Rocks and Minerals Make up Your World
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores
JfipwK LEACHING TIME REAGENTS TEMPERATURE FLOCCULANT CLARITY AREA COUNTER CURRENT DECANTATION It 21 21 J^^LJt TECHNICAL REPORTS SERIES No.19 6 Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores \W# INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1980 SIGNIFICANCE OF MINERALOGY IN THE DEVELOPMENT OF FLOWSHEETS FOR PROCESSING URANIUM ORES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL ARGENTINA INDIA QATAR AUSTRALIA INDONESIA ROMANIA AUSTRIA IRAN SAUDI ARABIA BANGLADESH IRAQ SENEGAL BELGIUM IRELAND SIERRA LEONE BOLIVIA ISRAEL SINGAPORE BRAZIL ITALY SOUTH AFRICA BULGARIA IVORY COAST SPAIN BURMA JAMAICA SRI LANKA BYELORUSSIAN SOVIET JAPAN SUDAN SOCIALIST REPUBLIC JORDAN SWEDEN CANADA KENYA SWITZERLAND CHILE KOREA, REPUBLIC OF SYRIAN ARAB REPUBLIC COLOMBIA KUWAIT THAILAND COSTA RICA LEBANON TUNISIA CUBA LIBERIA TURKEY CYPRUS LIBYAN ARAB JAMAHIRIYA UGANDA CZECHOSLOVAKIA LIECHTENSTEIN UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA LUXEMBOURG REPUBLIC DEMOCRATIC PEOPLE'S MADAGASCAR UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALAYSIA REPUBLICS DENMARK MALI UNITED ARAB EMIRATES DOMINICAN REPUBLIC MAURITIUS UNITED KINGDOM OF GREAT ECUADOR MEXICO BRITAIN AND NORTHERN EGYPT MONACO IRELAND EL SALVADOR MONGOLIA UNITED REPUBLIC OF ETHIOPIA MOROCCO CAMEROON FINLAND NETHERLANDS UNITED REPUBLIC OF FRANCE NEW ZEALAND TANZANIA GABON NICARAGUA UNITED STATES OF AMERICA GERMAN DEMOCRATIC REPUBLIC NIGER URUGUAY GERMANY, FEDERAL REPUBLIC OF NIGERIA VENEZUELA GHANA NORWAY VIET NAM GREECE PAKISTAN YUGOSLAVIA GUATEMALA PANAMA ZAIRE HAITI PARAGUAY ZAMBIA PERU The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. -
A Study of Some Methods of Concentrating Uranium and Radium in Carnotite Ore
Scholars' Mine Masters Theses Student Theses and Dissertations 1932 A study of some methods of concentrating uranium and radium in carnotite ore H. L. Gibbs Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Chemical Engineering Commons Department: Recommended Citation Gibbs, H. L., "A study of some methods of concentrating uranium and radium in carnotite ore" (1932). Masters Theses. 4815. https://scholarsmine.mst.edu/masters_theses/4815 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. A STUDY OF SOl.ill T,::ETHODS O:B" COl1C}~;TTRl~TnTG TJP"':~..1TTIJL! ;:J·TD RIillIOIJ IN C.AR~OTIT!~ ORE. by lliJ10LD L. GIBBS A THESIS submitted to the faculty of the SCI-TOOL OF MINES AND 1~'IETIJ:.,LURGY OF THE m·...lVERSITY OJ!' I'~IaSOURI in partial fulfillment of the work required for the Degree of' Ivll~T:ER OF SCIENCE n~ C:EIa1IC.AL ENGnmERnTG Rolla, ~~iissour1 1 9 3 2 Al'proved by f.A.J. -,. ~ Acknowledgments • • • • • • • 1 Object • • ••• • • • 2 Introduction • • • 2 Description of the Ore • • • 3 Examination o~ the Ore • • • • • 3 Methods of Analysis • • • • • • 7 Flocculation Tests • • • g Flotation of Carnotite • • • • • II Results of Flotation Testa • • • • 15 Recovery of Radium :rrom Leached Ore by Flotation • • • • 18 Summary -
Roscoelite K(V ; Al; Mg)2Alsi3o10(OH)2 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Monoclinic
3+ Roscoelite K(V ; Al; Mg)2AlSi3O10(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: As minute scales, in druses, rosettes, or fan-shaped groups; ¯brous and in felted aggregates; as impregnations, massive. Physical Properties: Cleavage: Perfect on 001 . Hardness = Soft. D(meas.) = 2.92{2.94 D(calc.) = [2.89] f g Optical Properties: Transparent to translucent. Color: Dark clove-brown, greenish brown to dark greenish brown. Luster: Pearly. Optical Class: Biaxial ({). Pleochroism: X = green-brown; Y = Z = olive-green. ® = 1.59{1.610 ¯ = 1.63{1.685 ° = 1.64{1.704 2V(meas.) = 24.5±{39.5± Cell Data: Space Group: C2=c: a = 5.26 b = 9.09 c = 10.25 ¯ = 101:0± Z = 2 X-ray Powder Pattern: Paradox Valley, Colorado, USA. 10.0 (100), 4.54 (80), 3.35 (80), 2.60 (80), 1.52 (60), 3.66 (50), 3.11 (50) Chemistry: (1) SiO2 47.82 Al2O3 12.60 V2O5 19.94 FeO 3.30 MgO 2.43 CaO trace Na2O 0.33 K2O 8.03 + H2O 5.13 Total 99.58 (1) Stuckslager mine, California, USA. Polymorphism & Series: Forms a series with muscovite; 1M polytype. Mineral Group: Mica group. Occurrence: An early-stage gangue mineral in low-temperature epithermal Au-Ag-Te deposits; from the oxidized portions of low-temperature sedimentary U-V ores. Association: Quartz, pyrite, carbonates, °uorite, gold (Au-Ag-Te mineral association); corvusite, hewettite, carnotite, tyuyamunite (U-V mineral association). Distribution: In the USA, from the Stuckslager mine, Lotus, El Dorado Co., California; in Colorado, from Cripple Creek, Teller Co., La Plata district, La Plata Co., Magnolia district, Boulder Co., the Gateway district, Mesa Co., in the Uravan and Paradox, Bull Canyon, and Slick Rock districts, in Montrose, San Miguel, and Dolores Cos. -
