Structural Basis for the Mechanism of ATP-Dependent Acetone Carboxylation Received: 6 February 2017 Florence Mus1, Brian J

Total Page:16

File Type:pdf, Size:1020Kb

Structural Basis for the Mechanism of ATP-Dependent Acetone Carboxylation Received: 6 February 2017 Florence Mus1, Brian J www.nature.com/scientificreports OPEN Structural Basis for the Mechanism of ATP-Dependent Acetone Carboxylation Received: 6 February 2017 Florence Mus1, Brian J. Eilers2, Alexander B. Alleman1, Burak V. Kabasakal3, Jennifer N. Wells3, Accepted: 21 June 2017 James W. Murray3, Boguslaw P. Nocek4, Jennifer L. DuBois2 & John W. Peters1 Published: xx xx xxxx Microorganisms use carboxylase enzymes to form new carbon-carbon bonds by introducing carbon − dioxide gas (CO2) or its hydrated form, bicarbonate (HCO3 ), into target molecules. Acetone − carboxylases (ACs) catalyze the conversion of substrates acetone and HCO3 to form the product acetoacetate. Many bicarbonate-incorporating carboxylases rely on the organic cofactor biotin for the activation of bicarbonate. ACs contain metal ions but not organic cofactors, and use ATP to activate substrates through phosphorylation. How the enzyme coordinates these phosphorylation events and new C-C bond formation in the absence of biotin has remained a mystery since these enzymes were discovered. The first structural rationale for acetone carboxylation is presented here, focusing on the 360 kDa (αβγ)2 heterohexameric AC from Xanthobacter autotrophicus in the ligand-free, AMP-bound, and acetate coordinated states. These structures suggest successive steps in a catalytic cycle revealing that AC undergoes large conformational changes coupled to substrate activation by ATP to perform C-C bond ligation at a distant Mn center. These results illustrate a new chemical strategy for the conversion of CO2 into biomass, a process of great significance to the global carbon cycle. Carboxylases are enzymes that catalyze the incorporation of CO2 into organic substrates. Assimilatory carboxy- lases use the carboxylation reaction to directly transform diverse carbon sources into central metabolites as part of autotrophic (photosynthetic) or heterotrophic metabolic pathways. The latter pathways are essential for the biological assimilation of often chemically intransigent, poorly activated organic compounds1. Most enzymatic carboxylation reactions follow the same mechanistic principle: nucleophilic activation of substrates and electro- 2 philic activation of CO2 . However, the stepwise mechanisms of carboxylation reactions differ in essential ways with respect to co-substrate, co-factor or metal requirements. Knowledge of these mechanisms provides the basis for an increased fundamental understanding of carboxylation chemistry, and contributes to future strategies for 3 CO2 capture. These in turn may mitigate the effects of increasing concentrations of CO2 on the global climate . Acetone carboxylases are assimilatory carboxylases that catalyze the conversion of substrates acetone and − HCO3 to form the product acetoacetate (Fig. 1a) allowing bacteria to incorporate this small, volatile and envi- ronmentally toxic ketone into biomass. In general, bicarbonate-dependent carboxylases catalyze the net dehy- 4 dration of H2CO3, retaining CO2 as a biotin adduct . However, ACs purified from multiple bacterial sources have been shown to be free of biotin or any other organic cofactor, instead containing quantities of manganese, zinc, and iron within a heteromultimeric protein complex5–8. These carboxylases were also shown to convert ATP to AMP and two inorganic phosphate anions, suggesting that they catalyze the phosphorylation-dependent activa- tion of both carbon substrates from a single nucleotide9. This reaction sets ACs apart from the phylogenetically related acetophenone carboxylases (APCs). APC hydrolyses two ATP to ADP in order to activate acetophenone and bicarbonate10. The AC β subunit and APC α subunits share homology and both possess nucleotide-binding sites. The structure of APC was recently deter- mined, revealing that the two MgATP binding sites that are the proposed sites for the activation of acetophenone and bicarbonate are separated by ~50 Å. A large conformational shift was proposed to bring the two phosphoryl- ated intermediates in closer proximity for catalysis11. 