Class Forcing and Second-Order Arithmetic

Total Page:16

File Type:pdf, Size:1020Kb

Class Forcing and Second-Order Arithmetic Class forcing and second-order arithmetic Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨atBonn vorgelegt von Regula Krapf aus Z¨urich, die Schweiz Bonn, Oktober 2016 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨atBonn 1. Gutachter: Prof. Dr. Peter Koepke 2. Gutachter: Prof. Dr. Joel David Hamkins Tag der Promotion: 12. Januar 2017 Erscheinungsjahr: 2017 Summary We provide a framework in a generalization of G¨odel-Bernays set theory for performing class forcing. The forcing theorem states that the forcing relation is a (definable) class in the ground model (definability lemma) and that every statement that holds in a class- generic extension is forced by a condition in the generic filter (truth lemma). We prove both positive and negative results concerning the forcing theorem. On the one hand, we show that the definability lemma for one atomic formula implies the forcing theorem for all formulae in the language of set theory to hold. Furthermore, we introduce several properties which entail the forcing theorem. On the other hand, we give both counterex- amples to the definability lemma and the truth lemma. In set forcing, the forcing theorem can be proved for all forcing notions by constructing a unique Boolean completion. We show that in class forcing the existence of a Boolean completion is essentially equivalent to the forcing theorem and, moreover, Boolean completions need not be unique. The notion of pretameness was introduced to characterize those forcing notions which preserve the axiom scheme of replacement. We present several new characterizations of pretameness in terms of the forcing theorem, the preservation of separation, the existence of nice names for sets of ordinals and several other properties. Moreover, for each of the aforementioned properties we provide a corresponding characterization of the Ord-chain condition. Finally, we prove two equiconsistency results which compare models of ZFC (with large cardinal properties) and models of second-order arithmetic with topological regularity properties (and determinacy hypotheses). We apply our previous results on class forcing 1 to show that many important arboreal forcing notions preserve the Π1-perfect set property over models of second-order arithmetic and also give an example of a forcing notion which 1 implies the Π1-perfect set property to fail in the generic extension. Zusammenfassung Wir f¨uhrenKlassenforcing im axiomatischen Rahmen einer Verallgemeinerung von G¨odel- Bernays-Mengenlehre ein. Das Forcing-Theorem besagt, dass die Forcingrelation eine (definierbare) Klasse im Grundmodell ist (Definierbarkeitslemma), und dass jede Aus- sage in einer generischen Erweiterung von einer Bedingung im generischen Filter erzwun- gen wird (Wahrheitslemma). Wir beweisen sowohl positive als auch negative Resultate ¨uber das Forcing-Theorem. Einerseits zeigen wir, dass das Definierbarkeitslemma f¨ur eine einzige atomare Formel reicht, um das Forcing-Theorem f¨uralle Formeln in der Sprache der Mengenlehre zeigen. Außerdem stellen wir mehrere kombinatorische Eigen- schaften von Klassenforcings vor, welche das Forcing-Theorem implizieren. Andrerseits pr¨asentieren wir Gegenbeispiele f¨urdas Definierbarkeitslemma sowie f¨urdas Wahrheit- slemma im Kontext von Klassenforcing. Im Mengenforcing ist das Forcing-Theorem eine Konsequenz der Existenz einer eindeutigen Booleschen Vervollst¨andigung. Wir zeigen, dass im Klassenforcing die Existenz einer Booleschen Vervollst¨andigung im Wesentlichen ¨aquivalent zum Forcing-Theorem ist, und dass Boolesche Vervollst¨andiungenim Allge- meinen nicht eindeutig sind. Pretameness ist eine Eigenschaft von Klassenforcings, welche definiert wurde um die Erhaltung des Ersetzungsaxioms zu charakterisieren. Wir beweisen mehrere neue Charak- terisierungen von Pretameness anhand des Forcing-Theorems, der Erhaltung des Ausson- derungsaxioms, der Existenz von Nice Names f¨urMengen von Ordinalzahlen sowie weit- eren Eigenschaften von Klassenforcings. Des Weiteren verwenden wir alle diese Eigen- schaften um die Ord-Kettenbedingung zu charakterisieren. Zu guter Letzt geben wir zwei Aquikonsistenzresultate¨ an, welche Modelle von ZFC (mit grossen Kardinalzahlen) und Modelle der zweistufigen Arithmetik mit topologis- cher Regularit¨at(und Determiniertheit) vergleichen. Wir wenden unsere Resultate ¨uber Klassenforcing an um nachzuweisen, dass zahlreiche wichtige Beispiele von Baumforcings 1 die Π1-perfekte-Teilmengeneigenschaft ¨uber Modelle der zweistufigen Arithmetik erhal- 1 ten. Andrerseits erl¨auternwir ein Beispiel eines Klassenforcings, welches die Π1-perfekte- Teilmengeneigenschaft in generischen Erweiterungen zerst¨ort. Acknowledgements On a general note, I would like to acknowledge the support which has been offered to me by the Hausdorff Center of Mathematics, University of Bonn, and the Bonn