Aureobasidium Pullulans - an Industrially Important Pullulan Producing Black Yeast

Total Page:16

File Type:pdf, Size:1020Kb

Aureobasidium Pullulans - an Industrially Important Pullulan Producing Black Yeast Int.J.Curr.Microbiol.App.Sci (2015) 4(10): 605-622 ISSN: 2319-7706 Volume 4 Number 10 (2015) pp. 605-622 http://www.ijcmas.com Review Article Aureobasidium pullulans - An Industrially Important Pullulan Producing Black Yeast Ranjan Singh1*, Rajeeva Gaur2, Shikha Bansal1, Pritha Biswas1, Prabhash K. Pandey3, Farrukh Jamal3, Soni Tiwari2 and Manogya K. Gaur4 1Department of Botany and Microbiology, St. Aloysius College (Autonomous), Jabalpur, M.P., India 2Department of Microbiology (DST-FIST Supported, Center of Excellence), Dr. R. M. L. Avadh University, Faizabad, U.P., India 3Department of Biochemistry, Dr. R. M. L. Avadh University, Faizabad, U.P., India 4D.G.M. Environment (ETP and Biocompost), Balrampur Distillery, Bhabhanan, Basti, U.P., India *Corresponding author A B S T R A C T Aureobasidium pullulans, popularly known as black yeast, is one of the most widespread saprophyte fungus associated with wide range of terrestrial and aquatic habitats, in temperate and tropical environment. It is a polymorphic fungus that is K e y w o r d s able to grow in single yeast-like cells or as septate polykaryotic hyphae showing synchronous conditions, with budding cells. This fungus has been exploited Aureobasidium potentially for commercial production of various enzymes (amylase, xylanase, pullulans, pectinase, etc), single cell protein, alkaloids and polysaccharide, especially Pullulan, pullulan. Pullulan has been considered as one of the important polysaccharide for Single Cell production of biodegradable plastics. The fungus has excellent genetic make-up to Protein, produce various important metabolites at commercial production with limited Agro-Industrial species. Some of the A. pullulans have potential antagonistic activity against a Waste, number of phytopathogenic fungi used as bio-control agents of post-harvest Production diseases. It has been found to be tolerant to many metal ions which are common pollutants of soil and water. Several strains of this fungus have ability to degrade xenobiotic compounds. In the light of the above facts, this review article has emphasized on the orientation, morphology, biochemical characteristics, habitats and economic potentials of this industrially important yeast. Introduction Aureobasidium pullulans (De Bary) G. fluctuating moisture content in phyllospere, Arnoud is a ubiquitous, polymorphic and and also isolated from damp indoor surfaces, oligotrophe black yeast like microfungus food and feed substances (65). It is well that occurs frequently in wide range of known as a naturally occurring epiphyte or tropical and temperate environment with endophyte of a wide range of plant species 605 Int.J.Curr.Microbiol.App.Sci (2015) 4(10): 605-622 (e.g. apple, grape, cucumber, green beans, include fresh water, estuarine and marine and cabbage) without causing any symptom sediments and sea water. Occurrence and of disease (1). Chronic human exposure to distribution of A. pullulans by fluorescence A. pullulans via humidifiers or air dye and found it frequently on the conditioners can lead to hypersensitivity phylloplane of several plants was studied pneumonitis or humidifier lung . This (47). A. pullulans was isolated from green condition is characterized acutely by and senescent sugar maples, but it did not dyspnea, cough, chest infilterates and acute seem to be inducer and biodeteriorator (36). inflammatory reaction. The strains causing Seasonal occurrence of A. pullulans from infections in humans were reclassified to March to April in river Danube (77). This A.melanogenum (23) fungus has been isolated from several locations of Thailand (56, 57, 58). Pullulan It has also been found in the osmotically producing novel color variant strain of A. stressed environments like hyper saline pullulans was isolated from the phylloplane water in salterns (24) and the rocks (81). of Ficus sp in India (72). Similarly, A. This fungus disperses easily due to pullulans was isolated strain N13D from production of yeast-like propagules in large deep sea sediments of the Pacific Ocean quantity and found globally but rarely (28). A. pullulans was isolated from needles reported in the intense cold environment, as and twigs of pine plantation from northern investigations on fungal diversity are limited Spain (92). The morphological forms of this to frozen Antarctic soils and Siberian fungus are governed by many factors like permafrost where basidiomycetous yeasts temperature, pH, and oxygen concentration. were found (3). Several Aureobasidium like Nutritional factors mainly the source and black yeasts were isolated from glacial and concentration of carbon, nitrogen and sub-glacial ice in the coastal Arctic habitats mineral affect the morphology mainly