1Insitutite of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA. 2Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA. 3Department of Life Sciences, Imperial College, London, SW7 2AZ, UK. 4Structural Biology Center, Argonne National Laboratory, Argonne, IL, 60439, USA. Florence Mus and Brian J. Eilers contributed equally to this work. Correspondence and requests for materials should be addressed to J.W.P. (email: [email protected]) SCIENTIFIC REPORTS | 7: 7234 | DOI:10.1038/s41598-017-06973-8 1 www.nature.com/scientificreports/ Figure 1. Overall reaction scheme and crystal structure of AMP bound AC. (a) Reaction of ACs. The sequential phosphorylation of the products acetone and then bicarbonate by the γ then β phosphates from ATP, respectively, creates the highly reactive intermediates phosphoenolacetone and carboxyphosphate. These are proposed to react together at the Mn2+ active site to create acetoacetate and two molecules of inorganic phosphate (Pi). (b) The overall structure of the (αβγ)2 heterohexameric AC enzyme is shown: α subunits (green), β subunits (blue), γ subunits (violet). One monomer is transparent to indicate the dimer interface as well as the nucleotide binding site. Mn2+, Zn2+ and AMP binding sites are indicated with arrows. Distinct from APC, AC from Xanthobacter autotrophicus Py2 has been shown to activate both acetone and bicarbonate with a single ATP, presumably using both γ and β phosphates in a sequential fashion, for a ligation reaction at a Mn-containing catalytic site9. The lack of structural information on ACs has been a significant impediment in formulating plausible mechanistic hypotheses. Here we present the first x-ray crystal struc- tures of the 360 kDa (αβγ)2 heterohexameric AC. Surprisingly, the ATP binding site and the catalytically essen- tial Mn cofactor, long assumed to be adjacent to one another on the basis of previous spectroscopic studies12, are separated by ~40 Å. A series of structures in the ligand free, AMP-bound, and acetate-coordinated states, which we represent as approximate mechanistically relevant states, allows the inference of a new mechanism for enzyme-mediated CO2 capture and functionalization. Results and Discussion Like many carboxylases, AC is a heteromultimeric enzyme complex. Its architecture consists of two heterotri- meric αβγ subunits joined by the interacting α-subunits to form a dimeric core (Figs 1b and S1). The α subunit (75 kDa) shares a large interface with the β subunit (85 kDa). The γ subunit (20 kDa) interacts mostly with the α subunit and shares a small contact with the β subunit through a helix at the carboxyl end of the γ subunit. This interaction area between all three subunits creates a cleft on the solvent surface. AC’s α subunit shows high structural similarity to APCβ and contains similar internal folding domains, including the α/β interface. This interface is anchored by the large helix-2 on the α-subunit that leads into the polyproline II-like helix bundle similar to what is observed in APC11. The β subunit interface is made up of two α/β sandwich-like domains with exposed α-helices that interact directly with helix-2 from the α subunit. The nucleotide-binding β subunit has low structural similarity with kinases such as glycerol kinase (PDB: 3FLC, DALI-Z score 10.9), pantothenate kinase (PDB: 3BF3, DALI-Z score 12.2), and