Examples from Pathogens and Parasites of Wild Rodents by F

Total Page:16

File Type:pdf, Size:1020Kb

Examples from Pathogens and Parasites of Wild Rodents by F Observational and model evidence for and against the dilution effect: examples from pathogens and parasites of wild rodents by Flavia Occhibove A thesis submitted to Aberystwyth University in partial fulfilment of the requirements for the degree of Doctor of Philosophy Institute of Biological, Environmental and Rural Sciences Aberystwyth University September 2018 Word Count of thesis: 70000 DECLARATION This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. Candidate name Flavia Occhibove Signature: Date 21/09/2018 STATEMENT 1 This thesis is the result of my own investigations, except where otherwise stated. Where *correction services have been used, the extent and nature of the correction is clearly marked in a footnote(s). Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended. Signature: Date 21/09/2018 [*this refers to the extent to which the text has been corrected by others] STATEMENT 2 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signature: Date 21/09/2018 NB: Candidates on whose behalf a bar on access (hard copy) has been approved by the University should use the following version of Statement 2: I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loans after expiry of a bar on access approved by Aberystwyth University. Signature: Date 21/09/2018 There is no self-awareness in ecosystems, no language, no consciousness, and no culture; and therefore no justice and democracy; but also no greed or dishonesty. ̶ Fritjof Capra, The web of life These, then, are some of the basic principles of ecology – interdependence, recycling, partnership, flexibility, diversity, and, as a consequence of all those, sustainability. [...] the survival of humanity will depend on our ecological literacy, on our ability to understand these principles of ecology and live accordingly. ̶ Fritjof Capra, The web of life Acknowledgements Firstly, I would like to express my sincere gratitude to my first supervisor Dr Claire Risley and my second supervisor Dr Joe Ironside for their continuous support through my PhD and for their advice, patience, and motivation, especially during the difficult time of the writing up. Additionally, I would like to thank Dr Kim Kenobi, without who I could not have made it through the modelling work (and through these four years). His infinite support and kindness made the impossible possible: I managed to learn how to deal with the terrifying “R”. He is honestly one of the best human being I have ever met, and I am so grateful he dedicated time to my research. Besides my supervisors, I really want to thank all the people in IBERS that provided invaluable help at every stage of my PhD journey. In particular, Dr Jo Hamilton, who gave me essential advice on macroparasite analysis, Dr Joseph Jackson, who provided useful information to design the live-trapping study, and Gareth, Rori, Julie, and Colin who fulfilled all my requests for field and lab work equipment, reducing substantially my stress levels. Outside IBERS, I am profoundly grateful to Dr Michael Kosoy, Dr Richard Wall, Dr Swaid Abdullah, and Dr Stuart Siddell for their suggestions and for providing positive controls for my PCRs. I also have to thank all the people involved in my field and lab work. First of all, Paul Culyer and his staff at the Stackpole Estate: I could not think of nicer, more supportive, and more professional people, and also of a more beautiful place to spend time outdoors. It was a fantastic experience and I am immensely grateful to all of you (especially Jon, Sam, and Alex). Secondly, the Skomer staff, Dr Tim Healing, and all the volunteers who were an invaluable help with the data collection on the island. And finally, I owe a huge thank to all the undergraduates who helped me in the field and in the lab (Aaron, Alice, Alex, Bridget, Emily, Hannah, Jacques, Karolina, Katie H., Katie W., Michaela, Nicole, Peter), and among those a “very special mention” goes to Scarlett, Joe and Tina. vii They were great research assistants, and I could not have accomplished anything without them. So many brilliant people were crucial in these PhD years. In Aberystwyth, I