Juergen Ehlers-And the Fate of the Black-Hole Spacetimes

Total Page:16

File Type:pdf, Size:1020Kb

Juergen Ehlers-And the Fate of the Black-Hole Spacetimes Noname manuscript No. (will be inserted by the editor) Jurgen¨ Ehlers - and the Fate of the Black-Hole Spacetimes Wolfgang Kundt the date of receipt and acceptance should be inserted later Abstract This article – written in honour of J¨urgen Ehlers – consists of two different, though interlocking parts: Section 1 describes my 54 years of perpetual experiences and exchanges with him, both science and episodes, whilst section 2 describes the history of astrophysical black holes, which evolved during the same epoque though largely indepen- dently, with its activity centers in other places of the globe, and has by no means terminated. 1 J¨urgen Ehlers: our 54 years of close Interaction J¨urgen Ehlers and I both studied physics and mathematics at Hamburg University. My stud- ies began with the summer ‘Semester’ of 1950, J¨urgen’s one year earlier; (he was born on 29 November 1929, & 18 months before me). When we scientifically matured to terminate our standard education – in the fall of 1953, I think – we were both attracted by the person- ality of Pascual Jordan, and jointly started weekly seminar work with him. Soon we were joined by Engelbert Sch¨ucking, and soon again, Pascual Jordan guided our collaboration, both mentally, and financially. The Hamburg group in General Relativity had been founded. J¨urgen, Engelbert, myself, and ‘der Meister’ took turns as weekly seminar speakers. Initially, Jordan’s contributions aimed at improving the second edition of his book ‘Schw- erkraft und Weltall’. J¨urgen’s contributions educated us primarily on other people’s work: they helped us understand it thoroughly. And Engelbert excited us with brand new stuff which had somehow entered his mind; unless he did not show up at all, whilst absorbing this stuff, possibly in a bar near the train station. My own contributions were often some- what premature, introducing new problems to the group in order to receive feedback, and to profit particularly from J¨urgen’s suggestions for deepened understanding. On 4 June 1955, arXiv:0905.1028v1 [astro-ph.HE] 7 May 2009 J¨urgen met (his later wife) Anita, on a large faculty dance in the (decorated) mensa of the university which I had organised. Our scientific work was done largely independently, mainly at home, except when an ‘airforce report’ had to be written, for Jordan’s contract with the U.S. army, or when dur- ing the early 60s, survey papers had to be composed for the ‘Akademie der Wissenschaften und der Literatur in Mainz’, of which Jordan was a member. Such joint publications helped W. Kundt Argelander Institut f¨ur Astronomie der Universit¨at Bonn 2 us gain a certain group knowledge. But there was enough time left for continued learning, and for approaching new problems. We tried to get deeper insights into the different known classes of exact solutions of Einstein’s field equations, their invariant properties, and global continuations. Besides, J¨urgen improved his – and our – understanding of relativistic ther- modynamics, electromagnetism within GR, and relativistic statistical mechanics. And we searched for reliable ways to decide when two given line elements could be transformed into each other, by a suitable change of coordinates. This program began with a discussion of Kurt Goedel’s (1949) homogeneous and sta- tionary cosmological model (with a non-vanishing cosmological constant Λ), in which suit- ably accelerated observers can travel into their own past. In 1957, our work received a forceful boost by Felix Pirani’s physical evaluation of A.S. Petrov’s 1954 algebraic clas- sification of the Weyl tensor for normal-hyperbolic metrical spaces, i.e. of the traceless Riemann tensor, as for vacuum spacetimes. Petrov’s classification turned out to be a valu- able tool for analytic evaluations, in particular of (strong) gravitational-wave fields, but also for other classes of ‘algebraically degenerate’ spacetimes in which the eigen values of the Weyl tensor tend to yield invariant coordinates. Other tools for characterisation came from Elie Cartan’s (1946) basic work on Riemannian spacetimes, in particular a solution of the (local) ‘equivalence problem’ – later also called ‘isometry problem’ – of two given space- times, and from results on algebraic invariants by Weitzenb¨ock (1923), Eisenhart (1927, 1933, 1935, 1949), Thomas (1934), Weyl (1939), Chevalley (1946), and Ruse (1946), as well as by Blaschke (1950), Taub (1951), Schouten (1954), Boerner (1955), Komar (1955), Lichnerowicz (1955), Yano (1955), and Trautman (1958). We thus arrived in addition at the ‘theorem of complementarity’ (of scalar differential invariants and group trajectories) which states that a possible r-dim group of isometries of a given n-dim spacetime Vn – with q-dim trajectories, q := r-s – contains complementary information about its geometry in the sense that one can