L-rhamnulose kinase (PDB: 2CGL, DALI-Z score 9.1), which share similar nucleotide-binding pockets13–15. The β subunit also shares nucleotide binding residues with mutually homologous subunits APCα and APCα’ (PDB: 5L9W, DALI-Z score 36.5 and 46.4 respectively). The γ-subunits, which bear homology to nucleotide binding Yippee-like domains, contain conserved cysteine residues (Cys74, Cys76, Cys124, Cys127) that form a 4-coordinate Zn binding site16. The role of the γ-subunit is not clear, and the Zn ion is not predicted, from prior data, to have a catalytic role. X. autotrophicus Py2 AC (XaAC) differs from that reported for Aromatoleum aromaticum (AaAC). XaAC has been reported as having 1.3 mol Mn and 0.7 mol Fe per mol of enzyme and AaAC has been reported to have significantly different metal content with no Mn and 2.2 mol Fe per mol of enzyme8. In addition, the stoichiometry for ATP consumption reported is also different with XaAC requiring only 1 ATP for acetoacetate formation and AaAC requiring 2 ATP5, 8. These differences are surprising given the high level of sequence conservation of the two enzymes. However, the observed differences in metal content in ACs purified from different sources are likely related to the differences in stoichiometry for ATP. Although the presence of Fe has been observed in previous studies of X. autotrophicus Py2 AC (0.7 Fe/ 5 (αβγ)2) , K-edge anomalous difference data were not consistent with Fe in the structures presented here (see Supplementary Data, Table S2). The lack of Fe in the crystal data and previous studies by Boyd et al.12 suggest that Fe may associate with the enzyme in the absence of manganese but is not a catalytically effective subsitute12. Both the recombinant and native X. autotrophicus Py2 acetone carboxylases used for crystallization studies actively SCIENTIFIC REPORTS | 7: 7234 | DOI:10.1038/s41598-017-06973-8 2 www.nature.com/scientificreports/ Figure 2. Conformational shift upon nucleotide binding. (a) Ligand-free structure (α subunits: olive; β subunits: violet; γ subunits: limon) showing a substrate channel (grey)
Recommended publications
  • Thesis, Dissertation
    THE COENZYME M BIOSYNTHETIC PATHWAY IN PROTEOBACTERIUM XANTHOBACTER AUTOTROPHICUS PY2 by Sarah Eve Partovi A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry MONTANA STATE UNIVERSITY Bozeman, Montana January 2018 ©COPYRIGHT by Sarah Eve Partovi 2018 All Rights Reserved ii DEDICATION I dedicate this dissertation to my family, without whom none of this would have been possible. My husband Ky has been a part of the graduate school experience since day one, and I am forever grateful for his support. My wonderful family; Iraj, Homa, Cameron, Shireen, Kevin, Lin, Felix, Toby, Molly, Noise, Dooda, and Baby have all been constant sources of encouragement. iii ACKNOWLEDGEMENTS First, I would like to acknowledge Dr. John Peters for his mentorship, scientific insight, and for helping me gain confidence as a scientist even during the most challenging aspects of this work. I also thank Dr. Jennifer DuBois for her insightful discussions and excellent scientific advice, and my other committee members Dr. Brian Bothner and Dr. Matthew Fields for their intellectual contributions throughout the course of the project. Drs. George Gauss and Florence Mus have contributed greatly to my laboratory technique and growth as a scientist, and have always been wonderful resources during my time in the lab. Members of the Peters Lab past and present have all played an important role during my time, including Dr. Oleg Zadvornyy, Dr. Jacob Artz, and future Drs. Gregory Prussia, Natasha Pence, and Alex Alleman. Undergraduate researchers/REU students including Hunter Martinez, Andrew Gutknecht and Leah Connor have worked under my guidance, and I thank them for their dedication to performing laboratory assistance.
