DESIGN of a HYBRID ROCKET / INFLATABLE WING UAV by CORY

Total Page:16

File Type:pdf, Size:1020Kb

DESIGN of a HYBRID ROCKET / INFLATABLE WING UAV by CORY DESIGN OF A HYBRID ROCKET / INFLATABLE WING UAV By CORY SUDDUTH Bachelor of Science in Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 2012 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 2012 DESIGN OF A HYBRID ROCKET / INFLATABLE WING UAV Thesis Approved: Dr. Jamey Jacob Thesis Adviser Dr. Andy Arena Dr. Joe Conner ii Name: CORY SUDDUTH Date of Degree: DECEMBER, 2012 Title of Study: DESIGN OF A HYBRID ROCKET / INFLATABLE WING UAV Major Field: MECHANICAL AND AEROSPACE ENGINEERING This paper discusses the design challenges and development of a UAV that transitions from a rocket, which allows the aircraft to reach a target altitude rapidly, and then deploys an inflatable wing from an enclosed shell in midflight to allow for loitering and surveillance. The wing deployment and transition is tested in static and dynamic environments, while the performance and stability of both the aircraft mode and rocket mode are examined analytically. An in-depth discussion of key components, including the design, analysis and testing, is also included. Designing an UAV that transitions from a high velocity rocket, to a slow velocity UAV provides many difficult and unique design challenges. For example, the incorporation of deployable wing technology into a full UAV system results in many design constraints. In this particular design inflatable wings are used to generate lift during aircraft mode, and the stabilizing fins for the main wing also acted as the fins for the vehicle during its rocket phase. This required the balancing of the two different vehicle configurations to ensure that the aircraft would be able to fly stably in both modes, and transition between them without catastrophic failure. Significant research, and testing went into the finding the best method of storing the inflatable wing, as well as finding the required inflation rate to minimize unsteady aerodynamic affects. Design work was also invested in the development of an inflation system, as it had to be highly reliable, and yet very light weight for use in this small UAV. This paper discusses how these design challenges were overcome, the development and testing of individual sub-components and how they are incorporated into the overall vehicle. The analysis that went into this UAV, as well as methods used to optimize the design in order to minimize weight and maximize the aircraft performance and loitering time is also discussed. iii TABLE OF CONTENTS CHAPTER PAGE I. INTRODUCTION .................................................................................................................. 1 1.1 MOTIVATION AND SCOPE ...................................................................................... 1 1.2 GOALS AND OBJECTIVES ....................................................................................... 2 II. REVIEW OF LITERATURE ................................................................................................ 6 2.1 DEPLOYABLE RIGID WING AIRCRAFT ................................................................ 6 2.2 INFLATABLE-WINGED AIRCRAFT ...................................................................... 10 2.2.1 NASA I2000 ...................................................................................................... 11 2.2.2 ILC DOVER FASM/QUICKLOOK .................................................................. 16 2.3 PREVIOUS OSU RESEARCH ................................................................................... 18 2.4 PYRO-VALVES ......................................................................................................... 20 III. INFLATABLE WING STUDIES ...................................................................................... 26 3.1 BACKGROUND INFORMATION ............................................................................ 26 3.2 THERORETICAL AERODYNAMIC PERFORMANCE ......................................... 28 3.3 WING LOADING AND LEAK RATE TESTS ......................................................... 34 3.4 INITIAL DEPLOYMENT TESTS.............................................................................. 38 IV. INFLATION SYSTEM DEVELOPMENT ....................................................................... 47 4.1 INFLATION METHODS ........................................................................................... 47 4.2 PROOF OF CONCEPT ............................................................................................... 50 4.3 WING VOLUME TESTING ...................................................................................... 54 4.4 DESIGN OPTIMIZATION AND CONSTRUCTION ............................................... 59 4.5 INFLATION SYSTEM TESTING ............................................................................. 66 iv CHAPTER PAGE V. AIRCRAFT DESIGN AND CONSTRUCTION ................................................................ 70 5.1 CONCEPTUAL DESIGN ........................................................................................... 70 5.2 AIRCRAFT CONFIGURATIONS AND SELECTION ............................................. 73 5.3 DESIGN OPTIMIZATION AND IN-DEPTH ANALYSIS ....................................... 77 5.4 CONSTRUCTION ...................................................................................................... 90 VI. AIRCRAFT EXPERIMENTS ......................................................................................... 