find n-q independent scalar invariants which complete a system of q symme- try coordinates to a full (local) n-dim coordinate system of Vn ; where s = r-q denotes the dimension of the isotropy group of a generic point. Homogeneous subspaces are invariantly embedded. These two theorems – on constructing (or not) an isometry between two given Vn with or without homogeneous subspaces – were contained in my 1958 ph.d. thesis (including proof sketches), and can be found again in my 1960 and 1962 joint publications with J¨urgen listed in the references, though only partially highlighted as theorems. J¨urgen had done the proof-reading at Hamburg whilst I was in Syracuse (N.Y.) – working in Peter Bergmann’s group for a bit over a year – at an epoch with only snail-mail correspondence. J¨urgen knew that I had discovered an oversight (in my first writeup, and in other people’s proofs) which applies only in the rare case of spaces with an indefinite metric, and of a special type of their Riemann tensor, for which the complete system of rational scalar invariants (formed from their metric and Riemann tensor and its covariant derivatives) gets functionally dependent, so that one has to take recourse to new methods of constructing scalar invariants, involving differential calculus. One such nasty special case turned up in the subclass of the pp waves (see below), with higher (than the usual 2-dim) symmetry, and served as a counter example to published results even though it was fairly clear how to repair them. Should we have for- mulated the theorems as conjectures, or should we have relegated them to the text? J¨urgen’s honest mind preferred the latter. The years 1959-1962 were brainstormy ones for us. The Petrov-Pirani insight had like- wise reached ‘relativists’ like Ivor Robinson, who had shown me how to integrate the grav- itational field equations analytically, in suitable coordinate gauges, and Andrzej Trautman, Hermann Bondi, Ray Sachs, Roger Penrose, and Ted Newman, among others, who showed 3 us how to analyse the far-field behaviour of radiating sources. For me in particular waited the class of plane-fronted gravitational waves, plus its subclass with parallel rays – called ‘pp waves’ for short – which turned out to be extremely instructive: The plane-fronted grav- itational waves show strong resemblances to their electromagnetic analogs in flat spacetime, but are richer as a class. They are among Einstein’s vacuum fields with the largest groups of isometries, and with the most extreme behaviour of their scalar invariants, as already men- tioned above. Their action on clouds of test particles could be elucidated, and they could be shown to be geodetically complete. Clearly, during the years of their analysis, J¨urgen’s interest and advice meant a great challenge to me. But like every human activity, Hamburg’s relativity group did not enjoy eternal life: The year 1962 saw me build my house in Hamburg-Hoheneichen, and move into it in November that same year. J¨urgen and Anita spent several years abroad, between 1961 and 1971, in Syracuse, Dallas, and Austin (Texas), and Ulrike and I spent our honeymoon year 1966/7 in Pittsburgh (Pa), as guests of Ted Newman and his family. Pascual Jordan’s 65th anniversary was celebrated (in Hamburg) in October 1967. In all these years, our relativity group was kept alive by new (younger) members, like Manfred Tr¨umper, Bernd Schmidt, Wolf Bei- glb¨ock, Klaus Bichteler, Volker Enß, Michael Streubel, Eva Ruhnau, Hans-J¨urgen Seifert, Henning Mueller zum Hagen, Hans Seiler, and a few more. We met at international confer- ences, like the Texas Symposia on Relativistic Astrophysics (introduced by Ivor Robinson, Alfred Schild, and Engelbert Sch¨ucking), the Varenna Schools (on lake Como), the Royal Society Meetings in London, and the Marcel Grossmann Meetings (organised by Remo Ruffini, beginning at Trieste). There were frequent, lively international cooperations. There was another intense collaboration during the early 60s, of J¨urgen and myself: we partcipated actively in a weekly seminar on the selected book on QED by Jauch & Rohrlich, jointly with Hans-J¨urgen Borchers, Hans Joos, Werner Theis, Klaus Helmers, Peter Stichel, Georg S¨ußmann, and Bert Schroer, because we wanted to learn how to quantise the gravita- tional field. (Today I think it must not be quantised (2007), because there are no observable effects of quantised gravity: only the equations of state require quantised treatment). I still remember the scene – as though it happened yesterday – when J¨urgen was the speaker of the day, and was cautioned by Helmers about an inconsistency of his statement (on the supposedly unitary correspondences between interacting and free fields): J¨urgen understood immediately, was upset, and threw the library copy of J & R on the desk of our seminar room in disgust, because the formal elegance of the book’s presentation had fooled him, had made him believe that the offered correspondence was mathematically exact.