    [Show full text]
  • Transcriptional Regulation of the Acetone Carboxylase Operon Via Two-Component Signal Transduction in Helicobacter Pylori
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 7-2012 Transcriptional Regulation of the Acetone Carboxylase Operon via Two-Component Signal Transduction in Helicobacter pylori Samuel Emerson Harvey College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Biology Commons Recommended Citation Harvey, Samuel Emerson, "Transcriptional Regulation of the Acetone Carboxylase Operon via Two- Component Signal Transduction in Helicobacter pylori" (2012). Undergraduate Honors Theses. Paper 471. https://scholarworks.wm.edu/honorstheses/471 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Transcriptional Regulation of the Acetone Carboxylase Operon via Two- Component Signal Transduction in Helicobacter pylori A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Biology from The College of William & Mary By Samuel Emerson Harvey Accepted for ____________________________ (Honors) _______________________________________ Dr. Mark Forsyth, Chair _______________________________________ Dr. Oliver Kerscher _______________________________________ Dr. Kurt Williamson _______________________________________ Dr. Randolph Coleman Williamsburg, VA April 30, 2012 Abstract Helicobacter pylori is a gram negative gastric pathogen that infects the mucosal lining of the human stomach and is present is nearly half of the human population. H. pylori is the etiologic agent of peptic ulcer disease, and infection is highly associated with the development of gastric cancer. The H. pylori genome encodes three complete two- component signal transduction systems (TCSTs): ArsRS, CrdRS, and FlgRS.
    [Show full text]
  • Purification and Characterization of Acetone Carboxylase from Xanthobacter Strain Py2
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 8456–8461, August 1997 Biochemistry Purification and characterization of acetone carboxylase from Xanthobacter strain Py2 MIRIAM K. SLUIS AND SCOTT A. ENSIGN* Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300 Communicated by R. H. Burris, University of Wisconsin, Madison, WI, June 9, 1997 (received for review March 24, 1997) ABSTRACT Acetone metabolism in the aerobic bacte- aerobic, Gram-negative bacterium (14). The metabolism of rium Xanthobacter strain Py2 proceeds by a carboxylation acetone by Xanthobacter Py2 was recently shown to proceed by reaction forming acetoacetate as the first detectable product. aCO2-dependent pathway analogous to that discussed above In this study, acetone carboxylase, the enzyme catalyzing this (3). The carboxylation of acetone to form acetoacetate was reaction, has been purified to homogeneity and characterized. reconstituted in cell extracts with the addition of ATP (3). This Acetone carboxylase was comprised of three polypeptides with study provided the first direct evidence for the involvement of molecular weights of 85,300, 78,300, and 19,600 arranged in an an ATP-dependent carboxylase in bacterial acetone metabo- a2b2g2 quaternary structure. The carboxylation of acetone lism. In this study, acetone carboxylase has been purified to was coupled to the hydrolysis of ATP and formation of 1 mol homogeneity. The molecular properties of acetone carboxylase AMP and 2 mol inorganic phosphate per mol acetoacetate are described, and evidence for a novel mechanism of acetone formed. ADP was also formed during the course of acetone carboxylation coupled to ATP hydrolysis and AMP and inor- consumption, but only accumulated at low, substoichiometric ganic phosphate formation is presented.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,334,531 B2 Li Et Al
    USOO933.4531B2 (12) United States Patent (10) Patent No.: US 9,334,531 B2 Li et al. (45) Date of Patent: *May 10, 2016 (54) NUCLECACIDAMPLIFICATION (56) References Cited U.S. PATENT DOCUMENTS (71) Applicant: LIFE TECHNOLOGIES 5,223,414 A 6/1993 Zarling et al. CORPORATION, Carlsbad, CA (US) 5,616,478 A 4/1997 Chetverin et al. 5,670,325 A 9/1997 Lapidus et al. (72) Inventors: Chieh-Yuan Li, El Cerrito, CA (US); 5,928,870 A 7/1999 Lapidus et al. David Ruff, San Francisco, CA (US); 5,958,698 A 9, 1999 Chetverinet al. Shiaw-Min Chen, Fremont, CA (US); 6,001,568 A 12/1999 Chetverinet al. 6,033,881 A 3/2000 Himmler et al. Jennifer O'Neil, Wakefield, MA (US); 6,074,853. A 6/2000 Pati et al. Rachel Kasinskas, Amesbury, MA (US); 6,306,590 B1 10/2001 Mehta et al. Jonathan Rothberg, Guilford, CT (US); 6.432,360 B1 8, 2002 Church Bin Li, Palo Alto, CA (US); Kai Qin 6,440,706 B1 8/2002 Vogelstein et al. Lao, Pleasanton, CA (US) 6,511,803 B1 1/2003 Church et al. 6,929,915 B2 8, 2005 Benkovic et al. (73) Assignee: Life Technologies Corporation, 7,270,981 B2 9, 2007 Armes et al. 7,282,337 B1 10/2007 Harris Carlsbad, CA (US) 7,399,590 B2 7/2008 Piepenburg et al. 7.432,055 B2 * 10/2008 Pemov et al. ................ 435/6.11 (*) Notice: Subject to any disclaimer, the term of this 7,435,561 B2 10/2008 Piepenburg et al.