105 6.1 WING DEPLOYMENT TEST.................................................................................. 105 6.2 AIRCRAFT FLIGHT TEST – FIRST LAUNCH ..................................................... 106 6.3 AIRCRAFT FLIGHT TEST – FULL SYSTEM ...................................................... 113 VII. CONCLUSIONS AND FUTURE WORK ..................................................................... 121 7.1 CONCLUSIONS ....................................................................................................... 121 7.2 FUTURE WORK ...................................................................................................... 122 v CHAPTER PAGE VIII. APPENDICES .............................................................................................................. 128 A. UNDERGRADUATE SPACECRAFT DESIGN PROJECTS .................................. 128 B. WING LOADING TEST DATA ................................................................................ 131 C. CO2 CARTRIDGE SIZING TABLE ......................................................................... 132 D. WING VOLUME TESTING DATA ......................................................................... 133 E. PYRO-VALVE INFLATION SYSTEM PREPARATION ........................................ 135 F. AN THREAD SIZE COMPARISON ......................................................................... 140 G. EARLY AIRCRAFT STABILITY CALCULATIONS ............................................. 141 H. AIRCRAFT OPTIMIZATION PROGRAM .............................................................. 143 H.1 USER INTERFACE .......................................................................................... 143 H.2 PUSHER CONFIGURATION RESULTS ........................................................ 146 H.3 TRACTOR CONFIGURATION RESULTS ..................................................... 147 H.4 EDF CONFIGURATION RESULTS ................................................................ 148 H.5 PROGRAM CODE - CLEAR ............................................................................ 149 H.6 PROGRAM CODE – PUSHER CONFIG ......................................................... 150 H.7 PROGRAM CODE – TRACTOR CONFIG...................................................... 157 H.8 PROGRAM CODE – EDF CONFIG ................................................................. 164 I. COMPONENT DRAG ANALYSIS ............................................................................ 171 I.1 USER INTERFACE ............................................................................................ 171 I.2 PROGRAM CODE – DRAG ANALYSIS ......................................................... 172 J. AIRCRAFT ANALYSIS ............................................................................................. 175 J.1 WING AIRFOIL DATA CORRECTED FOR 3D EFFECTS ............................ 175 J.2 TAIL AIRFOIL DATA ....................................................................................... 176 J.3 PROPULSION ANALYSIS DATA ................................................................... 177 J.4 AIRCRAFT STABILITY AND CONTROL SURFACES ................................. 179 J.5 CONTROL SURFACE SERVO SIZING ........................................................... 181 K. AIRCRAFT FLIGHT TEST – FIRST LAUNCH RESULTS .................................... 182 L. AIRCRAFT FLIGHT TEST – FULL SYSTEM RESULTS ...................................... 184 IX. REFERENCES ................................................................................................................ 185 vi LIST OF TABLES TABLE PAGE 3.1.1 ILC DOVER INFLATABLE WING SPECIFICATINS ............................................. 27 3.2.1 CFD RESULTS INCLUDING NACA 4318 AIRFOIL .............................................. 31 3.2.2 AIRFOIL DATA COMPARISON, RE=500,000 ........................................................ 32 3.4.1 DYNAMIC INFLATION TEST RESULTS ..............................................................
Recommended publications
  • Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability L
    Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability L. Pepermans Technische Universiteit Delft Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability by L. Pepermans to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Wednesday October 30, 2019 at 14:30 AM. Student number: 4144538 Project duration: September 1, 2018 – October 30, 2019 Thesis committee: Ir. B.T.C Zandbergen , TU Delft, supervisor Prof. E.K.A Gill, TU Delft Dr.ir. D. Dirkx, TU Delft This thesis is confidential and cannot be made public until October 30, 2019. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover image: S-IVB upper stage of Skylab 3 mission in orbit [23] Preface Before you lies my thesis to graduate from Delft University of Technology on the feasibility and cost-effectiveness of reusable upper stages. During the accompanying literature study, it was determined that the technology readiness level is sufficiently high for upper stage reusability. However, it was unsure whether a cost-effective system could be build. I have been interested in the field of Entry, Descent, and Landing ever since I joined the Capsule Team of Delft Aerospace Rocket Engineering (DARE). During my time within the team, it split up in the Structures Team and Recovery Team. In September 2016, I became Chief Recovery for the Stratos III student-built sounding rocket. During this time, I realised that there was a lack of fundamental knowledge in aerodynamic decelerators within DARE.