Recommended publications
  • Of the American Mathematical Society August 2017 Volume 64, Number 7
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society August 2017 Volume 64, Number 7 The Mathematics of Gravitational Waves: A Two-Part Feature page 684 The Travel Ban: Affected Mathematicians Tell Their Stories page 678 The Global Math Project: Uplifting Mathematics for All page 712 2015–2016 Doctoral Degrees Conferred page 727 Gravitational waves are produced by black holes spiraling inward (see page 674). American Mathematical Society LEARNING ® MEDIA MATHSCINET ONLINE RESOURCES MATHEMATICS WASHINGTON, DC CONFERENCES MATHEMATICAL INCLUSION REVIEWS STUDENTS MENTORING PROFESSION GRAD PUBLISHING STUDENTS OUTREACH TOOLS EMPLOYMENT MATH VISUALIZATIONS EXCLUSION TEACHING CAREERS MATH STEM ART REVIEWS MEETINGS FUNDING WORKSHOPS BOOKS EDUCATION MATH ADVOCACY NETWORKING DIVERSITY blogs.ams.org Notices of the American Mathematical Society August 2017 FEATURED 684684 718 26 678 Gravitational Waves The Graduate Student The Travel Ban: Affected Introduction Section Mathematicians Tell Their by Christina Sormani Karen E. Smith Interview Stories How the Green Light was Given for by Laure Flapan Gravitational Wave Research by Alexander Diaz-Lopez, Allyn by C. Denson Hill and Paweł Nurowski WHAT IS...a CR Submanifold? Jackson, and Stephen Kennedy by Phillip S. Harrington and Andrew Gravitational Waves and Their Raich Mathematics by Lydia Bieri, David Garfinkle, and Nicolás Yunes This season of the Perseid meteor shower August 12 and the third sighting in June make our cover feature on the discovery of gravitational waves
    [Show full text]
  • Ua-Physics-Apr-Report
    Physics Department Self-Study Report for the Academic Program Review Elliott Cheu, Kenneth Johns, Sumit Mazumdar, Ina Sarcevic, Charles Stafford, Bira van Kolck, Charles Wolgemuth April 6, 2018 Abstract This report contains material for the Academic Program Review of the physics department at the University of Arizona. The report covers the years from 2011-2017. Contents A Self Study Summary 10 B Unit Description and Goals 12 B.1 Department Mission and Alignment with the University of Arizona (UA) Strategic Plan... 12 B.2 Department Strategic Plan..................................... 12 B.2.1 Undergraduate and Graduate Student Engagement.................... 12 B.2.2 Faculty Hiring and Innovation............................... 15 C Unit History 17 C.1 Major Changes That Have Occurred Since the Last Academic Program Review (APR) (2011) 17 C.2 Recommendations from the Previous APR and Changes Made in Response........... 18 D Academic Quality 25 D.1 External Rankings.......................................... 25 D.2 Internal Rankings........................................... 26 D.3 Unit Peer Institutions........................................ 27 E Faculty 32 1 E.1 Research................................................ 32 E.2 External Funding........................................... 38 E.3 Participation in the Academic Profession.............................. 38 E.4 Teaching................................................ 43 E.5 Planned Faculty Hires........................................ 45 E.6 Compensation............................................