    [Show full text]
  • Complete Thesis
    University of Groningen Omega transaminases: discovery, characterization and engineering Palacio, Cyntia Marcela IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2019 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Palacio, C. M. (2019). Omega transaminases: discovery, characterization and engineering. Rijksuniversiteit Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 01-10-2021 Omega transaminases: discovery, characterization and engineering Cyntia Marcela Palacio 2019 Cover design by Cyntia Palacio and Joris Goudsmits, adapted from a decorative mosaic artwork on the railway underpass on Moesstraat, Groningen.
    [Show full text]
  • Verrucomicrobial Methanotrophs Grow on Diverse C3 Compounds and Use
    www.nature.com/ismej ARTICLE OPEN Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone 1 1 1 2 3 fi 4 Samuel Imisi Awala , Joo-Han Gwak , Yong-Man Kim ✉, So-Jeong Kim , Andrea Strazzulli , Peter F. Dun eld , Hyeokjun Yoon5, Geun-Joong Kim6 and Sung-Keun Rhee 1 © The Author(s) 2021 Short-chain alkanes (SCA; C2-C4) emitted from geological sources contribute to photochemical pollution and ozone production in the atmosphere. Microorganisms that oxidize SCA and thereby mitigate their release from geothermal environments have rarely been studied. In this study, propane-oxidizing cultures could not be grown from acidic geothermal samples by enrichment on propane alone, but instead required methane addition, indicating that propane was co-oxidized by methanotrophs. “Methylacidiphilum” isolates from these enrichments did not grow on propane as a sole energy source but unexpectedly did grow on C3 compounds such as 2-propanol, acetone, and acetol. A gene cluster encoding the pathway of 2-propanol oxidation to pyruvate via acetol was upregulated during growth on 2-propanol. Surprisingly, this cluster included one of three genomic operons (pmoCAB3) encoding particulate methane monooxygenase (PMO), and several physiological tests indicated that the encoded PMO3 enzyme mediates the oxidation of acetone to acetol. Acetone-grown resting cells oxidized acetone and butanone but not methane or propane, implicating a strict substrate specificity of PMO3 to ketones instead of alkanes. Another PMO-encoding operon, pmoCAB2, was induced only in methane-grown cells, and the encoded PMO2 could be responsible for co-metabolic oxidation of propane to 2-propanol.