    [Show full text]
  • Reusable Stage Concepts Design Tool
    DOI: 10.13009/EUCASS2019-421 8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) DOI: ADD DOINUMBER HERE Reusable stage concepts design tool Lars Pepermans?, Barry Zandbergeny ?Delft University of Technology Kluyverweg 1, 2629 HS Delft [email protected] yDelft University of Technology Kluyverweg 1, 2629 HS Delft Abstract Reusable launch vehicles hold the promise of substantially reducing the cost of access to space. Many different approaches towards realising a reusable rocket exist or are being proposed. This work focuses on the use of an optimisation method for conceptual design of non-winged reusable upper stages, thereby allowing it to take into account landing on land, sea or mid-air retrieval as well as landing the full stage or the engine only. As the optimisation criterion, the ratio of the specific launch cost of the reusable to the expendable version is used. The tool also provides for a Monte Carlo analysis, which allows for investigating the ruggedness of the design solution(s) found. The article will describe the methods implemented in the Conceptual Reusability Design Tool (CRDT) together with the modifications made to ParSim v3, a simulation tool by Delft Aerospace Rocket Engi- neering. Furthermore, it will present the steps taken to verify and validate CRDT. Finally, several example cases are presented based on the Atlas V-Centaur launch vehicle. The cases demonstrate the tools capa- bility of finding optimum and the sensitivity of the found optimum. However, it also shows the optimum when the user disables some Entry Descent and Landing (EDL) options. 1. Introduction To make space more accessible, one can reduce the cost of an orbital launch.
    [Show full text]
  • Suborbital Reusable Launch Vehicles and Applicable Markets
    SUBORBITAL REUSABLE LAUNCH VEHICLES AND APPLICABLE MARKETS Prepared by J. C. MARTIN and G. W. LAW Space Launch Support Division Space Launch Operations October 2002 Space Systems Group THE AEROSPACE CORPORATION El Segundo, CA 90245-4691 Prepared for U. S. DEPARTMENT OF COMMERCE OFFICE OF SPACE COMMERCIALIZATION Herbert C. Hoover Building 14th and Constitution Ave., NW Washington, DC 20230 (202) 482-6125, 482-5913 Contract No. SB1359-01-Z-0020 PUBLIC RELEASE IS AUTHORIZED Preface This report has been prepared by The Aerospace Corporation for the Department of Commerce, Office of Space Commercialization, under contract #SB1359-01-Z-0020. The objective of this report is to characterize suborbital reusable launch vehicle (RLV) concepts currently in development, and define the military, civil, and commercial missions and markets that could capitalize on their capabilities. The structure of the report includes a brief background on orbital vs. suborbital trajectories, as well as an overview of expendable and reusable launch vehicles. Current and emerging market opportunities for suborbital RLVs are identified and discussed. Finally, the report presents the technical aspects and program characteristics of selected U.S. and international suborbital RLVs in development. The appendix at the end of this report provides further detail on each of the suborbital vehicles, as well as the management biographies for each of the companies. The integration of suborbital RLVs with existing airports and/or spaceports, though an important factor that needs to be evaluated, was not the focus of this effort. However, it should be noted that the RLV concepts discussed in this report are being designed to minimize unique facility requirements.
    [Show full text]
  • 1- Aas 99-355 a Light-Weight
    (Presented at the AAS/AIAA Astrodynamics Specialist Converence, Girdwood, AK, August 16-19, 1999) AAS 99-355 A LIGHT-WEIGHT INFLATABLE HYPERSONIC DRAG DEVICE FOR VENUS ENTRY Angus D. McRonald,* Jet Propulsion Laboratory California Institute of Technology ABSTRACT The author has studied inflatable drag devices (ballute = balloon + parachute) for deceleration in the atmosphere of Venus, for both direct aerocapture and for entry from circular orbit. The studies indicate that ballutes made of thin materials capable of temperatures of about 500 C allow an entry system mass that is , for both aerocapture and entry, less than with the conventional entry body. For aerocapture the exit conditions are controlled by measuring the velocity loss and releasing the ballute when the desired exit conditions are indicated. A development program is necessary to explore the ballute shapes and changes in flight and to mitigate possible instabilities. To design an entry vehicle using a ballute the designer takes the vacuum orbiter or the lander as it is on the surface, chooses one surface to attach the ballute, and places an MLI blanket on the other end. PRIOR BALLUTE STUDIES Ballutes seem to have been invented in the forties and fifties to reduce the ground impact speed of empty sounding rockets or rocket casings. The investigators probably discovered that the mass of a ballute, inflated at high altitude, to slow a returning high altitude sounding rocket was less than the mass of a necessarily stronger parachute system that would open at low Mach number and high pressure. In the late sixties studies and wind tunnel tests were performed (1,2) by Goodyear and NASA Langley with a view to using ballutes to assist deceleration of the Viking landers at Mars, but these ballutes were deployed after peak deceleration and heating, thus having limited potential to change the entry trajectory.