Anthracite Coal 13
Rock and Mineral 10-Specimen Kit Companion Book Presented by This mineral kit was also made possible through the generosity of the mining companies who supplied the minerals. If you have any questions or comments about this kit please contact the SME Pittsburgh Section Chair at www.smepittsburgh.org. For more information about mining, visit the following web site: www.smepittsburgh.org BSA’s www.scouting.org - search “Mining in Society” SME’s www.mineralseducationcoalition.org/ Updated July 2016 © SME Pittsburgh Section The SME Pittsburgh Section thanks the companies, mines, and individuals who provided mineral samples and donated time or services that made these mineral kits possible. Alpha Natural Resources, Inc. CONSOL Energy, Inc. Coolspring Stone Supply John T. Boyd Company Morton Salt Murray Energy Corporation Newmont Mining Corporation Reed Gold Mine (State of North Carolina) Steelhead Specialty Minerals United States Gypsum Company US Steel Corporation United Taconite (Cliffs Natural Resources, Inc.) CONTENTS INTRODUCTION 3 MINERAL IDENTIFICATION 5 FUELS 10 Bituminous Coal 12 Anthracite Coal 13 BASE METAL ORES 14 Iron Ore 15 Copper Ore 16 PRECIOUS METALS 17 Gold Ore 18 ROCKS AND INDUSTRIAL MINERALS 19 Gypsum 21 Limestone 22 Marble 23 Salt 24 Zeolite 25 Note: many of the images reproduced here are from Wikipedia which allows non commercial use or from the Minerals Education Coalition web site http://www.mineralseducationcoalition.org/minerals. INTRODUCTION The effect rocks and minerals have on our daily lives is not always obvious, but this book will help explain how essential they really are. If you don’t think you come in contact with minerals every day, think about these facts below and see if you change your mind. -
Page 1 of 9 SAFETY DATA SHEET CARNOTITE ORE SECTION 1
SAFETY DATA SHEET CARNOTITE ORE SECTION 1: CHEMICAL PRODUCTS & COMPANY IDENTIFICATION NBL Program Office U. S. Department of Energy, 1 Science.gov Way, Oak Ridge, TN 37830 1-865-576-0598 Emergency Phone Numbers: 1-865-576-0598 Substance: Carnotite Ore Blend Trade Names/Synonyms: Potassium uranium vanadate, Uranium Oxide (U3O8), Uranous Oxide, Triuranium Octaoxide, Uranite Nasturan, CRM 4, CRM 5 Use and Restriction: This material is prepared for use as a standard or for inter- laboratory comparison programs at analytical laboratories, which routinely handle uranium and/or plutonium. NBL expects that recipients of their material are in compliance with 29 CFR 1910.1200(h) which requires employers to provide employees with effective information and training in hazardous chemicals in their work area. SECTION 2: HAZARDS IDENTIFICATION OSHA Hazards Toxic by inhalation, toxic by ingestion. Target Organs Kidney, Liver, Lungs, Brain. GHS Label Elements Pictogram Signal Word: Danger Page 1 of 9 Hazard Statements: Toxic by inhalation and ingestion Danger of cumulative effects May damage kidneys Precautionary Statements: Avoid Breathing Dust Avoid contact with skin, eyes and clothing When using do not eat, drink or smoke In case of accident or if you feel unwell seek medical advice immediately Use only with adequate ventilation GHS Classification Skin Irritation (Category 2) Eye Irritation (Category 2) Specific target organ toxicity - repeated exposure (Category 2) Specific target organ toxicity – acute exposure (Category 2) GHS Hazard Ratings R23/25: Toxic by inhalation and ingestion R33: Danger of cumulative effects S20/21: When using do not eat, drink or smoke S45: In case of accident or if you feel unwell seek medical advice immediately S61: Avoid release to the environment. -
Weeksite K2(UO2)2(Si5o13)·4H2O