    [Show full text]
  • Physiology and Biochemistry of Aromatic Hydrocarbon-Degrading Bacteria That Use Chlorate And/Or Nitrate As Electron Acceptor
    Invitation for the public defense of my thesis Physiology and biochemistry of aromatic hydrocarbon-degrading of aromatic and biochemistry Physiology bacteria that use chlorate and/or nitrate as electron acceptor as electron nitrate and/or use chlorate that bacteria Physiology and biochemistry Physiology and biochemistry of aromatic hydrocarbon-degrading of aromatic hydrocarbon- degrading bacteria that bacteria that use chlorate and/or nitrate as electron acceptor use chlorate and/or nitrate as electron acceptor The public defense of my thesis will take place in the Aula of Wageningen University (Generall Faulkesweg 1, Wageningen) on December 18 2013 at 4:00 pm. This defense is followed by a reception in Café Carré (Vijzelstraat 2, Wageningen). Margreet J. Oosterkamp J. Margreet Paranimphs Ton van Gelder ([email protected]) Aura Widjaja Margreet J. Oosterkamp ([email protected]) Marjet Oosterkamp (911 W Springfield Ave Apt 19, Urbana, IL 61801, USA; [email protected]) Omslag met flap_MJOosterkamp.indd 1 25-11-2013 5:58:31 Physiology and biochemistry of aromatic hydrocarbon-degrading bacteria that use chlorate and/or nitrate as electron acceptor Margreet J. Oosterkamp Thesis-MJOosterkamp.indd 1 25-11-2013 6:42:09 Thesis committee Thesis supervisor Prof. dr. ir. A. J. M. Stams Personal Chair at the Laboratory of Microbiology Wageningen University Thesis co-supervisors Dr. C. M. Plugge Assistant Professor at the Laboratory of Microbiology Wageningen University Dr. P. J. Schaap Assistant Professor at the Laboratory of Systems and Synthetic Biology Wageningen University Other members Prof. dr. L. Dijkhuizen, University of Groningen Prof. dr. H. J. Laanbroek, University of Utrecht Prof.
    [Show full text]
  • Ca. P. Ectocarpi” Ec32 and the P
    Frontiers in Genetics - The “Ca. Phaeomarinobacter ectocarpi” genome – Data sheet 2 Page 1 Data sheet 2. Functional comparison of the “Ca. P. ectocarpi” Ec32 and the P. lavamentivorans DS- 1T genomes carried out using the RAST platform. Category Subcategory Subsystem Role “Ca. P. ectocarpi” only Amino Acids and Derivatives Alanine, serine, and glycine Alanine biosynthesis Valine--pyruvate aminotransferase (EC 2.6.1.66) Amino Acids and Derivatives Alanine, serine, and glycine Glycine cleavage system Sodium/glycine symporter GlyP Amino Acids and Derivatives Arginine; urea cycle, polyamines Arginine and Ornithine Degradation Ornithine cyclodeaminase (EC 4.3.1.12) Amino Acids and Derivatives Arginine; urea cycle, polyamines Polyamine Metabolism Putrescine transport ATP-binding protein PotA (TC 3.A.1.11.1) Amino Acids and Derivatives Branched-chain amino acids Branched-Chain Amino Acid Leucine-responsive regulatory protein, regulator for Biosynthesis leucine (or lrp) regulon and high-affinity branched-chain amino acid transport system Amino Acids and Derivatives Glutamine, glutamate, aspartate, asparagine; Glutamate and Aspartate uptake in Glutamate Aspartate periplasmic binding protein ammonia assimilation Bacteria precursor GltI (TC 3.A.1.3.4) Amino Acids and Derivatives Glutamine, glutamate, aspartate, asparagine; Glutamate and Aspartate uptake in Glutamate Aspartate transport system permease protein ammonia assimilation Bacteria GltJ (TC 3.A.1.3.4) Amino Acids and Derivatives Glutamine, glutamate, aspartate, asparagine; Glutamate and Aspartate
    [Show full text]
  • Carbonylation As a Key Reaction in Anaerobic Acetone Activation by Desulfococcus Biacutus