found an amazing community of friends and colleagues. They are all precious to me and I feel we shared so much life. Thanks to Adil, Ally, Amy, Christine, Claire, Gaspare, Lizzy, Marton, Mathilde, Max, Nathan, Paolo, Pippa, Sara, Tamsin, and last but definitely not least the great, old, wise, fatherly Niall (I will always owe you Niall, I hope you won’t ever need an organ or something because I will have to donate it to you considering my life debt!!). Thanks to my two Francesca, I am so grateful to Aberystwyth for meeting you. You are truly wonderful. Thanks to the acroyoga people, especially for meeting Bronya: thank you for the fantastic time spent away from the office. Thanks to all the Aber Organic Food Coop for supporting my ideas and me. Thanks to Julia and Rob for sorting out my living arrangements in a very difficult moment of my PhD journey. Here in Wales, I also found an “adoptive” family who welcomed me and made such a difference in my PhD experience. Thank you Alex, Jenny, Leslie, David, Sam, Jacob, and Isaac. Although they were not in Aberystwyth, I have to thank all my friends spread around the world because they are always by my side, listening, moaning, travelling, dreaming, and partying. Thank you Carmen, Claudia, Cristina, Gianluca, Laura, Ottavia, Mara, Salvatore, Teresa, Anna, Matia (and Gemmina) and so many others for taking care of me and for letting me taking care of you. And thank you my friend for supporting me during the time I was desperately looking for a PhD, and for encouraging me to embark in this one, and for make me regret my decision more than a few times. In conclusion, by far the most important acknowledgement goes to my family, in particular to my parents, to whom I owe everything. They have been the greatest support and inspiration to me, and the best life companions I could have ever desired, and there is no need to add any redundant words. Thank you. viii Abstract In disease ecology, the relationship between biodiversity and pathogen transmission is still under investigation. In particular, the dilution effect, namely that higher biodiversity decreases disease transmission, is currently the most debated eco-epidemiological theory in the context of multi-host pathogen systems. Mechanisms of dilution include transmission and encounter reduction, and susceptible host regulation. This study integrated empirical data and mathematical modelling to investigate the transmission of parasites and pathogens in Welsh wild rodent communities, as rodents are considered an ideal system to study multi-host parasite/pathogen transmission in the eco- epidemiological context. Rodents were live-trapped and faecal samples and ecto-parasites were screened for parasites and pathogens. Field data were used, where relevant, to parameterise models of infection that investigated the effects of parameter variation and community composition on pathogens with different transmission modes. The final aims were to provide additional knowledge on Welsh rodent communities, to identify rodent- borne parasites/pathogens circulating in the sampling area, and to improve understanding of local transmission dynamics, testing the dilution effect through eco-epidemiological modelling. The main results from the parasite and pathogen screening were: a. the observation of host heterogeneity in ecto-parasite and macroparasite prevalence and burden, with different host species contributing in different ways to the transmission pool; b. the isolation of Anaplasma phagocytophilum and Babesia microti in ixodid ticks; c. Bartonella spp. were isolated in fleas, B. rochalimae, notably, for the first time in the UK. The directly transmitted pathogen model outputs confirmed that reduced (or “diluted”) infection prevalence might not represent a true dilution effect to some hosts, since prevalence could decrease simultaneously with the increase of infectious individuals. The model was effective in recognising susceptible host regulation via inter-specific competition and predation as the most important dilution mechanism. Modelling the two similar but different host-tick-pathogen systems showed that the parameters affecting the juvenile stages of the ticks were the ones most affecting pathogen transmission: crucial