    [Show full text]
  • Mars Aerocapture/Aerobraking Aeroshell Configurations by Abraham Chavez
    Mars Aerocapture/Aerobraking Aeroshell Configurations by Abraham Chavez This presentation provides a review of those studies and a starting point for considering Aerocapture/Aerobraking technology as a way to reduce mass and cost, to achieve the ambitious science returns currently desired What is Aerocapture: is first of all a very rapid process, requiring a heavy heat shield resulting in high g-forces, Descent into a relatively dense atmosphere is suffciently rapid that the deceleration causes severe heating requiring What is Aerobraking: is a very gradual process that has the advantage that small reductions in spacecraft velocity are achieved by drag of the solar arrays in the outer atmosphere, thus no additional mass for a heat shield is necessary. an aeroshell. Sasakawa International Center for Space Architecture, University of Houston College of Architecture Aerocapture vs Aerobraking Entry targeting burn Atmospheric entry Atmospheric Drag Aerocapture Reduces Orbit Period Periapsis Energy raise dissipation/ maneuver Autonomous Aerobraking (propulsive) guidance Target ~300 Passes Jettison Aeroshell Hyperbolic Through Upper orbit Approach Atmosphere Controlled exit Orbit Insertion Pros Cons Burn Uses very little fuel--significant mass Needs protective aeroshell savings for larger vehicles Pros Cons Establishes orbit quickly (single pass) One-shot maneuver; no turning back, Little spacecraft design impact Still need ~1/2 propulsive fuel load much like a lander Gradual adjustments; can pause Hundreds of passes = more chance of Has
    [Show full text]
  • DEPLOYABLE AERODY Namlc DECELERATION SYSTEMS
    1 NASA NASA SP-8066 I SPACE VEHICLE I DESIGN CRITERIA 1 (STRUCTURES) It i I i DEPLOYABLE AERODY NAMlC DECELERATION SYSTEMS JUNE 1971 NATIONAL AERONAUTICS AND SPACE ADM1N1STRATlON FOREWORD NASA experience has indicated a need for uniform criteria for the design of space vehicles. Accordingly, criteria are being developed in the following areas of technology: Environment Structures 'i Guidance and Control Chemical Propulsion Individual components of this work will be issued as separate monographs as soon as they are completed. A list of all published monographs in this series can be found at the end of this document. These monographs are to be regarded as guides to the formulation of design requirements by NASA Centers and project offices. This monograph was prepared under the cognizance of the Langley Research Center. The Task Manager was J. R. Hall. The author was E. G. Ewing of Northrop Corporation. Other individuals assisted in the development and review. In particular, significant contributions made by R. J. Berndt of U.S. Air Force Flight Dynamics Laboratory; J. M. Brayshaw of Jet Propulsion Laboratory; D. R. Casper and W. J. Chagaris of McDonnell Douglas Corporation; H. Elksnin, C. L. Gillis, J. C. McFall, Jr., M. M. Mikulas, Jr., and H. N. Murrow of NASA Langley Research Center; E. J. Giebotowski of U.S. Army Natick Laboratories; J. W. Kiker of NASA Manned Spacecraft Center; R. A. Pohl of Raven Industries, Inc.; F. R. Nebiker of Goodyear Aerospace Corporation; J. D. Nicolaides of University of Notre Dame; J. D. Reuter of Pioneer Parachute Company; and 0.