International Graduate School of Mathematics (BIGS). Firstly, I would like to express my gratitude to my advisor Prof. Dr. Peter Koepke for teaching me both in set theory and in formal mathematics as well as for the many inspiring discussions not only about my research but also about foundational and philosophical issues related to set theory and formal mathematics, and for giving me the opportunity to gain teaching experience at University of Bonn. Furthermore, I would like to thank the mathematical logic group of Bonn for their friendship, moral support and many informal coffee-break discussions which have lead us to consider many interesting open problems and fruitful research. In particular, I would like to show my gratitude to Peter Holy and Philipp Schlicht for many intriguing conversations about class forcing which have resulted in several joint papers. Many results presented in this thesis have originated in this research project. It has been a great pleasure to learn from them and work with them. They have also made many suggestions which have helped me to improve this thesis. On a further note, I would also like to thank Philipp L¨ucke and Ana Njegomir who have also worked on the first part of our project on class forcing. Moreover, Ana has been a wonderful officemate and friend and it has helped me a lot to share both the successful and frustrating moments during our common time as PhD students. Additionally, I would like to mention the further (former) members of the mathematical logic group of Bonn, Thilo Weinert, Ioanna Dimitriou and Aleksandra Kwiatkowska; I have really enjoyed to share common lunch and coffee breaks and discuss about set theory and formal mathematics, but also many other topics which are not related to mathematics. I would also like to thank Lorenz Halbeisen for his lecture and seminars during my master studies at University of Z¨urich and ETH Z¨urich and for arousing my interest in logic and set theory. It was due to him that I was motivated to apply for the PhD program at University of Bonn. Furthermore, I would like to thank my friends and fellow PhD students in Bonn for many common coffee breaks and enjoyable evenings, in particular Ana, Gennady, Michal, Lisa, Christian and Duygu. For their moral support I would also like to thank my long- term friends from Switzerland Yvonne, Karin, Anita and Eliane. Last but not least, I would like to show gratitude to my parents Johanna and Bernhard Krapf for their support and for always believing in me, as well as my brothers Tobias and Beat. A final thanks goes to my partner Claudius Ruch for the many wonderful moments that we have spent together besides my work as a PhD student. Contents 0 Introduction 1 1 A general setting for class forcing 7 1.1 Axiomatic frameworks for class forcing . .7 1.1.1 Subsystems of ZFC ...........................7 1.1.2 Second-order arithmetic . .8 1.1.3 G¨odel-Bernays set theory . .9 1.1.4 Kelley-Morse class theory . 12 1.2 Class forcing . 12 1.3 Examples . 17 1.3.1 Variants of collapse forcings . 18 1.3.2 Forcing a global well-order . 19 1.3.3 Friedman's forcing F .......................... 20 1.3.4 The class version of the L´evycollapse . 21 1.3.5 Easton forcing . 23 2 The forcing theorem 25 2.1 The forcing theorem . 25 2.1.1 Reducing the forcing theorem to atomic formulae . 26 2.1.2 The forcing theorem for infinitary formulae . 30 2.1.3 Products . 33 2.2 Pretameness . 34 2.2.1 Pretameness implies the forcing theorem . 34 2.2.2 Examples . 37 2.2.3 Two-step iterations . 39 2.3 The set decision property . 41 2.4 Approachability by projections . 42 2.5 Failures of the forcing theorem . 44 2.5.1 A failure of the definability lemma . 45 2.5.2 A failure of the truth lemma . 49 3 Boolean completions 53 3.1 (Pre-)Boolean algebras and completions . 53 3.1.1 Pre-Boolean algebras . 53 3.1.2 (Pre-)Boolean completions . 55 7 Contents 3.1.3 The separative quotient . 56 3.2 Boolean completions and the forcing theorem . 57 3.2.1 Boolean values . 57 3.3 Boolean completions in KM .......................... 61 3.4 Unions of set-sized complete subforcings . 63 3.5 Non-unique Boolean completions . 65 4 Characterizations of pretameness and the Ord-cc 69 4.1 Preliminaries . 69 4.2 The forcing theorem . 73 4.2.1 Pretameness in terms of the forcing theorem . 74 4.2.2 The maximality principle . 78 4.3 Preservation of axioms . 79 4.3.1 Failures of separation . 79 4.3.2 Separation implies replacement . 82 4.3.3 Pretameness and the preservation of axioms . 83 4.4 Boolean completions . 84 4.5 The extension maximality principle . 86 4.6 Nice forcing notions . 88 4.6.1 Basic definitions and examples . 88 4.6.2 Pretameness and nice forcing notions . 90 4.6.3 The Ord-cc and very nice forcing notions . 94 5 Second-order arithmetic, topological regularity and sharps 97 5.1 Second-order arithmetic and ZFC− ...................... 97 5.2 Inner models of ZFC and ZFC# in models of SOA .............. 104 5.2.1 Inner models of ZFC .........................