information to develop targeted control strategies. In the system with the more generalist vector, Ixodes ricinus, dilution effect was more significant and more dilution mechanisms were observed. The key parameters regulating transmission were also different between the two systems, but the dilution was observed only with regards to infectious hosts, as more complex communities led to amplification of infectious nymphs, representing amplified human disease risk. With regards to the flea-borne Bartonella, force of infection and proportion of hosts transmitting vertically were the parameters most affecting transmission and degree of the dilution, which occurred through the mechanism of regulation of susceptible hosts, providing evidence that community composition was crucial to the dynamics of pathogen transmission. The average flea burden of infested hosts was another
Recommended publications
  • Influence of Parasites on Fitness Parameters of the European Hedgehog (Erinaceus Europaeus)
    Influence of parasites on fitness parameters of the European hedgehog (Erinaceus europaeus ) Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) – Universitätsbereich vorgelegte DISSERTATION von Miriam Pamina Pfäffle aus Heilbronn Dekan: Prof. Dr. Stefan Bräse Referent: Prof. Dr. Horst Taraschewski Korreferent: Prof. Dr. Agustin Estrada-Peña Tag der mündlichen Prüfung: 19.10.2010 For my mother and my sister – the strongest influences in my life “Nose-to-nose with a hedgehog, you get a chance to look into its eyes and glimpse a spark of truly wildlife.” (H UGH WARWICK , 2008) „Madame Michel besitzt die Eleganz des Igels: außen mit Stacheln gepanzert, eine echte Festung, aber ich ahne vage, dass sie innen auf genauso einfache Art raffiniert ist wie die Igel, diese kleinen Tiere, die nur scheinbar träge, entschieden ungesellig und schrecklich elegant sind.“ (M URIEL BARBERY , 2008) Index of contents Index of contents ABSTRACT 13 ZUSAMMENFASSUNG 15 I. INTRODUCTION 17 1. Parasitism 17 2. The European hedgehog ( Erinaceus europaeus LINNAEUS 1758) 19 2.1 Taxonomy and distribution 19 2.2 Ecology 22 2.3 Hedgehog populations 25 2.4 Parasites of the hedgehog 27 2.4.1 Ectoparasites 27 2.4.2 Endoparasites 32 3. Study aims 39 II. MATERIALS , ANIMALS AND METHODS 41 1. The experimental hedgehog population 41 1.1 Hedgehogs 41 1.2 Ticks 43 1.3 Blood sampling 43 1.4 Blood parameters 45 1.5 Regeneration 47 1.6 Climate parameters 47 2. Hedgehog dissections 48 2.1 Hedgehog samples 48 2.2 Biometrical data 48 2.3 Organs 49 2.4 Parasites 50 3.
    [Show full text]
  • Fleas, Hosts and Habitat: What Can We Predict About the Spread of Vector-Borne Zoonotic Diseases?
    2010 Fleas, Hosts and Habitat: What can we predict about the spread of vector-borne zoonotic diseases? Ph.D. Dissertation Megan M. Friggens School of Forestry I I I \, l " FLEAS, HOSTS AND HABITAT: WHAT CAN WE PREDICT ABOUT THE SPREAD OF VECTOR-BORNE ZOONOTIC DISEASES? by Megan M. Friggens A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Forest Science Northern Arizona University May 2010 ?Jii@~-~-u-_- Robert R. Parmenter, Ph. D. ~",l(*~ l.~ Paulette L. Ford, Ph. D. --=z:r-J'l1jU~ David M. Wagner, Ph. D. ABSTRACT FLEAS, HOSTS AND HABITAT: WHAT CAN WE PREDICT ABOUT THE SPREAD OF VECTOR-BORNE ZOONOTIC DISEASES? MEGAN M. FRIGGENS Vector-borne diseases of humans and wildlife are experiencing resurgence across the globe. I examine the dynamics of flea borne diseases through a comparative analysis of flea literature and analyses of field data collected from three sites in New Mexico: The Sevilleta National Wildlife Refuge, the Sandia Mountains and the Valles Caldera National Preserve (VCNP). My objectives were to use these analyses to better predict and manage for the spread of diseases such as plague (Yersinia pestis). To assess the impact of anthropogenic disturbance on flea communities, I compiled and analyzed data from 63 published empirical studies. Anthropogenic disturbance is associated with conditions conducive to increased transmission of flea-borne diseases. Most measures of flea infestation increased with increasing disturbance or peaked at intermediate levels of disturbance. Future trends of habitat and climate change will probably favor the spread of flea-borne disease.