    [Show full text]
  • Arxiv:1301.0017V1 [Astro-Ph.CO] 23 Dec 2012 M L 03 in Ta.20;Kr Ta.20;Kurk 2007; Most the the Al
    Draft version June 14, 2018 A Preprint typeset using LTEX style emulateapj v. 12/16/11 HIGH-Z QUASARS IN THE RH = CT UNIVERSE Fulvio Melia† Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing, China and Department of Physics, The Applied Math Program, and Department of Astronomy, The University of Arizona, AZ 85721, USA †John Woodruff Simpson Fellow. E-mail: [email protected] Draft version June 14, 2018 ABSTRACT 9 One cannot understand the early appearance of 10 M⊙ supermassive black holes without invoking anomalously high accretion rates or the creation of exotically massive seeds, neither of which is seen in the local Universe. Recent observations have compounded this problem by demonstrating that most, if not all, of the high-z quasars appear to be accreting at the Eddington limit. In the context of ΛCDM, the only viable alternative now appears to be the assemblage of supermassive black holes via mergers, as long as the seeds started forming at redshifts > 40, but ceased being created by z ∼ 20−30. In this paper, we show that, whereas the high-z quasars may be difficult to explain within the framework of the standard model, they can instead be interpreted much more sensibly in the context of the Rh = ct Universe. In this cosmology, 5 − 20 M⊙ seeds produced after the onset of re-ionization (at z . 15) 9 could have easily grown to M & 10 M⊙ by z & 6, merely by accreting at the standard Eddington rate. Keywords: cosmology: observations, theory; dark ages; reionization; early universe; quasars: general 1.
    [Show full text]
  • Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics, with an Afterword by Roy Kerr / Fulvio Melia
    CRA C K I N G T H E E INSTEIN CODE @SZObWdWbgO\RbVS0W`bV]T0ZOQY6]ZS>VgaWQa eWbVO\/TbS`e]`RPg@]gS`` fulvio melia The University of Chicago Press chicago and london fulvio melia is a professor in the departments of physics and astronomy at the University of Arizona. He is the author of The Galactic Supermassive Black Hole; The Black Hole at the Center of Our Galaxy; The Edge of Infinity; and Electrodynamics, and he is series editor of the book series Theoretical Astrophysics published by the University of Chicago Press. The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2009 by The University of Chicago All rights reserved. Published 2009 Printed in the United States of America 18 17 16 15 14 13 12 11 10 09 1 2 3 4 5 isbn-13: 978-0-226-51951-7 (cloth) isbn-10: 0-226-51951-1 (cloth) Library of Congress Cataloging-in-Publication Data Melia, Fulvio. Cracking the Einstein code: relativity and the birth of black hole physics, with an afterword by Roy Kerr / Fulvio Melia. p. cm. Includes bibliographical references and index. isbn-13: 978-0-226-51951-7 (cloth: alk. paper) isbn-10: 0-226-51951-1 (cloth: alk. paper) 1. Einstein field equations. 2. Kerr, R. P. (Roy P.). 3. Kerr black holes—Mathematical models. 4. Black holes (Astronomy)—Mathematical models. I. Title. qc173.6.m434 2009 530.11—dc22 2008044006 To natalina panaia and cesare melia, in loving memory CONTENTS preface ix 1 Einstein’s Code 1 2 Space and Time 5 3 Gravity 15 4 Four Pillars and a Prayer 24 5 An Unbreakable Code 39 6 Roy Kerr 54 7 The Kerr Solution 69 8 Black Hole 82 9 The Tower 100 10 New Zealand 105 11 Kerr in the Cosmos 111 12 Future Breakthrough 121 afterword 125 references 129 index 133 PREFACE Something quite remarkable arrived in my mail during the summer of 2004.
    [Show full text]
  • Pulsar Physics Without Magnetars
    Chin. J. Astron. Astrophys. Vol.8 (2008), Supplement, 213–218 Chinese Journal of (http://www.chjaa.org) Astronomy and Astrophysics Pulsar Physics without Magnetars Wolfgang Kundt Argelander-Institut f¨ur Astronomie der Universit¨at, Auf dem H¨ugel 71, D-53121 Bonn, Germany Abstract Magnetars, as defined some 15 yr ago, are inconsistent both with fundamental physics, and with the (by now) two observed upward jumps of the period derivatives (of two of them). Instead, the class of peculiar X-ray sources commonly interpreted as magnetars can be understood as the class of throttled pulsars, i.e. of pulsars strongly interacting with their CSM. This class is even expected to harbour the sources of the Cosmic Rays, and of all the (extraterrestrial) Gamma-Ray Bursts. Key words: magnetars — throttled pulsars — dying pulsars — cavity — low-mass disk 1 DEFINITION AND PROPERTIES OF THE MAGNETARS Magnetars have been defined by Duncan and Thompson some 15 years ago, as spinning, compact X-ray sources - probably neutron stars - which are powered by the slow decay of their strong magnetic field, of strength 1015 G near the surface, cf. (Duncan & Thompson 1992; Thompson & Duncan 1996). They are now thought to comprise the anomalous X-ray pulsars (AXPs), soft gamma-ray repeaters (SGRs), recurrent radio transients (RRATs), or ‘stammerers’, or ‘burpers’, and the ‘dim isolated neutron stars’ (DINSs), i.e. a large, fairly well defined subclass of all neutron stars, which has the following properties (Mereghetti et al. 2002): 1) They are isolated neutron stars, with spin periods P between 5 s and 12 s, and similar glitch behaviour to other neutron-star sources, which correlates with their X-ray bursting.