Weeksite K2(UO2)2(Si5O13)·4H2O Crystal Data: Monoclinic. Point Group: 2/m: As bladed or acicular crystals, flattened on {010} and elongated along [001], and as flat plates; also as spherulites and radiating fibrous clusters. - Twinning: By two-fold rotation around [401 ]. Physical Properties: Cleavage: Two good prismatic cleavages noted. Hardness = < 2 D(meas.) = ~ 4.1 D(calc.) = 3.80 Radioactive. Optical Properties: Transparent to translucent. Color: Yellow. Luster: Waxy to silky. Optical Class: Biaxial (-). α = 1.596 β = 1.603 γ = 1.606 2V(meas.) = ~ 60° 2V(calc.) = 66° Pleochroism: X = colorless, Y = pale yellow-green, Z = yellow-green. Dispersion: r > v, strong. Orientation: X = b, Y = c, Z = a. Cell Data: Space Group: C2/m. a = 14.26(2) b = 35.88(10) c = 14.20(2) β = 111.578(3)° Z = 4 X-ray Powder Pattern: Thomas Range, Utah, USA. 7.11 (10), 5.57 (9), 8.98 (8), 3.55 (7), 3.30 (7), 2.91 (6), 3.20 (5) Chemistry: (1) (1) Na2O 0.53 Al2O3 0.6 K2O 4.73 SiO2 29.44 CaO 0.67 UO3 55.78 BaO 3.11 H2O [7.02] MgO 0.18 Total 101.28 SrO 0.20 (1) Anderson mine, Arizona, USA; average of 8 electron microprobe analyses, supplemented by TGA, H2O calculated from structure, corresponds to (K1.031Na0.176Ca0.123Ba0.208)Σ=1.537(UO2)2.002 (Si5.030O13)·4H2O. Occurrence: In “opal" veinlets in rhyolite, agglomerates, sandstones and limestones. Association: “Opal," “chalcedony," calcite, gypsum, fluorite, uraninite, thorogummite, uranophane, boltwoodite, carnotite, margaritasite. Distribution: In the USA, in Utah, at the Autunite No. -
CORVUSITE and RILANDITE, NEW MINERALS from the UTAH-COLORADO CARNOTITE REGIOI{ Eowenn P
CORVUSITE AND RILANDITE, NEW MINERALS FROM THE UTAH-COLORADO CARNOTITE REGIOI{ Eowenn P. HBNonnsoNAND Fnaxr L. Hnss,x U. S. National, Museum. InrnonucrroN In the carnotite-bearing depositsof Colorado and Utah the sand- stone and accompanying clays are impregnated with many dark brown and black mineral masses,which show no crystal form to the unaided eye and few other definite characteristics. The most common of the dark colored minerals are listed below. Roscoelite vanadium mica Rauvite CaO'2UOr'6VzOr'2OHrO Vanoxite 2VzOr'VzOs(S* )HzO Corvusite VrOr'6VeOs'XH:O Rilandite hydrouschromium aluminum silicate Lignite Tar (?) Asphaltite Psilomelane Iron-copper-cobaltoxide. Two of the names, corvusite and rilandite, are new and are pro- posed in this paper. The authors hesitated to give names to such compounds as those to which they are applied becauseno entirely satisfactory formula can be ofiered for either, but since the sub- stance called corvusite is common in the carnotite region a verbal handle seemsnecessary. Rilandite, although at present known from only one locality, was obtained in rather large quantity and its as- sociation is such that it seemslikely that it will be obtained from other places in the carnotite region. If at some future date further study shows these names unnecessarythey can easily be relegated to oblivion. Gr,Nnner, Rnr.attoNsrups Roscoelite or a similar dark mineral is provisionally identifiable by the microscope from many places in this region. Roscoelite is well known, rauvite and vanoxitel and the asphaltitez have been * Published by permission of the Secretary of the Smithsonian Institution. I Hess, Frank L., New and known minerals from the Utah-Colorado carnotite region: U. -
Cation Sieve Properties of the Opei{ Zeolites Chabazite
THE AMERICAN MINERALOGIST, VOL. 46, SEPTEMBER-OCTOBER, 1961 CATION SIEVE PROPERTIES OF THE OPEI{ ZEOLITES CHABAZITE. MORDENITE, ERIONITE AND CLINOPTILOLITE L. L. Aues, ly., GeneralElectric Company, R'ichland, Washington. Ansrnecr The partial cation sieve properties of the "open" zeolites chabazite, mordenite, erionite and clinoptilolite were studied in an efiort to determine the mechanism responsible for the type and intensity of the observed cation replacement series. It was found that neither the hydration state of the cations before entering the zeolite structure nor relative loading rates had any significant efiect on the type or intensity of alkali metal or alkaline earth metal cation replacement series. Molten salt experiments with Csw-containing zeolites demonstrated that at higher temperatures the normal hydrated type replacement series could