    [Show full text]
  • First Detection of Tick-Borne Encephalitis Virus in Ixodes Ricinus
    Ticks and Tick-borne Diseases 10 (2019) 101265 Contents lists available at ScienceDirect Ticks and Tick-borne Diseases journal homepage: www.elsevier.com/locate/ttbdis Original article First detection of tick-borne encephalitis virus in Ixodes ricinus ticks and T their rodent hosts in Moscow, Russia ⁎ Marat Makenova, , Lyudmila Karana, Natalia Shashinab, Marina Akhmetshinab, Olga Zhurenkovaa, Ivan Kholodilovc, Galina Karganovac,d, Nina Smirnovaa,e, Yana Grigorevaa, Yanina Yankovskayaf, Marina Fyodorovaa a Central Research Institute of Epidemiology, Novogireevskaya st 3-A, 415, Moscow, 111123, Russia b Sсiеntifiс Rеsеarсh Disinfесtology Institutе, Nauchniy proezd st. 18, Moscow, 117246, Russia c Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow, 108819, Russia d Institute for Translational Medicine and Biotechnology, Sechenov University, Bolshaya Pirogovskaya st, 2, page 4, room 106, Moscow, 119991, Russia e Lomonosov Moscow State University, Leninskie Gory st. 1-12, MSU, Faculty of Biology, Moscow, 119991, Russia f Pirogov Russian National Research Medical University, Ostrovityanova st. 1, Moscow, 117997, Russia ARTICLE INFO ABSTRACT Keywords: Here, we report the first confirmed autochthonous tick-borne encephalitis case diagnosed in Moscow in2016 Tick-borne encephalitis virus and describe the detection of tick-borne encephalitis virus (TBEV) in ticks and small mammals in a Moscow park. Ixodes ricinus The paper includes data from two patients who were bitten by TBEV-infected ticks in Moscow city; one of Borrelia burgdorferi sensu lato these cases led to the development of the meningeal form of TBE. Both TBEV-infected ticks attacked patients in Vector-borne diseases the same area.
    [Show full text]
  • Identification of Ixodes Ricinus Female Salivary Glands Factors Involved in Bartonella Henselae Transmission Xiangye Liu
    Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission Xiangye Liu To cite this version: Xiangye Liu. Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission. Human health and pathology. Université Paris-Est, 2013. English. NNT : 2013PEST1066. tel-01142179 HAL Id: tel-01142179 https://tel.archives-ouvertes.fr/tel-01142179 Submitted on 14 Apr 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ PARIS-EST École Doctorale Agriculture, Biologie, Environnement, Santé T H È S E Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PARIS-EST Spécialité : Sciences du vivant Présentée et soutenue publiquement par Xiangye LIU Le 15 Novembre 2013 Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission Directrice de thèse : Dr. Sarah I. Bonnet USC INRA Bartonella-Tiques, UMR 956 BIPAR, Maisons-Alfort, France Jury Dr. Catherine Bourgouin, Chef de laboratoire, Institut Pasteur Rapporteur Dr. Karen D. McCoy, Chargée de recherches, CNRS Rapporteur Dr. Patrick Mavingui, Directeur de recherches, CNRS Examinateur Dr. Karine Huber, Chargée de recherches, INRA Examinateur ACKNOWLEDGEMENTS To everyone who helped me to complete my PhD studies, thank you.
    [Show full text]
  • Full Volume 50 Nos. 1&2
    The Great Lakes Entomologist Volume 50 Numbers 1 & 2 -- Spring/Summer 2017 Article 12 Numbers 1 & 2 -- Spring/Summer 2017 September 2017 Full Volume 50 Nos. 1&2 Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation 2017. "Full Volume 50 Nos. 1&2," The Great Lakes Entomologist, vol 50 (1) Available at: https://scholar.valpo.edu/tgle/vol50/iss1/12 This Full Issue is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. et al.: Full Volume 50 Nos. 1&2 Vol. 50, Nos. 1 & 2 Spring/Summer 2017 THE GREAT LAKES ENTOMOLOGIST PUBLISHED BY THE MICHIGAN ENTOMOLOGICAL SOCIETY Published by ValpoScholar, 2017 1 The Great Lakes Entomologist, Vol. 50, No. 1 [2017], Art. 12 THE MICHIGAN ENTOMOLOGICAL SOCIETY 2016–17 OFFICERS President Robert Haack President Elect Matthew Douglas Immediate Pate President Angie Pytel Secretary Adrienne O’Brien Treasurer Angie Pytel Member-at-Large (2016-2018) John Douglass Member-at-Large (2016-2018) Martin Andree Member-at-Large (2015-2018) Bernice DeMarco Member-at-Large (2014-2017) Mark VanderWerp Lead Journal Scientific Editor Kristi Bugajski Lead Journal Production Editor Alicia Bray Associate Journal Editor Anthony Cognato Associate Journal Editor Julie Craves Associate Journal Editor David Houghton Associate Journal Editor William Ruesink Associate Journal Editor William Scharf Associate Journal Editor Daniel Swanson Newsletter Editor Matthew Douglas and Daniel Swanson Webmaster Mark O’Brien The Michigan Entomological Society traces its origins to the old Detroit Entomological Society and was organized on 4 November 1954 to “.