yeast and the adjacent sea water (91). From the like cells which are responsible for the available records, it is apparent that this production of pullulan, an important fungus is most common in temperate zone polysaccharide. Morphological studies have with numerous records both from the British been well reviewed (17). This review has Isles and the United States including Alaska, concluded that A. pullulans, is an Antarctica, Denmark, Germany, omnipresent fungus which can survive in Netherlands, Poland, Austria, Czech different type of habitat. Some of the recent Republic, Russia and Japan. There are studies on the behavior of this fungus clearly several reports of its occurrence in show two important characteristics of anti- Mediterranean and arid zones including fungal and antibacterial activity along with Italy, France, Egypt, Iraq, Pakistan and pullulan production. This approach makes South Africa. It has also been extensively such strain more economical for industrial isolated from tropical and subtropical region use. Earlier, A. pullulans was identified as namely, Brazil, India, China, Thailand, Dematium pullulans De Bary (1884) and Malaysia, Jamaica (West Indies), etc. An Pullularia pullulans (De Bary) Berkhout extensive list of the habitats and geography (1866). Using the criteria of conidiogenesis from which strains of A. pullulans have been that is, synchronous holoblastic conidial isolated is well documented. (39, 91). The production, A.pullulans was placed fungus has been frequently isolated from previously under Fungi Imperfecti, Order moorland, peat bogs or peat podzol and Moniliales, and Family Dematiaceae. forest soils. Other noteworthy habitats However, further reports included it under 606 Int.J.Curr.Microbiol.App.Sci (2015) 4(10): 605-622 Ascomycota though; perfect stage has not control and biodeterioration of xenobiotic yet been reported (14). In recent compounds has also been added in this classification, A. pullulans is regarded as review. Although the author has covered Ascomycetous yeast and is placed in the almost all the potential areas in brief, but Order Dothideales, Family Dothideaceae pullulan is little covered. However, after a (90). The fungus was taxonomically long gap, Leathers wrote a review entitled characterized on the basis of its Pullulan in 2002, emphasing on historical morphological and nutritional characteristics outline, chemical structures various comprising single species with three analytical and assay methods of pullulan different varieties such as A. pullulans var. including biosynthesis of pullulan in pullulans, A. pullulans var. melanogenum different nutrient sources. The genetics of A. and A. pullulans var. aubasidani Yurlova pullulans has been extensively covered in (15). Four strains of arctic Aureobasidium this review. Since then several recent reports have been discovered, that is, A. pullulans have come regarding novel method of var. pullulans, A. pullulans var. immobilization, use of cheaper carbon melanogenum, A. pullulans var. subglaciale sources and use of continuous fermentation and A. pullulans var. namibiae (91). for better yield and productivity. A novel fungus Eurotium chevalieri has also been A. pullulans exhibits polymorphism, for reported to produce pullulan which was at it can grow as budding yeast or as mycelia par to A. pullulans, commenced the depending upon environmental conditions. possibility of the isolation of newer strains The life cycle of A. pullulans was from natural ecosystem (20). Moreover, a thoroughly reviewed (15). The formation of review on pullulan emphasing on various dark-coloured chlamydospores is the factors namely; pH, various substrates, characteristic feature of this fungus (59). molecular weight distribution of native Some workers have described the vegetative pullulan along with molecular and cycle of A. pullulans as well as colony hydrodynamic property of pullulan and also characteristics on solid nutrient medium. mentioned, a novel area that is biomedical Colonies are initially smooth and eventually application of pullulan (70). A review become covered with slime. Starting as entitled Bioproducts from A. pullulans, a yellow cream, light pink or light brown, the biotechnologically important yeast has colonies finally become blackish due to been written elaborating some new production of a specific melanin at metabolites like Siderophores production by chlamydospore production stage. When A. pullulans and biocontrol efficiency observed under light microscope, the hyphae against post-harvest diseases. However, they look hyaline, smooth and thin-walled, 2 - 16 have also shown similar beneficial m wide with cells often wider than long metabolites like various enzymes namely; forming rough and compact mycelia. A. protease, amylase, lipase, cellulase, xylanase pullulans can
Recommended publications
  • Development and Evaluation of Rrna Targeted in Situ Probes and Phylogenetic Relationships of Freshwater Fungi