be reversed to a coulombic replacement series without destruction of the alumino- silicate framework. The above results were interpreted as being caused by the presence or absence of structural water. Additional stereochemical studies are necessarv to determine the details of the mechanism. INrnonucrroN There are at least three mechanisms responsible for the cation sieve properties exhibited by natural zeolites.One such mechanism is the posi- tive exclusion of certain cations due to the inability of these larger ca- tions to enter the zeolite Iattice in significant amounts. The sieve effect shown by analcite for Cs+ is an exampleof such an exclusionbased dn cation size (Barrer, 1950). A second mechanism for a cation sieve effect is the inability of the negative charge distribution on the zeolite structure to accommodate a given cation. An example of this mechanism is given in the difficulty of obtaining calcium or barium-rich analcites(Barrer, 1950)or sodium-rich heulandites(Mumpton, 1960) by cation exchange.Determination of a third mechanism constitutes the object of this paper. -
Class Cleavage Roots and Left Electoral Mobilization in Western Europe Vincenzo Emanuele
Article Lost in Translation? Class Cleavage Roots and Left Electoral Mobilization in Western Europe Vincenzo Emanuele I investigate whether the strength of the class cleavage in Western Europe still “translates” into the electoral mobilization of the left. This research question is addressed through comparative longitudinal analysis in nineteen Western European countries after World War II. In particular, the impact of class cleavage is investigated by disentangling its socio-structural (working-class features) and organizational (corporate and partisan) components, thus accounting for its multidimensional nature. Data show that both components have a significant impact in Western Europe after 1945. However, while the socio-structural element is still nowadays a substantial predictor of left electoral mobilization, the impact of the organizational element has decreased over time and has become irrelevant in the last twenty-five years. Therefore, the class cleavage is not entirely lost in translation, but left electoral mobilization is no longer dependent upon the organizational features of trade unions and political parties that originally emerged to represent working-class interests. investigate whether and under what conditions the (i.e., the presence of a strong industrial working class, high I electoral mobilization of the Western European left is membership rates in trade unions and left-wing parties) predicted by the strength of the class cleavage. The and the electoral support for class bloc parties starting point of this investigation is represented by Bar- (i.e., communist, socialist, and social democratic parties). tolini’sinfluential work (2000), a macro-historical analysis However, Bartolini’s empirical results are drawn from the of thirteen Western European countries in the period “golden age” of class politics, where the working class was 1860–1980. -
Case Report Erionite-Associated Malignant Pleural Mesothelioma in Mexico
Int J Clin Exp Pathol 2016;9(5):5722-5732 www.ijcep.com /ISSN:1936-2625/IJCEP0027993 Case Report Erionite-associated malignant pleural mesothelioma in Mexico Elizabeth A Oczypok1, Matthew S Sanchez2, Drew R Van Orden2, Gerald J Berry3, Kristina Pourtabib4, Mickey E Gunter4, Victor L Roggli5, Alyssa M Kraynie5, Tim D Oury1 1Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213; 2RJ Lee Group, Inc., Monroeville, PA, 15146; 3Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305; 4Department of Geological Sciences, University of Idaho, Moscow, ID, 83844; 5Department of Pathology, Duke University School of Medicine, Durham, NC, 27710 Received March 11, 2016; Accepted March 28, 2016; Epub May 1, 2016; Published May 15, 2016 Abstract: Malignant mesothelioma is a highly fatal cancer of the visceral and parietal pleura most often caused by asbestos exposure. However, studies over the past thirty-five to forty years have shown that a fibrous zeolite mineral found in the soil, erionite, is a strong causative agent of malignant mesothelioma as well. Cases of erionite- associated pleural mesothelioma have been widely reported in Turkey, but only one case has been documented in North America. Here we report a new North American case of epithelial malignant pleural mesothelioma in a vehicle repairman who was raised on a farm in the Mexican Volcanic Belt region. The complexities of the case highlight the importance of objective lung digestion studies to uncover the causative agents of mesotheliomas. It also highlights a need for increased environmental precautions and medical vigilance for mesotheliomas in erionite-rich regions of the United States and Mexico. -
