compositions, cell constants, and oxygen- and hydrogen-isotopecom- positions are presentedfor six analcimes from differing geologicenvironments, including proposed primary @-type) analcime microphenocrysts from a late Quaternary minette lava near Colima, Mexico. The Colima analcimehas X.,.,",: 0.684, ao: 13.712A, and one of the lowest D'sOvalues yet recorded for analcime (+9.28m).The major difficulty in identifuing primary @-type) igrreousanalcime is distinguishing it from analcime formed by ion-exchangeconversion of leucite (L-type analcime) or other precursor minerals. Pet- rographic criteria are shown to be unreliable in discriminating P and L analcimes,although the higher KrO and Rb contents and D'8Ovalues of L-type crystals may be diagnostic. P- and L-type analcimescan be distinguishedfrom classichydrothermal varieties (H-type) by the lower Fe contents of the latter. H-type analcimes,however, can have 6t8Ovalues as low as 8.9Vmand cannot be distinguished from P-type analcimes by this criterion. Analcimes formed from volcanic glass or zeolite precursorsin saline, alkaline lakes (S- type) or metamorphic sequences(M-type) can be distinguished from other varieties by their higher silica contents, smaller cell constants,and higher d'8O values of > + 17.7Vm. For all types of analcime, d'8O of the channel water does not correlate with 6180of the framework oxygen.
    [Show full text]
  • Geothermometry of Two Cascade Geothermal Systems
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 12-8-2016 Geothermometry of Two Cascade Geothermal Systems Donnel Alexander Malkemus Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons Let us know how access to this document benefits ou.y Recommended Citation Malkemus, Donnel Alexander, "Geothermometry of Two Cascade Geothermal Systems" (2016). Dissertations and Theses. Paper 3369. https://doi.org/10.15760/etd.5260 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Geothermometry of Two Cascade Geothermal Systems by Donnel Alexander Malkemus A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology Thesis Committee: Robert B. Perkins, Chair Max Rudolph Carl Palmer Portland State University 2016 ABSTRACT For this thesis I applied classical and multi-component geothermometry techniques to new water chemistry data from Breitenbush Hot Springs, Oregon and the Wind River Valley, Washington. A total of 20 well, spring, and stream samples from Breitenbush Hot Springs and 4 spring samples from the Wind River Valley were collected and analyzed for major, minor, and select trace anions and cations, as well as stable oxygen and hydrogen isotopes. I used two computer programs, GeoT and RTEst, to conduct multi- component geothermometry reservoir condition estimation on each water sample. Water chemistry data from Breitenbush Hot Springs indicates a range of thermal, nonthermal, and mixed waters in wells and springs.
    [Show full text]