    Development and evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi vorgelegt von Diplom-Biologin Christiane Baschien aus Berlin Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. sc. techn. Lutz-Günter Fleischer Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: Prof. Dr. rer. nat. Felix Bärlocher Berichter: Dr. habil. Werner Manz Tag der wissenschaftlichen Aussprache: 19.05.2003 Berlin 2003 D83 Table of contents INTRODUCTION ..................................................................................................................................... 1 MATERIAL AND METHODS .................................................................................................................. 8 1. Used organisms ............................................................................................................................. 8 2. Media, culture conditions, maintenance of cultures and harvest procedure.................................. 9 2.1. Culture media........................................................................................................................... 9 2.2. Culture conditions .................................................................................................................. 10 2.3. Maintenance of cultures.........................................................................................................10
    [Show full text]
  • Microbial and Chemical Analysis of Non-Saccharomyces Yeasts from Chambourcin Hybrid Grapes for Potential Use in Winemaking
    fermentation Article Microbial and Chemical Analysis of Non-Saccharomyces Yeasts from Chambourcin Hybrid Grapes for Potential Use in Winemaking Chun Tang Feng, Xue Du and Josephine Wee * Department of Food Science, The Pennsylvania State University, Rodney A. Erickson Food Science Building, State College, PA 16803, USA; [email protected] (C.T.F.); [email protected] (X.D.) * Correspondence: [email protected]; Tel.: +1-814-863-2956 Abstract: Native microorganisms present on grapes can influence final wine quality. Chambourcin is the most abundant hybrid grape grown in Pennsylvania and is more resistant to cold temperatures and fungal diseases compared to Vitis vinifera. Here, non-Saccharomyces yeasts were isolated from spontaneously fermenting Chambourcin must from three regional vineyards. Using cultured-based methods and ITS sequencing, Hanseniaspora and Pichia spp. were the most dominant genus out of 29 fungal species identified. Five strains of Hanseniaspora uvarum, H. opuntiae, Pichia kluyveri, P. kudriavzevii, and Aureobasidium pullulans were characterized for the ability to tolerate sulfite and ethanol. Hanseniaspora opuntiae PSWCC64 and P. kudriavzevii PSWCC102 can tolerate 8–10% ethanol and were able to utilize 60–80% sugars during fermentation. Laboratory scale fermentations of candidate strain into sterile Chambourcin juice allowed for analyzing compounds associated with wine flavor. Nine nonvolatile compounds were conserved in inoculated fermentations. In contrast, Hanseniaspora strains PSWCC64 and PSWCC70 were positively correlated with 2-heptanol and ionone associated to fruity and floral odor and P. kudriazevii PSWCC102 was positively correlated with a Citation: Feng, C.T.; Du, X.; Wee, J. Microbial and Chemical Analysis of group of esters and acetals associated to fruity and herbaceous aroma.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • APP202274 S67A Amendment Proposal Sept 2018.Pdf
    PROPOSAL FORM AMENDMENT Proposal to amend a new organism approval under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Applicant Damien Fleetwood Key contact [email protected] www.epa.govt.nz 2 Proposal to amend a new organism approval Important This form is used to request amendment(s) to a new organism approval. This is not a formal application. The EPA is not under any statutory obligation to process this request. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This form may be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0168 3 Proposal to amend a new organism approval 1. Which approval(s) do you wish to amend? APP202274 The organism that is the subject of this application is also the subject of: a. an innovative medicine application as defined in section 23A of the Medicines Act 1981. Yes ☒ No b. an innovative agricultural compound application as defined in Part 6 of the Agricultural Compounds and Veterinary Medicines Act 1997. Yes ☒ No 2. Which specific amendment(s) do you propose? Addition of following fungal species to those listed in APP202274: Aureobasidium pullulans, Fusarium verticillioides, Kluyveromyces species, Sarocladium zeae, Serendipita indica, Umbelopsis isabellina, Ustilago maydis Aureobasidium pullulans Domain: Fungi Phylum: Ascomycota Class: Dothideomycetes Order: Dothideales Family: Dothioraceae Genus: Aureobasidium Species: Aureobasidium pullulans (de Bary) G.