Recommended publications
  • Set Theory, by Thomas Jech, Academic Press, New York, 1978, Xii + 621 Pp., '$53.00
    BOOK REVIEWS 775 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 1, July 1980 © 1980 American Mathematical Society 0002-9904/80/0000-0 319/$01.75 Set theory, by Thomas Jech, Academic Press, New York, 1978, xii + 621 pp., '$53.00. "General set theory is pretty trivial stuff really" (Halmos; see [H, p. vi]). At least, with the hindsight afforded by Cantor, Zermelo, and others, it is pretty trivial to do the following. First, write down a list of axioms about sets and membership, enunciating some "obviously true" set-theoretic principles; the most popular Hst today is called ZFC (the Zermelo-Fraenkel axioms with the axiom of Choice). Next, explain how, from ZFC, one may derive all of conventional mathematics, including the general theory of transfinite cardi­ nals and ordinals. This "trivial" part of set theory is well covered in standard texts, such as [E] or [H]. Jech's book is an introduction to the "nontrivial" part. Now, nontrivial set theory may be roughly divided into two general areas. The first area, classical set theory, is a direct outgrowth of Cantor's work. Cantor set down the basic properties of cardinal numbers. In particular, he showed that if K is a cardinal number, then 2", or exp(/c), is a cardinal strictly larger than K (if A is a set of size K, 2* is the cardinality of the family of all subsets of A). Now starting with a cardinal K, we may form larger cardinals exp(ic), exp2(ic) = exp(exp(fc)), exp3(ic) = exp(exp2(ic)), and in fact this may be continued through the transfinite to form expa(»c) for every ordinal number a.
    [Show full text]
  • Infinite Natural Numbers: an Unwanted Phenomenon, Or a Useful Concept?
    Infinite natural numbers: an unwanted phenomenon, or a useful concept? V´ıtˇezslav Svejdarˇ ∗ Appeared in M. Peliˇsand V. Puncochar eds., The Logica Yearbook 2010, pp. 283–294, College Publications, London, 2011. Abstract We consider non-standard models of Peano arithmetic and non- -standard numbers in set theory, showing that not only they ap- pear rather naturally, but also have interesting methodological consequences and even practical applications. We also show that the Czech logical school, namely Petr Vopˇenka, considerably con- tributed to this area. 1 Peano arithmetic and its models Peano arithmetic PA was invented as an axiomatic theory of natu- ral numbers (non-negative integers 0, 1, 2, . ) with addition and multiplication as designated operations. Its language (arithmetical language) consists of the symbols + and · for these two operations, the symbol 0 for the number zero and the symbol S for the successor function (addition of one). The language {+, ·, 0, S} could be replaced with the language {+, ·, 0, 1} having a constant for the number one: with the constant 1 at hand one can define S(x) as x + 1, and with the symbol S one can define 1 as S(0). However, we stick with the language {+, ·, 0, S}, since it is used in traditional sources like (Tarski, Mostowski, & Robinson, 1953). The closed terms S(0), S(S(0)), . represent the numbers 1, 2, . in the arithmetical language. We ∗This work is a part of the research plan MSM 0021620839 that is financed by the Ministry of Education of the Czech Republic. 2 V´ıtˇezslav Svejdarˇ Infinite natural numbers: . a useful concept? 3 write n for the numeral S(S(.