    [Show full text]
  • Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey
    applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" Journal of Medical Entomology, 2019, 1–10 doi: 10.1093/jme/tjz010 Review Review Downloaded from https://academic.oup.com/jme/advance-article-abstract/doi/10.1093/jme/tjz010/5310395 by Rutgers University Libraries user on 09 February 2019 Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey James L. Occi,1,4 Andrea M. Egizi,1,2 Richard G. Robbins,3 and Dina M. Fonseca1 1Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901-8536, 2Tick- borne Diseases Laboratory, Monmouth County Mosquito Control Division, 1901 Wayside Road, Tinton Falls, NJ 07724, 3 Walter Reed Biosystematics Unit, Department of Entomology, Smithsonian Institution, MSC, MRC 534, 4210 Silver Hill Road, Suitland, MD 20746-2863 and 4Corresponding author, e-mail: [email protected] Subject Editor: Rebecca Eisen Received 1 November 2018; Editorial decision 8 January 2019 Abstract Standardized tick surveillance requires an understanding of which species may be present. After a thorough review of the scientific literature, as well as government documents, and careful evaluation of existing accessioned tick collections (vouchers) in museums and other repositories, we have determined that the verifiable hard tick fauna of New Jersey (NJ) currently comprises 11 species. Nine are indigenous to North America and two are invasive, including the recently identified Asian longhorned tick,Haemaphysalis longicornis (Neumann, 1901). For each of the 11 species, we summarize NJ collection details and review their known public health and veterinary importance and available information on seasonality. Separately considered are seven additional species that may be present in the state or become established in the future but whose presence is not currently confirmed with NJ vouchers.
    [Show full text]
  • Central-European Ticks (Ixodoidea) - Key for Determination 61-92 ©Landesmuseum Joanneum Graz, Austria, Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mitteilungen der Abteilung für Zoologie am Landesmuseum Joanneum Graz Jahr/Year: 1972 Band/Volume: 01_1972 Autor(en)/Author(s): Nosek Josef, Sixl Wolf Artikel/Article: Central-European Ticks (Ixodoidea) - Key for determination 61-92 ©Landesmuseum Joanneum Graz, Austria, download unter www.biologiezentrum.at Mitt. Abt. Zool. Landesmus. Joanneum Jg. 1, H. 2 S. 61—92 Graz 1972 Central-European Ticks (Ixodoidea) — Key for determination — By J. NOSEK & W. SIXL in collaboration with P. KVICALA & H. WALTINGER With 18 plates Received September 3th 1972 61 (217) ©Landesmuseum Joanneum Graz, Austria, download unter www.biologiezentrum.at Dr. Josef NOSEK and Pavol KVICALA: Institute of Virology, Slovak Academy of Sciences, WHO-Reference- Center, Bratislava — CSSR. (Director: Univ.-Prof. Dr. D. BLASCOVIC.) Dr. Wolf SIXL: Institute of Hygiene, University of Graz, Austria. (Director: Univ.-Prof. Dr. J. R. MOSE.) Ing. Hanns WALTINGER: Centrum of Electron-Microscopy, Graz, Austria. (Director: Wirkl. Hofrat Dipl.-Ing. Dr. F. GRASENIK.) This study was supported by the „Jubiläumsfonds der österreichischen Nationalbank" (project-no: 404 and 632). For the authors: Dr. Wolf SIXL, Universität Graz, Hygiene-Institut, Univer- sitätsplatz 4, A-8010 Graz. 62 (218) ©Landesmuseum Joanneum Graz, Austria, download unter www.biologiezentrum.at Dedicated to ERICH REISINGER em. ord. Professor of Zoology of the University of Graz and corr. member of the Austrian Academy of Sciences 3* 63 (219) ©Landesmuseum Joanneum Graz, Austria, download unter www.biologiezentrum.at Preface The world wide distributed ticks, parasites of man and domestic as well as wild animals, also vectors of many diseases, are of great economic and medical importance.