    [Show full text]
  • View with Observations on Aureobasidium Pullulans
    OPEN ACCESS Freely available online Fungal Genomics & Biology Research Article Characterization of Aureobasidium pullulans Isolates Selected as Biocontrol Agents Against Fruit Decay Pathogens Janja Zajc1,2*, Anja Černoša 2, Alessandra Di Francesco3, Raffaello Castoria4, Filippo De Curtis4, Giuseppe 4 5 5 6 2 2 Lima , Hanene Badri , Haissam Jijakli , Antonio Ippolito , Cene GostinČar , Polona Zalar , Nina Gunde- Cimerman2, Wojciech J. Janisiewicz7 1Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia; 2Department of Biology, University of Ljubljana, Ljubljana, Slovenia; 3Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy; 4Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy; 5Agro-Bio Tech Laboratory, Integrated and Urban Phytopathology Unit, University of Liège, Gembloux, Belgium; 6Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy United States; 7Department of Agriculture, Agriculture Research Service, Appalachian Fruit Research Station, Kearneysville, USA ABSTRACT The "yeast-like" fungus, Aureobasidium pullulans, isolated from fruit and leaves exhibits strong biocontrol activity against postharvest decays on various fruit. Some strains were even developed into commercial products. We obtained 20 of these strains and investigated their characteristics related to biocontrol. Phylogenetic analyses based on internal transcribed spacer (ITS) and the D1/D2 domains of rRNA 28S gene regions confirmed that all the strains are most closely related to A. pullulans species. All strains grew at 0°C, which is very important to control decay at low storage temperature, and none grew at 37°C, which eliminates concern for human safety. Eighteen strains survived 2 hrs exposures to 50°C and two strains even survived for 24 hrs.
    [Show full text]
  • Shropshire Fungus Checklist 2010
    THE CHECKLIST OF SHROPSHIRE FUNGI 2011 Contents Page Introduction 2 Name changes 3 Taxonomic Arrangement (with page numbers) 19 Checklist 25 Indicator species 229 Rare and endangered fungi in /Shropshire (Excluding BAP species) 230 Important sites for fungi in Shropshire 232 A List of BAP species and their status in Shropshire 233 Acknowledgements and References 234 1 CHECKLIST OF SHROPSHIRE FUNGI Introduction The county of Shropshire (VC40) is large and landlocked and contains all major habitats, apart from coast and dune. These include the uplands of the Clees, Stiperstones and Long Mynd with their associated heath land, forested land such as the Forest of Wyre and the Mortimer Forest, the lowland bogs and meres in the north of the county, and agricultural land scattered with small woodlands and copses. This diversity makes Shropshire unique. The Shropshire Fungus Group has been in existence for 18 years. (Inaugural meeting 6th December 1992. The aim was to produce a fungus flora for the county. This aim has not yet been realised for a number of reasons, chief amongst these are manpower and cost. The group has however collected many records by trawling the archives, contributions from interested individuals/groups, and by field meetings. It is these records that are published here. The first Shropshire checklist was published in 1997. Many more records have now been added and nearly 40,000 of these have now been added to the national British Mycological Society’s database, the Fungus Record Database for Britain and Ireland (FRDBI). During this ten year period molecular biology, i.e. DNA analysis has been applied to fungal classification.