    Carbonylation as a Key Reaction in Anaerobic Acetone Activation by Desulfococcus biacutus Olga B. Gutiérrez Acosta,a,c Norman Hardt,b,c Bernhard Schinka,c Department of Biology,a Department of Chemistry,b and Konstanz Research School of Chemical Biology,c Universität Konstanz, Constance, Germany Downloaded from Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be iden- tified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell ex- tract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpy- rimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a http://aem.asm.org/ cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative -physiological substrate was found to be 153 ؎ 36 mU mg؊1 protein, and its activity was specifically induced in extracts of ace tone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subse- quent intermediate after acetoacetaldehyde was formed.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,353,390 B2 Yan Et Al
    US009353390B2 (12) United States Patent (10) Patent No.: US 9,353,390 B2 Yan et al. (45) Date of Patent: May 31, 2016 (54) GENETICALLY ENGINEERED MICROBES National Center for Biotechnology Information, National Library of AND METHODS FOR PRODUCING Medicine, National Institutes of Health, GenBank Locus 4-HYDROXYCOUMARIN NP 252920. Accession No. NP 252920, "isochorismate-pyruvate lyase IPseudomonas aeruginosa PAO1),” online). Bethesda, MD (71) Applicant: University of Georgia Research retrieved on Aug. 3, 2015. Retrieved from the Internet: <URL: Foundation, Inc., Athens, GA (US) http://www.ncbi.nlm.nih.gov/protein/NP 252920. 1; 3 pgs. National Center for Biotechnology Information, National Library of (72) Inventors: Yajun Yan, Athens, GA (US); Yuheng Medicine, National Institutes of Health, GenBank Locus Lin, Marietta, GA (US) NP 415125. Accession No. NP 415125. "isochorismate synthase 1 Escherichia coli str. K-12 substr. MG 1655, online. Bethesda, (73) Assignee: University of Georgia Research MD retrieved on Aug. 3, 2015). Retrieved from the Internet: <URL: http://www.ncbi.nlm.nih.gov/protein/NP 415125.1.>; 3 pgs. Foundation, Inc., Athens, GA (US) Ajikumar et al. “Isoprenoid Pathway Optimization for Taxol Precur (*) Notice: Subject to any disclaimer, the term of this sor Overproduction in Escherichia coli" Science, Oct. 1, 2010; 330(6000):70-4. patent is extended or adjusted under 35 Anthony et al. “Optimization of the mevalonate-based isoprenoid U.S.C. 154(b) by 0 days. biosynthetic pathway in Escherichia coli for production of the anti malarial drug precursor amorpha-4,11-diene' Metab. Eng. Jan. 2009; (21) Appl. No.: 14/304,105 11(1): 13-9.
    [Show full text]
  • Structure of the Acetophenone Carboxylase Core Complex
    www.nature.com/scientificreports OPEN Structure of the acetophenone carboxylase core complex: prototype of a new class of Received: 16 September 2016 Accepted: 24 November 2016 ATP-dependent carboxylases/ Published: 05 January 2017 hydrolases Sina Weidenweber1, Karola Schühle2, Ulrike Demmer1, Eberhard Warkentin1, Ulrich Ermler1 & Johann Heider2 Degradation of the aromatic ketone acetophenone is initiated by its carboxylation to benzoylacetate catalyzed by acetophenone carboxylase (Apc) in a reaction dependent on the hydrolysis of two ATP to ADP and Pi. Apc is a large protein complex which dissociates during purification into a heterooctameric Apc(αα′βγ)2 core complex of 482 kDa and Apcε of 34 kDa. In this report, we present the X-ray structure of the Apc(αα′βγ)2 core complex from Aromatoleum aromaticum at ca. 3 Å resolution which reveals a unique modular architecture and serves as model of a new enzyme family. Apcβ contains a novel domain fold composed of two β-sheets in a barrel-like arrangement running into a bundle of eight short polyproline (type II)-like helical segments. Apcα and Apcα′ possess ATP binding modules of the ASKHA superfamily integrated into their multidomain structures and presumably operate as ATP-dependent kinases for acetophenone and bicarbonate, respectively. Mechanistic aspects of the novel carboxylation reaction requiring massive structural rearrangements are discussed and criteria for specifically annotating the family members Apc, acetone carboxylase and hydantoinase are defined. Aromatic hydrocarbons are one of the most abundant classes of organic compounds in nature. They are primarily produced by plants as soluble secondary metabolic products or as components of the structural polymer lignin1.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]