    [Show full text]
  • Space Technology Mission Directorate
    National Aeronautics and Space Administration Space Technology Mission Directorate Aeronautics and Space Engineering Board Presented by: Dr. Michael Gazarik Associate Administrator, STMD April 2014 www.nasa.gov/spacetech Space Technology… …. an Investment for the Future • Enables a new class of NASA missions Addresses National Needs beyond low Earth Orbit. A generation of studies and reports (40+ since 1980) document the need for • Delivers innovative solutions that regular investment in new, dramatically improve technological transformative space technologies. capabilities for NASA and the Nation. • Develops technologies and capabilities that make NASA’s missions more affordable and more reliable. • Invests in the economy by creating markets and spurring innovation for traditional and emerging aerospace business. • Engages the brightest minds from academia in solving NASA’s tough technological challenges. Value to NASA Value to the Nation Who: The NASA Workforce Academia Small Businesses The Broader Aerospace Enterprise 2 Major Highlights The PhoneSat 2.5 mission will be launched as a rideshare on SpaceX vehicle, to demonstrate command and control capability of operational satellites. NASA engineers successfully hot-fire Successfully fabricated a 5.5- tested a 3-D printed rocket engine meter composite cryogenic injector at NASA GRC, marking one of propellant tank and testing at the first steps in using additive Boeing’s facility in Washington manufacturing for space travel. and will continue testing at NASA MSFC this year. At NASA MSFC, the largest 3-D printed rocket engine ISS Fluid SLOSH experiment launched on injector NASA has ever Antares /Orb-1 on Dec. 18, 2014 and now The Flight Opportunities program tested blazed to life at an aboard ISS for testing that will be used to enabled flight validation of 35 engine firing that generated a improve our understanding of how liquids technologies that were tested in record 20,000 pounds of behave in microgravity space-like environments on four thrust.
    [Show full text]
  • Nanosat Deorbit and Recovery System to Enable New Missions
    SSC11-X-3 Nanosat Deorbit and Recovery System to Enable New Missions Jason Andrews, Krissa Watry, Kevin Brown Andrews Space, Inc. 3415 S. 116th Street, Ste 123, Tukwila, WA 98168, (206) 342-9934 [email protected], [email protected], [email protected] ABSTRACT As the number of NanoSat and CubeSat missions increase, deorbit capability is needed to minimize the hazards associated with on-orbit collisions and space debris. In addition, the ability to conduct a controller re-entry of a CubeSat class spacecraft will enable new missions and ultimately support the development of Low Earth Orbit space commerce. Andrews Space has developed the CubeSat Deorbit and Recovery System (DRS) to address this need. The DRS is a standalone device that uses inflatable technology to shorten a spacecraft's lifetime by a factor of ten, or enable controlled re-entry and safe recovery of NanoSat and CubeSat class spacecraft. The CubeSat DRS is a 1U module that attaches to a standard 2U CubeSat. A signal from the spacecraft triggers the deployment of four hinged walls of the module and the inflation of a 1.2 meter, 60-degree tension-cone decelerator by the onboard pressurization system. If deorbit without recovery is all that is the mission objective, then the tension cone will cause accelerated orbit decay and the lightweight, strain-hardening materials that make up the system will burn up in the atmosphere. Alternately, if satellite recovery is the objective, the system uses high temperature / flexible materials that protect the payload from the reentry environment. Using a modest amount of delta-V provided by the payload, the DRS can be targeted into an un-populated area for landing and recovery.