    [Show full text]
  • Virulence Traits and Population Genomics of the Black Yeast Aureobasidium Melanogenum
    Journal of Fungi Article Virulence Traits and Population Genomics of the Black Yeast Aureobasidium melanogenum Anja Cernošaˇ 1,†, Xiaohuan Sun 2,†, Cene Gostinˇcar 1,3,* , Chao Fang 2, Nina Gunde-Cimerman 1,‡ and Zewei Song 2,‡ 1 Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; [email protected] (A.C.);ˇ [email protected] (N.G.-C.) 2 BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; [email protected] (X.S.); [email protected] (C.F.); [email protected] (Z.S.) 3 Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China * Correspondence: [email protected] or [email protected]; Tel.: +386-1-320-3392 † These authors contributed equally to this work. ‡ These authors contributed equally as senior authors. Abstract: The black yeast-like fungus Aureobasidium melanogenum is an opportunistic human pathogen frequently found indoors. Its traits, potentially linked to pathogenesis, have never been system- atically studied. Here, we examine 49 A. melanogenum strains for growth at 37 ◦C, siderophore production, hemolytic activity, and assimilation of hydrocarbons and human neurotransmitters and report within-species variability. All but one strain grew at 37 ◦C. All strains produced siderophores and showed some hemolytic activity. The largest differences between strains were observed in the assimilation of hydrocarbons and human neurotransmitters. We show for the first time that fungi from the order Dothideales can assimilate aromatic hydrocarbons. To explain the background, we Citation: ˇ Cernoša, A.; Sun, X.; sequenced the genomes of all 49 strains and identified genes putatively involved in siderophore pro- Gostinˇcar, C.; Fang, C.; duction and hemolysis.
    [Show full text]
  • Ohio Plant Disease Index
    Special Circular 128 December 1989 Ohio Plant Disease Index The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio This page intentionally blank. Special Circular 128 December 1989 Ohio Plant Disease Index C. Wayne Ellett Department of Plant Pathology The Ohio State University Columbus, Ohio T · H · E OHIO ISJATE ! UNIVERSITY OARilL Kirklyn M. Kerr Director The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio All publications of the Ohio Agricultural Research and Development Center are available to all potential dientele on a nondiscriminatory basis without regard to race, color, creed, religion, sexual orientation, national origin, sex, age, handicap, or Vietnam-era veteran status. 12-89-750 This page intentionally blank. Foreword The Ohio Plant Disease Index is the first step in develop­ Prof. Ellett has had considerable experience in the ing an authoritative and comprehensive compilation of plant diagnosis of Ohio plant diseases, and his scholarly approach diseases known to occur in the state of Ohia Prof. C. Wayne in preparing the index received the acclaim and support .of Ellett had worked diligently on the preparation of the first the plant pathology faculty at The Ohio State University. edition of the Ohio Plant Disease Index since his retirement This first edition stands as a remarkable ad substantial con­ as Professor Emeritus in 1981. The magnitude of the task tribution by Prof. Ellett. The index will serve us well as the is illustrated by the cataloguing of more than 3,600 entries complete reference for Ohio for many years to come. of recorded diseases on approximately 1,230 host or plant species in 124 families.
    [Show full text]
  • Fungal Diversity in Lichens: from Extremotolerance to Interactions with Algae
    life Review Fungal Diversity in Lichens: From Extremotolerance to Interactions with Algae Lucia Muggia 1,* ID and Martin Grube 2 1 Department of Life Sciences, University of Trieste, via Licio Giorgieri 10, 34127 Trieste, Italy 2 Institute of Biology, Karl-Franzens University of Graz, Holteigasse 6, 8010 Graz, Austria; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +39-040-558-8825 Received: 11 April 2018; Accepted: 21 May 2018; Published: 22 May 2018 Abstract: Lichen symbioses develop long-living thallus structures even in the harshest environments on Earth. These structures are also habitats for many other microscopic organisms, including other fungi, which vary in their specificity and interaction with the whole symbiotic system. This contribution reviews the recent progress regarding the understanding of the lichen-inhabiting fungi that are achieved by multiphasic approaches (culturing, microscopy, and sequencing). The lichen mycobiome comprises a more or less specific pool of species that can develop symptoms on their hosts, a generalist environmental pool, and a pool of transient species. Typically, the fungal classes Dothideomycetes, Eurotiomycetes, Leotiomycetes, Sordariomycetes, and Tremellomycetes predominate the associated fungal communities. While symptomatic lichenicolous fungi belong to lichen-forming lineages, many of the other fungi that are found have close relatives that are known from different ecological niches, including both plant and animal pathogens, and rock colonizers. A significant fraction of yet unnamed melanized (‘black’) fungi belong to the classes Chaethothyriomycetes and Dothideomycetes. These lineages tolerate the stressful conditions and harsh environments that affect their hosts, and therefore are interpreted as extremotolerant fungi. Some of these taxa can also form lichen-like associations with the algae of the lichen system when they are enforced to symbiosis by co-culturing assays.