    [Show full text]
  • I0 and Rank-Into-Rank Axioms
    I0 and rank-into-rank axioms Vincenzo Dimonte∗ July 11, 2017 Abstract Just a survey on I0. Keywords: Large cardinals; Axiom I0; rank-into-rank axioms; elemen- tary embeddings; relative constructibility; embedding lifting; singular car- dinals combinatorics. 2010 Mathematics Subject Classifications: 03E55 (03E05 03E35 03E45) 1 Informal Introduction to the Introduction Ok, that’s it. People who know me also know that it is years that I am ranting about a book about I0, how it is important to write it and publish it, etc. I realized that this particular moment is still right for me to write it, for two reasons: time is scarce, and probably there are still not enough results (or anyway not enough different lines of research). This has the potential of being a very nasty vicious circle: there are not enough results about I0 to write a book, but if nobody writes a book the diffusion of I0 is too limited, and so the number of results does not increase much. To avoid this deadlock, I decided to divulge a first draft of such a hypothetical book, hoping to start a “conversation” with that. It is literally a first draft, so it is full of errors and in a liquid state. For example, I still haven’t decided whether to call it I0 or I0, both notations are used in literature. I feel like it still lacks a vision of the future, a map on where the research could and should going about I0. Many proofs are old but never published, and therefore reconstructed by me, so maybe they are wrong.
    [Show full text]
  • A Taste of Set Theory for Philosophers
    Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. A taste of set theory for philosophers Jouko Va¨an¨ anen¨ ∗ Department of Mathematics and Statistics University of Helsinki and Institute for Logic, Language and Computation University of Amsterdam November 17, 2010 Contents 1 Introduction 1 2 Elementary set theory 2 3 Cardinal and ordinal numbers 3 3.1 Equipollence . 4 3.2 Countable sets . 6 3.3 Ordinals . 7 3.4 Cardinals . 8 4 Axiomatic set theory 9 5 Axiom of Choice 12 6 Independence results 13 7 Some recent work 14 7.1 Descriptive Set Theory . 14 7.2 Non well-founded set theory . 14 7.3 Constructive set theory . 15 8 Historical Remarks and Further Reading 15 ∗Research partially supported by grant 40734 of the Academy of Finland and by the EUROCORES LogICCC LINT programme. I Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. 1 Introduction Originally set theory was a theory of infinity, an attempt to understand infinity in ex- act terms. Later it became a universal language for mathematics and an attempt to give a foundation for all of mathematics, and thereby to all sciences that are based on mathematics.
    [Show full text]
  • Weak Measure Extension Axioms * 1 Introduction
    Weak Measure Extension Axioms Joan E Hart Union College Schenectady NY USA and Kenneth Kunen University of Wisconsin Madison WI USA hartjunionedu and kunenmathwiscedu February Abstract We consider axioms asserting that Leb esgue measure on the real line may b e extended to measure a few new nonmeasurable sets Strong versions of such axioms such as realvalued measurabilityin volve large cardinals but weak versions do not We discuss weak versions which are sucienttoprovevarious combinatorial results such as the nonexistence of Ramsey ultralters the existence of ccc spaces whose pro duct is not ccc and the existence of S and L spaces We also prove an absoluteness theorem stating that assuming our ax iom every sentence of an appropriate logical form which is forced to b e true in the random real extension of the universe is in fact already true Intro duction In this pap er a measure on a set X is a countably additive measure whose domain the measurable sets is some algebra of subsets of X The authors were supp orted by NSF Grant CCR The rst author is grateful for supp ort from the University of Wisconsin during the preparation of this pap er Both authors are grateful to the referee for a numb er of useful comments INTRODUCTION We are primarily interested in nite measures although most of our results extend to nite measures in the obvious way By the Axiom of Choice whichwealways assume there are subsets of which are not Leb esgue measurable In an attempt to measure them it is reasonable to p ostulate measure extension axioms
    [Show full text]
  • Primitive Recursive Functions Are Recursively Enumerable
    AN ENUMERATION OF THE PRIMITIVE RECURSIVE FUNCTIONS WITHOUT REPETITION SHIH-CHAO LIU (Received April 15,1900) In a theorem and its corollary [1] Friedberg gave an enumeration of all the recursively enumerable sets without repetition and an enumeration of all the partial recursive functions without repetition. This note is to prove a similar theorem for the primitive recursive functions. The proof is only a classical one. We shall show that the theorem is intuitionistically unprovable in the sense of Kleene [2]. For similar reason the theorem by Friedberg is also intuitionistical- ly unprovable, which is not stated in his paper. THEOREM. There is a general recursive function ψ(n, a) such that the sequence ψ(0, a), ψ(l, α), is an enumeration of all the primitive recursive functions of one variable without repetition. PROOF. Let φ(n9 a) be an enumerating function of all the primitive recursive functions of one variable, (See [3].) We define a general recursive function v(a) as follows. v(0) = 0, v(n + 1) = μy, where μy is the least y such that for each j < n + 1, φ(y, a) =[= φ(v(j), a) for some a < n + 1. It is noted that the value v(n + 1) can be found by a constructive method, for obviously there exists some number y such that the primitive recursive function <p(y> a) takes a value greater than all the numbers φ(v(0), 0), φ(y(Ϋ), 0), , φ(v(n\ 0) f or a = 0 Put ψ(n, a) = φ{v{n), a).