    [Show full text]
  • COPYRIGHT NOTICE: Fulvio Melia: High-Energy Astrophysics Is Published by Princeton University Press and Copyrighted, © 2009, by Princeton University Press
    COPYRIGHT NOTICE: Fulvio Melia: High-Energy Astrophysics is published by Princeton University Press and copyrighted, © 2009, by Princeton University Press. All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher, except for reading and browsing via the World Wide Web. Users are not permitted to mount this file on any network servers. Follow links for Class Use and other Permissions. For more information send email to: [email protected] Chapter One Introduction and Motivation 1.1 THE FIELD OF HIGH-ENERGY ASTROPHYSICS Compared with optical astronomy, which traces its foundations to prehistoric times,1 the field of high-energy astrophysics is a relatively new science, dealing with astro­ nomical sources and phenomena largely discovered since the advent of space-based instrumentation.2 Ironically, however, the earliest signs of high-energy activity from space appeared in laboratory equipment on the ground, and were not recognized as extraterrestrial for many years. Physicists had noted since about 1900 that some unknown ionizing radiation had to be present near Earth’s surface, from the manner in which the leaves of an electroscope always came together, presumably as a result of a gradual discharging. By 1912, Victor Hess (1883–1964) had made several manned balloon ascents to measure the ionization of the atmosphere as a function of altitude, making the surprising discovery3 that the average ionization above ∼1.5 km increased relative to that at sea level. By demonstrating in this manner that the source of the ionizing radiation—named cosmic rays by Robert Millikan (1868–1953) in 1925—must therefore be extraterrestrial, Hess opened up the frontier of high-energy astrophysics and was eventually awarded the Nobel prize in physics in 1936.
    [Show full text]
  • A Brief History of Gravitational Waves
    universe Review A Brief History of Gravitational Waves Jorge L. Cervantes-Cota 1, Salvador Galindo-Uribarri 1 and George F. Smoot 2,3,4,* 1 Department of Physics, National Institute for Nuclear Research, Km 36.5 Carretera Mexico-Toluca, Ocoyoacac, C.P. 52750 Mexico, Mexico; [email protected] (J.L.C.-C.); [email protected] (S.G.-U.) 2 Helmut and Ana Pao Sohmen Professor at Large, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, China 3 Université Sorbonne Paris Cité, Laboratoire APC-PCCP, Université Paris Diderot, 10 rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13, France 4 Department of Physics and LBNL, University of California; MS Bldg 50-5505 LBNL, 1 Cyclotron Road Berkeley, 94720 CA, USA * Correspondence: [email protected]; Tel.:+1-510-486-5505 Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 21 July 2016; Accepted: 2 September 2016; Published: 13 September 2016 Abstract: This review describes the discovery of gravitational waves. We recount the journey of predicting and finding those waves, since its beginning in the early twentieth century, their prediction by Einstein in 1916, theoretical and experimental blunders, efforts towards their detection, and finally the subsequent successful discovery. Keywords: gravitational waves; General Relativity; LIGO; Einstein; strong-field gravity; binary black holes 1. Introduction Einstein’s General Theory of Relativity, published in November 1915, led to the prediction of the existence of gravitational waves that would be so faint and their interaction with matter so weak that Einstein himself wondered if they could ever be discovered.
    [Show full text]
  • Towards a Theory of Gravitational Radiation Or What Is a Gravitational Wave?