    [Show full text]
  • In-Space Propulsion Technology Products for NASA's Future Science
    In-Space Propulsion Technology Products Ready for Infusion on NASA’s Future Science Missions David J. Anderson Eric Pencil Todd Peterson NASA Glenn Research Center NASA Glenn Research Center NASA Glenn Research Center 21000 Brookpark Road 21000 Brookpark Road 21000 Brookpark Road Cleveland, OH 44135 Cleveland, OH 44135 Cleveland, OH 44135 216-433-8709 216-977-7433 216-433-5350 [email protected] [email protected] [email protected] John Dankanich Michelle M. Munk Gray Research, Inc. NASA Langley Research Center 21000 Brookpark Road 1 North Dryden Street Cleveland, OH 44135 Hampton, VA 23681 216-433-5356 757-864-2314 [email protected] [email protected] Abstract —Since 2001, the In-Space Propulsion Technology 1. INTRODUCTION (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA NASA’s Planetary Science Division (PSD) missions seek to robotic science missions. These in-space propulsion answer important science questions about our Solar System. technologies are applicable, and potentially enabling, for To meet NASA’s future science mission needs, the goal of future NASA flagship and sample return missions currently the In-Space Propulsion Technology (ISPT) program is the being considered. They have a broad applicability to future development of new enabling propulsion technologies that competed mission solicitations. The high-temperature cannot be reasonably achieved within the cost or schedule Advanced Material Bipropellant Rocket (AMBR) engine,
    [Show full text]
  • ACCESS to MARS: (Part 1) EARTH to MARS TRANSIT - LOGISTICS ALTERNATIVES John K
    ACCESS TO MARS: (Part 1) EARTH TO MARS TRANSIT - LOGISTICS ALTERNATIVES John K. Strickland, Jr. ([email protected]) Presented at the International Space Development Conference Huntsville, Alabama, May 18-22, 2011 Initial version presented at the 13th International Mars Society Convention, Dayton, Ohio, August 5-8, 2010 Space Transport and Logistics Issues Covered • Types and Purposes of Mars Expeditions • Major Decisions and Alternatives for Earth to Mars Transit Systems. • Getting Mars Equipment into Low Earth Orbit – Connecting HLV design to Mars Missions. • Types of Mars Transit vehicles • Near-Earth Space Infrastructure Needed. • Getting to and into Low Mars Orbit and back • Low Mars Orbit Base & Needed Infrastructure. • Down-select of choices for a re-usable system Types of Mars Expeditions • Flyby of Mars only. • Mars Orbit and Phobos with Tele-operation of surface robotics and base equipment. • Flags and Footprints (a few trips only) using expendable booster and in-space vehicles. • Antarctic Style Scientific Bases (semi-permanent & open-ended) – with reusable vehicles & ISRU. • Permanent Scientific Bases - major ISRU. • Base with commerce to support government. • Bases and Settlement(s) with commerce. Rational for avoiding “Flags and Footprints” Missions • F&F is a dead end road. If you build a "flags and footprints" (non-re-usable) architecture, then all you will get is a short series of flags and footprints missions. Period. This path is not sustainable due to the continuing high cost of building replacement vehicles. • There could be a very long gap afterward before Human Mars exploration is resumed, just like the one after Apollo. • This creates a risk of loss of public interest and support similar to the post-Apollo period.
    [Show full text]
  • US Commercial Space Transportation Developments and Concepts
    Federal Aviation Administration 2008 U.S. Commercial Space Transportation Developments and Concepts: Vehicles, Technologies, and Spaceports January 2008 HQ-08368.INDD 2008 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://www.faa.gov/about/office_org/headquarters_offices/ast/. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2008 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2008 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Space Competitions . .1 Expendable Launch Vehicle Industry . .2 Reusable Launch Vehicle Industry .
    [Show full text]
  • An Early Study of Disposal Options for the Hubble Space Telescope
    AN EARLY STUDY OF DISPOSAL OPTIONS FOR THE HUBBLE SPACE TELESCOPE Griffin, Thomas J.(1), Hull, Scott M.(1), Bretthauer, Joy W.(1), Leete, Stephen(1) (1) NASA Goddard Space Flight Center, UNITED STATES ABSTRACT concerns: those regarding the disposal method and the reentry risk. Since its launch in 1990, the Hubble Space Telescope has been one of the most productive scientific endeavors This paper will present a background on the Hubble in history. Nonetheless, all good things must eventually Space Telescope (HST), providing detail on its come to an end, including the useful life of this extraordinary 20+ year mission life and information on spacecraft. Since Hubble has no on-board propulsion how NASA has proactively taken the initiative to apply system, its orbit is currently decaying, and recent models the above mentioned guidelines and Standard Practices predict that without any intervention the telescope will to HST. These details are presented through a discussion reenter the atmosphere, no earlier than 2031. Due to the of the results of a NASA initiative study to assess very large size of the spacecraft and the extensive use of compliance methodology and basic mission architecture. materials that are expected to survive reentry heating, an Also presented are implications and options available to uncontrolled reentry would pose an unacceptable risk of NASA to maximize compliance with the guidelines injury to the general public. The original designs called while minimizing mission risk. While the focus of this for the telescope to be retrieved by the Space Shuttle at paper is on the efforts to minimize impacts to the orbital the end of its mission, but that is no longer an option.
    [Show full text]