    [Show full text]
  • The Cardinality of a Finite Set
    1 Math 300 Introduction to Mathematical Reasoning Fall 2018 Handout 12: More About Finite Sets Please read this handout after Section 9.1 in the textbook. The Cardinality of a Finite Set Our textbook defines a set A to be finite if either A is empty or A ≈ Nk for some natural number k, where Nk = {1,...,k} (see page 455). It then goes on to say that A has cardinality k if A ≈ Nk, and the empty set has cardinality 0. These are standard definitions. But there is one important point that the book left out: Before we can say that the cardinality of a finite set is a well-defined number, we have to ensure that it is not possible for the same set A to be equivalent to Nn and Nm for two different natural numbers m and n. This may seem obvious, but it turns out to be a little trickier to prove than you might expect. The purpose of this handout is to prove that fact. The crux of the proof is the following lemma about subsets of the natural numbers. Lemma 1. Suppose m and n are natural numbers. If there exists an injective function from Nm to Nn, then m ≤ n. Proof. For each natural number n, let P (n) be the following statement: For every m ∈ N, if there is an injective function from Nm to Nn, then m ≤ n. We will prove by induction on n that P (n) is true for every natural number n. We begin with the base case, n = 1.
    [Show full text]
  • Elementary Functions Part 1, Functions Lecture 1.6D, Function Inverses: One-To-One and Onto Functions
    Elementary Functions Part 1, Functions Lecture 1.6d, Function Inverses: One-to-one and onto functions Dr. Ken W. Smith Sam Houston State University 2013 Smith (SHSU) Elementary Functions 2013 26 / 33 Function Inverses When does a function f have an inverse? It turns out that there are two critical properties necessary for a function f to be invertible. The function needs to be \one-to-one" and \onto". Smith (SHSU) Elementary Functions 2013 27 / 33 Function Inverses When does a function f have an inverse? It turns out that there are two critical properties necessary for a function f to be invertible. The function needs to be \one-to-one" and \onto". Smith (SHSU) Elementary Functions 2013 27 / 33 Function Inverses When does a function f have an inverse? It turns out that there are two critical properties necessary for a function f to be invertible. The function needs to be \one-to-one" and \onto". Smith (SHSU) Elementary Functions 2013 27 / 33 Function Inverses When does a function f have an inverse? It turns out that there are two critical properties necessary for a function f to be invertible. The function needs to be \one-to-one" and \onto". Smith (SHSU) Elementary Functions 2013 27 / 33 One-to-one functions* A function like f(x) = x2 maps two different inputs, x = −5 and x = 5, to the same output, y = 25. But with a one-to-one function no pair of inputs give the same output. Here is a function we saw earlier. This function is not one-to-one since both the inputs x = 2 and x = 3 give the output y = C: Smith (SHSU) Elementary Functions 2013 28 / 33 One-to-one functions* A function like f(x) = x2 maps two different inputs, x = −5 and x = 5, to the same output, y = 25.