CASE STUDY Methane Recovery at Non-Coal Mines
CASE STUDY Methane Recovery at Non-coal Mines Background Existing methane recovery projects at non-coal mines reduce greenhouse gas (GHG) emissions by up to 3 million tons of carbon dioxide equivalent (CO₂e). Although methane emissions are generally associated with coal mines, methane is also found in salt, potash, trona, diamond, gold, base metals, and lead mines throughout the world. Many of these deposits are located adjacent to hydrocarbon (e.g., coal and oil) deposits where methane originates. Consequently, during the process of mining non-coal deposits, methane may be released. Overview of Methane Recovery Projects Beatrix Gold Mine, South Africa Promethium Carbon, a carbon and climate change advisory firm, has developed a project to capture and use methane from the Beatrix Gold Mine in Free State, South Africa (see box). Project Specifications: Beatrix Gold Mine Name Capture and Utilization of Methane at the Gold Fields–owned Beatrix Mine in South Africa Site Free State Province, South Africa Owner Gold Fields Ltd., Exxaro On-site Pty Ltd. Dates of Operation May 2011–present Equipment Phase 1 • GE Roots Blowers • Trolex gas monitoring systems • Flame arrestor • 23 burner flare Equipment Phase 2 Addition of internal combustion engines End-use Phase 1 Destruction through flaring End-use Phase 2 4 MW power generation Emission Reductions 1.7 million tons CO²e expected over CDM project lifetime (through 2016) Commissioning of Flare at Beatrix Gold Mine (Photo courtesy of Gold Fields Ltd.) CASE STUDY Methane Recovery at Non-coal Mines ABUTEC Mine Gas Incinerator at Green River Trona Mine (Photo courtesy of Solvay Chemicals, Inc.) Green River Trona Mine, United States Project Specifications: Green River Trona Mine Trona is an evaporite mineral mined in the United States Name Green River Trona Mine Methane as the primary source of sodium carbonate, or soda ash. -
Study of the Asbestos Bodies and Chemical-Physical Modifi- Cation of Mineral Fibres in Rat Histological Tissues Using Scan
Microscopie.qxp_Hrev_master 27/03/18 13:22 Pagina 23 SCIENTIFIC ARTICLES Study of the asbestos bodies and chemical-physical modifi- cation of mineral fibres in rat histological tissues using scan- ning electron microscopy, and high-resolution transmission electron microscopy Nicola Bursi Gandolfi Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy Corresponding author: Nicola Bursi Gandolfi, Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy. Tel. +39.059.2058497 E-mail: [email protected] Key words: Asbestos; erionite; in vivo; asbestos bodies; SEM; TEM. Conflict of interest: The Author declares no conflict of interest. SUMMARY This work presents a systematic FEG-SEM and HR-TEM characterization of the morpho-chemical char- acteristics of both asbestos bodies and fibres found in the tissues of Sprague Dawley rats after an intrapleural injection of UICC chrysotile, UICC crocidolite and erionite from Jersey, Nevada (USA). The characterization of the fibrous materials and asbestos bodies within the organic tissues, were performed using a FEI Nova NanoSEM 450 FEG-SEM located at the CIGS (Centro Interdipartimentale Grandi Strumenti) of University of Modena. Parts of histological tissue were dissolved, and the mineral fibres recovered were subsequently analysed with a FEI TECNAI G2 200kv TEM located at The Friedrich Schiller University of Jena, and with a JEOL ARM 200F TEM located at National Institute of Chemistry of Ljubljana. Notwithstanding, the results of this study may help to better understand the mechanism of formation of asbestos bodies and why do they not form on the fibrous erionite specimen used for this study.