    [Show full text]
  • Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico–US Border Along the Rio Grande
    University of Texas Rio Grande Valley ScholarWorks @ UTRGV Biology Faculty Publications and Presentations College of Sciences 11-17-2014 Pathogenic landscape of transboundary zoonotic diseases in the Mexico–US border along the Rio Grande Maria Dolores Esteve-Gassent Adalberto A. Pérez de León Dora Romero-Salas Teresa Patricia Feria-Arroyo The University of Texas Rio Grande Valley Ramiro Patino The University of Texas Rio Grande Valley See next page for additional authors Follow this and additional works at: https://scholarworks.utrgv.edu/bio_fac Part of the Animal Sciences Commons, and the Biology Commons Recommended Citation Esteve-Gassent, Maria Dolores, Adalberto A. Pérez de León, Dora Romero-Salas, Teresa P. Feria-Arroyo, Ramiro Patino, Ivan Castro-Arellano, Guadalupe Gordillo-Pérez, et al. 2014. “Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico–US Border Along the Rio Grande.” Frontiers in Public Health 2. https://doi.org/10.3389/fpubh.2014.00177. This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact [email protected], [email protected]. Authors Maria Dolores Esteve-Gassent, Adalberto A. Pérez de León, Dora Romero-Salas, Teresa Patricia Feria- Arroyo, Ramiro Patino, and John A. Goolsby This article is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/bio_fac/128 REVIEW ARTICLE published: 17 November 2014 PUBLIC HEALTH doi: 10.3389/fpubh.2014.00177 Pathogenic landscape of transboundary zoonotic diseases in the Mexico–US border along the Rio Grande Maria Dolores Esteve-Gassent 1*†, Adalberto A.
    [Show full text]
  • Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico–US Border Along the Rio Grande
    REVIEW ARTICLE published: 17 November 2014 PUBLIC HEALTH doi: 10.3389/fpubh.2014.00177 Pathogenic landscape of transboundary zoonotic diseases in the Mexico–US border along the Rio Grande Maria Dolores Esteve-Gassent 1*†, Adalberto A. Pérez de León2†, Dora Romero-Salas 3,Teresa P. Feria-Arroyo4, Ramiro Patino4, Ivan Castro-Arellano5, Guadalupe Gordillo-Pérez 6, Allan Auclair 7, John Goolsby 8, Roger Ivan Rodriguez-Vivas 9 and Jose Guillermo Estrada-Franco10 1 Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA 2 USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, USA 3 Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, México 4 Department of Biology, University of Texas-Pan American, Edinburg, TX, USA 5 Department of Biology, College of Science and Engineering, Texas State University, San Marcos, TX, USA 6 Unidad de Investigación en Enfermedades Infecciosas, Centro Médico Nacional SXXI, IMSS, Distrito Federal, México 7 Environmental Risk Analysis Systems, Policy and Program Development, Animal and Plant Health Inspection Service, United States Department of Agriculture, Riverdale, MD, USA 8 Cattle Fever Tick Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Edinburg, TX, USA 9 Facultad de Medicina Veterinaria y Zootecnia, Cuerpo Académico de Salud Animal, Universidad Autónoma de Yucatán, Mérida, México 10 Facultad de Medicina Veterinaria Zootecnia, Centro de Investigaciones y Estudios Avanzados en Salud Animal, Universidad Autónoma del Estado de México, Toluca, México Edited by: Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic Juan-Carlos Navarro, Universidad focus and have pathogens circulating in geographic regions encircling multiple geopoliti- Central de Venezuela, Venezuela cal boundaries.