    Recent LIGO announcement Gravitational radiation theory: summary Prehistory: 1916-1956 History: 1957-1962 Towards a theory of gravitational radiation or What is a gravitational wave? Paweł Nurowski Center for Theoretical Physics Polish Academy of Sciences King’s College London, 28 April 2016 1/48 Recent LIGO announcement Gravitational radiation theory: summary Prehistory: 1916-1956 History: 1957-1962 Plan 1 Recent LIGO announcement 2 Gravitational radiation theory: summary 3 Prehistory: 1916-1956 4 History: 1957-1962 2/48 Recent LIGO announcement Gravitational radiation theory: summary Prehistory: 1916-1956 History: 1957-1962 LIGO detection: Its relevance the first detection of gravitational waves the first detection of a black hole; of a binary black-hole; of a merging process of black holes creating a new one; Kerr black holes exist; black holes with up to 60 Solar masses exist; the most energetic process ever observed important test of Einstein’s General Theory of Relativity new window: a birth of gravitational wave astronomy 3/48 Recent LIGO announcement Gravitational radiation theory: summary Prehistory: 1916-1956 History: 1957-1962 LIGO detection: Its relevance the first detection of gravitational waves the first detection of a black hole; of a binary black-hole; of a merging process of black holes creating a new one; Kerr black holes exist; black holes with up to 60 Solar masses exist; the most energetic process ever observed important test of Einstein’s General Theory of Relativity new window: a birth of gravitational wave astronomy
    [Show full text]
  • Vector and Tensor Analysis, 1950, Harry Lass, 0177610514, 9780177610516, Mcgraw- Hill, 1950
    Vector and tensor analysis, 1950, Harry Lass, 0177610514, 9780177610516, McGraw- Hill, 1950 DOWNLOAD http://bit.ly/1CHWNWq http://www.powells.com/s?kw=Vector+and+tensor+analysis DOWNLOAD http://goo.gl/RBcy2 https://itunes.apple.com/us/book/Vector-and-tensor-analysis/id439454683 http://bit.ly/1lGfW8S Vector & Tensor Analysis , U.Chatterjee & N.Chatterjee, , , . Tensor Calculus A Concise Course, Barry Spain, 2003, Mathematics, 125 pages. A compact exposition of the theory of tensors, this text also illustrates the power of the tensor technique by its applications to differential geometry, elasticity, and. The Art of Modeling Dynamic Systems Forecasting for Chaos, Randomness and Determinism, Foster Morrison, Mar 7, 2012, Mathematics, 416 pages. This text illustrates the roles of statistical methods, coordinate transformations, and mathematical analysis in mapping complex, unpredictable dynamical systems. It describes. Partial differential equations in physics , Arnold Sommerfeld, Jan 1, 1949, Mathematics, 334 pages. Partial differential equations in physics. Tensor Calculus , John Lighton Synge, Alfred Schild, 1978, Mathematics, 324 pages. "This book is an excellent classroom text, since it is clearly written, contains numerous problems and exercises, and at the end of each chapter has a summary of the. Vector and tensor analysis , Harry Lass, 1950, Mathematics, 347 pages. Abstract Algebra and Solution by Radicals , John Edward Maxfield, Margaret W. Maxfield, 1971, Mathematics, 209 pages. Easily accessible undergraduate-level text covers groups, polynomials, Galois theory, radicals, much more. Features many examples, illustrations and commentaries as well as 13. Underwater Missile Propulsion A Selection of Authoritative Technical and Descriptive Papers, Leonard Greiner, 1968, Fleet ballistic missile weapons systems, 502 pages.
    [Show full text]
  • How the Green Light Was Given for Gravitational Wave Search
    HOW THE GREEN LIGHT WAS GIVEN FOR GRAVITATIONAL WAVE SEARCH C DENSON HILL AND PAWELNUROWSKI Abstract. The recent detection of gravitational waves by the LIGO/VIRGO team [1] is an incredibly impressive achievement of experimental physics. It is also a tremendous success of the theory of General Relativity. It confirms the existence of black holes; shows that binary black holes exist; that they may collide and that during the merging process gravitational waves are produced. These are all predictions of General Relativity theory in its fully nonlinear regime. The existence of gravitational waves was predicted by Albert Einstein in 1916 within the framework of linearized Einstein theory. Contrary to common belief, even the very definition of a gravitational wave in the fully nonlinear Einstein theory was provided only after Einstein's death. Actually, Einstein had arguments against the existence of nonlinear gravitational waves (they were erroneous but he did not accept this), which virtually stopped develop- ment of the subject until the mid 1950s. This is what we refer to as the Red Light for gravitational waves research. In the following years, the theme was picked up again and studied vigor- ously by various experts, mainly Herman Bondi, Felix Pirani, Ivor Robinson and Andrzej Trautman, where the theoretical obstacles concerning gravita- tional wave existence were successfully overcome, thus giving the Green Light for experimentalists to start designing detectors, culminating in the recent LIGO/VIRGO discovery. In this note we tell the story of this theoretical breakthrough. Particular attention is given to the fundamental 1958 papers of Trautman [19, 20], which seem to be lesser known outside the circle of General Relativity experts.