    [Show full text]
  • Automated ZFC Theorem Proving with E
    Automated ZFC Theorem Proving with E John Hester Department of Mathematics, University of Florida, Gainesville, Florida, USA https://people.clas.ufl.edu/hesterj/ [email protected] Abstract. I introduce an approach for automated reasoning in first or- der set theories that are not finitely axiomatizable, such as ZFC, and describe its implementation alongside the automated theorem proving software E. I then compare the results of proof search in the class based set theory NBG with those of ZFC. Keywords: ZFC · ATP · E. 1 Introduction Historically, automated reasoning in first order set theories has faced a fun- damental problem in the axiomatizations. Some theories such as ZFC widely considered as candidates for the foundations of mathematics are not finitely axiomatizable. Axiom schemas such as the schema of comprehension and the schema of replacement in ZFC are infinite, and so cannot be entirely incorpo- rated in to the prover at the beginning of a proof search. Indeed, there is no finite axiomatization of ZFC [1]. As a result, when reasoning about sufficiently strong set theories that could no longer be considered naive, some have taken the alternative approach of using extensions of ZFC that admit objects such as proper classes as first order objects, but this is not without its problems for the individual interested in proving set-theoretic propositions. As an alternative, I have programmed an extension to the automated the- orem prover E [2] that generates instances of parameter free replacement and comprehension from well formuled formulas of ZFC that are passed to it, when eligible, and adds them to the proof state while the prover is running.
    [Show full text]
  • Polya Enumeration Theorem
    Polya Enumeration Theorem Sasha Patotski Cornell University [email protected] December 11, 2015 Sasha Patotski (Cornell University) Polya Enumeration Theorem December 11, 2015 1 / 10 Cosets A left coset of H in G is gH where g 2 G (H is on the right). A right coset of H in G is Hg where g 2 G (H is on the left). Theorem If two left cosets of H in G intersect, then they coincide, and similarly for right cosets. Thus, G is a disjoint union of left cosets of H and also a disjoint union of right cosets of H. Corollary(Lagrange's theorem) If G is a finite group and H is a subgroup of G, then the order of H divides the order of G. In particular, the order of every element of G divides the order of G. Sasha Patotski (Cornell University) Polya Enumeration Theorem December 11, 2015 2 / 10 Applications of Lagrange's Theorem Theorem n! For any integers n ≥ 0 and 0 ≤ m ≤ n, the number m!(n−m)! is an integer. Theorem (ab)! (ab)! For any positive integers a; b the ratios (a!)b and (a!)bb! are integers. Theorem For an integer m > 1 let '(m) be the number of invertible numbers modulo m. For m ≥ 3 the number '(m) is even. Sasha Patotski (Cornell University) Polya Enumeration Theorem December 11, 2015 3 / 10 Polya's Enumeration Theorem Theorem Suppose that a finite group G acts on a finite set X . Then the number of colorings of X in n colors inequivalent under the action of G is 1 X N(n) = nc(g) jGj g2G where c(g) is the number of cycles of g as a permutation of X .
    [Show full text]
  • Cantor-Von Neumann Set-Theory Fa Muller
    Logique & Analyse 213 (2011), x–x CANTOR-VON NEUMANN SET-THEORY F.A. MULLER Abstract In this elementary paper we establish a few novel results in set the- ory; their interest is wholly foundational-philosophical in motiva- tion. We show that in Cantor-Von Neumann Set-Theory, which is a reformulation of Von Neumann's original theory of functions and things that does not introduce `classes' (let alone `proper classes'), developed in the 1920ies, both the Pairing Axiom and `half' the Axiom of Limitation are redundant — the last result is novel. Fur- ther we show, in contrast to how things are usually done, that some theorems, notably the Pairing Axiom, can be proved without invok- ing the Replacement Schema (F) and the Power-Set Axiom. Also the Axiom of Choice is redundant in CVN, because it a theorem of CVN. The philosophical interest of Cantor-Von Neumann Set- Theory, which is very succinctly indicated, lies in the fact that it is far better suited than Zermelo-Fraenkel Set-Theory as an axioma- tisation of what Hilbert famously called Cantor's Paradise. From Cantor one needs to jump to Von Neumann, over the heads of Zer- melo and Fraenkel, and then reformulate. 0. Introduction In 1928, Von Neumann published his grand axiomatisation of Cantorian Set- Theory [1925; 1928]. Although Von Neumann's motivation was thoroughly Cantorian, he did not take the concept of a set and the membership-relation as primitive notions, but the concepts of a thing and a function — for rea- sons we do not go into here. This, and Von Neumann's cumbersome nota- tion and terminology (II-things, II.I-things) are the main reasons why ini- tially his theory remained comparatively obscure.
    [Show full text]
  • Axiomatic Set Teory P.D.Welch
    Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L.
    [Show full text]