    [Show full text]
  • Enter the Bank Vole
    Bryan Schønecker The Bank Vole as Experimental Animal Second Edition Frydenskrig Forlag The Bank Vole as Experimental Animal, Second Edition Copyright © Bryan Schønecker 2014 All rights reserved Published by Frydenskrig Forlag, Denmark Cover and photos by Bryan Schønecker Font: Georgia ISBN-13: 978-87-997324-0-1 (EPUB) ISBN-13: 978-87-997324-1-8 (PDF) First Edition by Saxo Publish, Denmark, 2013 Other books by the author: Student’s guide to Diabetes. 2013 Student’s guide to Epilepsy. 2013 Student’s guide to Animal Stereotypies. 2013 Student’s guide to Animal Models. 2013 Contents. Preface 1 Abbreviations 2 Chapter 1 Enter the bank vole 3 1.1 Name. 3 1.2 Appearance and measurements. 4 1.3 Placement in the phylogeny. 4 1.4 Distribution and population dynamics. 5 1.5 Habitat and food. 7 1.6 Parasites, bacteria and viruses in wild bank voles. 7 1.7 Breeding season in the wild. 9 1.8 Reproduction and longevity in captivity. 9 1.9 Diurnal activity in captivity. 11 Chapter 2 How to get your bank voles 12 2.1 Legal matters. 12 2.2 Possible ways to get some bank voles. 12 2.3 How to catch your bank voles. 13 2.3.1 The Sherman trap. 13 2.3.2 The Ugglan Special #1 trap. 15 2.3.3 My personal favourite - the Ugglan trap. 16 2.4 Baiting the trap. 17 2.5 Placing the traps. 17 2.6 Checking the traps. 19 2.7 Confusion with field voles. 19 Chapter 3 How to keep your bank voles 20 3.1 Precautions against potential zoonoses.
    [Show full text]
  • Zoonotic Pathogens of Peri-Domestic Rodents
    Zoonotic Pathogens of Peri-domestic Rodents By Ellen G. Murphy University of Liverpool September 2018 This thesis is submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy Contents Acknowledgments………………………………………………………………….. iii Abstract ……………….……………………………………………….…………… iv Abbreviations………………………………………………………………………... v-vi 1. Chapter One………………………...…………………………………………..... 1-46 General Introduction and literature review 2. Chapter Two……………………………………………………………………… 47-63 Rodent fieldwork: A review of the fieldwork methodology conducted throughout this PhD project and applications for further studies 3. Chapter Three…………….….…………………………………………………... 64-100 Prevalence and Diversity of Hantavirus species circulating in British rodents 3.0. Abstract………………………………………………………………………….. 65 3.1. Introduction…........................................................................................................ 66-68 3.2. Materials and Methods…………………………………………..………………. 69-73 3.3. Results……………………………….……...…………………………………… 74-88 3.4. Discussion and Conclusion…………………………………..………………….. 89-100 4. Chapter Four……………………………………………………………………... 101-127 LCMV: Prevalence of LCMV in British rodents 4.0. Abstract………………………………………………………………………….. 102 4.1. Introduction……………………………………………………………………… 103-104 4.2. Materials and Methods…………………………………………………………... 105-109 4.3. Results………………………………………………………………………….... 110-119 4.4. Discussion and Conclusion……………………………………………………… 120-127 i 5. Chapter Five…………………………………………………………………….... 128-151
    [Show full text]
  • Insect Biodiversity: Science and Society, II R.G
    In: Insect Biodiversity: Science and Society, II R.G. Foottit & P.H. Adler, editors) John Wiley & Sons 2018 Chapter 17 Biodiversity of Ectoparasites: Lice (Phthiraptera) and Fleas (Siphonaptera) Terry D. Galloway Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada https://doi.org/10.1002/9781118945582.ch17 Summary This chapter addresses the two insect orders in which all known species are ectoparasites. The sucking and chewing lice (Phthiraptera) are hemimetabolous insects that spend their entire lives on the bodies of their hosts. Fleas (Siphonaptera), on the other hand, are holometabolous. The diversity of these ectoparasites is limited by the diversity of the birds and mammals available as hosts. Determining the community diversity of lice and fleas is essential to understanding ecological structure and interactions, yet offers a number of challenges to the ectoparasitologist. The chapter explores medical and veterinary importance of lice and fleas. They are more likely to be considered detrimental parasites, perhaps even a threat to conservation efforts by their very presence or by the disease agents they transmit. Perez-Osorio emphasized the importance of a more objective approach to conservation strategies by abandoning overemphasis on charismatic fauna and setting priorities in ecological management of wider biodiversity issues. When most people see a bird or mammal, they don’t look beneath the feathers or hair of that animal to see what is hidden. They see the animal at its face value, and seldom appreciate the diversity of life before them. The animal is typically a mobile menagerie, infested by external parasites and their body laden with internal parasites and pathogens.
    [Show full text]