    [Show full text]
  • High-Energy Astrophysics AA2019-20 C
    High-Energy Astrophysics AA2019-20 C. Vignali The role of high-energy emission • Probe of the innermost regions of compact source (X-ray binaries, AGN, etc) • Solar-system bodies, stars, galaxies (also in their non-active phase) emit X-rays • Cherenkov emission (CTA) is one of the ways to go in the future • Event Horizon Telescope: probing the innermost regions of M87 What you may expect from the course • Far from being complete, impossible to cover all the high-energy astrophysics issues • Overview of emission mechanisms and the way detectors work at high energies • How do sources emit at high energies? Some answers, but many open questions • Books vs. papers: the way to proceed to have a proper view of what’s going on in astrophysics Basic rule: you have a question, you try and find the way (method: data, simulations, theory) to possibly answer that question General on X-ray Astrophysics • J. Trumper & G. Hasinger: "The Universe in X-rays", Books • Frederick D. Seward, Philip A. Charles: "Exploring the X-ray Universe", • Malcolm S. Longair: "High-Energy Astrophysics", + specialistic papers • Fulvio Melia: "High-Energy Astrophysics", − see also arXiv X-ray and Gamma-ray detectors, and data analysis (https://arxiv.org) • Glenn F. Knoll: "Radiation Detectors for X-Ray and Gamma-Ray Spectroscopy", on a daily basis • Hale Bradt: "Astronomy Methods", • S.M. Kahn, P. von Ballmoos, R.A. Sunyaev: "High-Energy Spectroscopic Astrophysics", • G. W. Fraser: "X-ray detectors in astronomy" • Keith Arnaud, Randall Smith, Aneta Siemiginowska: "Handbook of X-ray Astronomy" Emission Processes Slides: useful as • Gabriele Ghisellini: "Radiative processes in high energy astrophysics", ‘threads’ • Hale Bradt: "Astrophysics Processes: The Physics Of Astronomical Phenomena", but please study • S.M.
    [Show full text]
  • A Brief History of Gravitational Waves
    Review A Brief History of Gravitational Waves Jorge L. Cervantes-Cota 1, Salvador Galindo-Uribarri 1 and George F. Smoot 2,3,4,* 1 Department of Physics, National Institute for Nuclear Research, Km 36.5 Carretera Mexico-Toluca, Ocoyoacac, Mexico State C.P.52750, Mexico; [email protected] (J.L.C.-C.); [email protected] (S.G.-U.) 2 Helmut and Ana Pao Sohmen Professor at Large, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong, China. 3 Université Sorbonne Paris Cité, Laboratoire APC-PCCP, Université Paris Diderot, 10 rue Alice Domon et Leonie Duquet 75205 Paris Cedex 13, France. 4 Department of Physics and LBNL, University of California; MS Bldg 50-5505 LBNL, 1 Cyclotron Road Berkeley, CA 94720, USA. * Correspondence: [email protected]; Tel.:+1-510-486-5505 Abstract: This review describes the discovery of gravitational waves. We recount the journey of predicting and finding those waves, since its beginning in the early twentieth century, their prediction by Einstein in 1916, theoretical and experimental blunders, efforts towards their detection, and finally the subsequent successful discovery. Keywords: gravitational waves; General Relativity; LIGO; Einstein; strong-field gravity; binary black holes 1. Introduction Einstein’s General Theory of Relativity, published in November 1915, led to the prediction of the existence of gravitational waves that would be so faint and their interaction with matter so weak that Einstein himself wondered if they could ever be discovered. Even if they were detectable, Einstein also wondered if they would ever be useful enough for use in science.
    [Show full text]