    [Show full text]
  • 1,3-1,6-Glucan Derived from the Black Yeast Aureobasidium Pullulans: a Literature Review
    nutrients Review Biological Activity of High-Purity β-1,3-1,6-Glucan Derived from the Black Yeast Aureobasidium pullulans: A Literature Review Toshio Suzuki 1,*, Kisato Kusano 2, Nobuhiro Kondo 3, Kouji Nishikawa 4, Takao Kuge 5,* and Naohito Ohno 6 1 Research and Development Laboratories, Fujicco, Co., Ltd., 6-13-4 Minatojima-Nakamachi, Chuo-ku, Kobe, Hyogo 650-8558, Japan 2 Aureo Co., Ltd., 54-1, Kazusa Koito, Kimitsu-shi, Chiba 292-1149, Japan; [email protected] 3 Research and Development Division, Itochu Sugar Co., Ltd., 3, Tamatsuura, Hekinan, Aichi 447-8506, Japan; [email protected] 4 Innovation Center, Osaka Soda Co., Ltd., 9, Otakasu-cho, Amagasaki, Hyogo 660-0842, Japan; [email protected] 5 Life Science Materials Laboratory, ADEKA Corporation., 7-2-34, Higashi-Ogu, Arakawa-ku, Tokyo 116-8553, Japan 6 Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan; [email protected] * Correspondence: [email protected] (T.S.); [email protected] (T.K.); Tel.: +81-78-303-5385 (T.S.); +81-3-4455-2829 (T.K.) Abstract: The black yeast Aureobasidium pullulans produces abundant soluble β-1,3-1,6-glucan—a functional food ingredient with known health benefits. For use as a food material, soluble β-1,3- 1,6-glucan is produced via fermentation using sucrose as the carbon source. Various functionalities of β-1,3-1,6-glucan have been reported, including its immunomodulatory effect, particularly in the intestine. It also exhibits antitumor and antimetastatic effects, alleviates influenza and food allergies, and relieves stress.
    [Show full text]
  • Biodegradation Potentials of Aspergillus Flavipes Isolated from Uburu and Okposi Salt Lakes
    International Journal of Advanced Technology & Science Research Volume 02 Issue 07 July 2021 Biodegradation Potentials of Aspergillus flavipes Isolated from Uburu and Okposi Salt Lakes Kingsley C. Agu*1, Frederick J.C. Odibo2 1 Applied Microbiology and Brewing Department, Nnamdi Azikiwe University, PMB 5025, Awka, Nigeria 2 Applied Microbiology and Brewing Department, Nnamdi Azikiwe University, PMB 5025, Awka, Nigeria Abstract – Saline lakes are water bodies with salinity greater than 3 g/l (0.3%), while hypersaline lakes are water bodies that surpass the moderate 35 g/l (3.5%) salt of oceans. Hypersaline lakes, could either be thalassohaline (which are creations of evaporation of seawater and as such contain sodium chloride as the major salt, with a salinity that surpasses that of seawater by a factor of 5–10, with a neutral or slightly alkaline pH). Whereas, athalassohaline lakes stem from non-seawater sources and are made up of high concentrations of ions such as magnesium and calcium and sundry other ions such as potassium, or sodium in smaller amounts. This work has revealed the biodegradation potentials of some halophiles isolated from Uburu and Okposi salt lakes. The isolates recovered in descending order of salt tolerance were Aspergillus flavipes (13mm at 40%), Penicillium citrinum (10mm at 40%), Aspergillus ochraceus (9mm at 40%), Aspergillus nomius (15mm at 35%), Microsphaeropsis arundinis (12mm at 35%), Aspergillus sydowi (28mm at 30%), Penicillium janthinellum (26mm at 30%), Mucor sp (13mm at 30%), Aureobasidium sp (12mm at 30%), Trichoderma sp (9mm at 30%), Alternaria sp. (22mm at 25%), Aspergillus sp (18mm at 25%), Penicillium sp (20mm at 20%), Cladosporium sp.
    [Show full text]