Bulletin of the California Lichen Society
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Untangling Quantitative Lichen Diversity in and Around Badrinath Holy Pilgrimage of Western Himalaya, India
Journal of Graphic Era University Vol. 6, Issue 1, 36-46, 2018 ISSN: 0975-1416 (Print), 2456-4281 (Online) Untangling Quantitative Lichen Diversity in and Around Badrinath Holy Pilgrimage of Western Himalaya, India Sugam Gupta1, Omesh Bajpai2*, Himanshu Rai3,4, Dalip Kumar Upreti3, Pradeep Kumar Sharma1, Rajan Kumar Gupta4 1Department of Environmental Science Graphic Era (Deemed to be University), Dehradun, India 2Division of Plant Sciences Plant and Environmental Research Institute (PERI), Kanpur, Uttar Pradesh, India 3Lichenology laboratory, Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India 4Department of Botany Pt. Lalit Mohan, Government P.G. College, Rishikesh, Dehradun, India *Corresponding Author: [email protected] (Received August 16, 2017; Accepted, December 6, 2017) Abstract The present study was conducted in the Badrinath holy pilgrimage in Western Himalaya. Lichen collected from seven localities (Badrinath, enroute Bhimpul to Vasudhara, Mana, enroute Vasudhara to Mana, Bhimpul, Vasudhara Glacier and enroute Vasudhara to Bhagirathi Glacier). The highest overall IVI (6.64) was recorded for Rhizoplaca chrysoleuca. The maximum number of lichens have been documented in Badrinath locality (139 spp.) while minimum (6) in enroute Vasudhara to Bhagirathi Glacier. The Badrinath has also express maximum 71 site specific species, while the Vasudhara Glacier has only 2 species. The dominance has been computed maximum (0.17) for enroute Vasudhara to Bhagirathi Glacier while, minimum for the Badrinath (0.01). The lowest Simpson Index value (0.83) has been recorded in enroute Vasudhara to Bhagirathi Glacier while the highest (0.99) in Badrinath. The lowest value of Berger-Parker diversity index (0.03), as well as the highest values of Brillouin, Shannon, Menhinick, Margalef and Fisher alpha diversity indices (7.20, 4.78, 8.03, 24.2 and 100.6 respectively) from the Badrinath locality, designates it as a site of highest species diversity. -
Preliminary Classification of Leotiomycetes
Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades. -
<I> Lecanoromycetes</I> of Lichenicolous Fungi Associated With
Persoonia 39, 2017: 91–117 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2017.39.05 Phylogenetic placement within Lecanoromycetes of lichenicolous fungi associated with Cladonia and some other genera R. Pino-Bodas1,2, M.P. Zhurbenko3, S. Stenroos1 Key words Abstract Though most of the lichenicolous fungi belong to the Ascomycetes, their phylogenetic placement based on molecular data is lacking for numerous species. In this study the phylogenetic placement of 19 species of cladoniicolous species lichenicolous fungi was determined using four loci (LSU rDNA, SSU rDNA, ITS rDNA and mtSSU). The phylogenetic Pilocarpaceae analyses revealed that the studied lichenicolous fungi are widespread across the phylogeny of Lecanoromycetes. Protothelenellaceae One species is placed in Acarosporales, Sarcogyne sphaerospora; five species in Dactylosporaceae, Dactylo Scutula cladoniicola spora ahtii, D. deminuta, D. glaucoides, D. parasitica and Dactylospora sp.; four species belong to Lecanorales, Stictidaceae Lichenosticta alcicorniaria, Epicladonia simplex, E. stenospora and Scutula epiblastematica. The genus Epicladonia Stictis cladoniae is polyphyletic and the type E. sandstedei belongs to Leotiomycetes. Phaeopyxis punctum and Bachmanniomyces uncialicola form a well supported clade in the Ostropomycetidae. Epigloea soleiformis is related to Arthrorhaphis and Anzina. Four species are placed in Ostropales, Corticifraga peltigerae, Cryptodiscus epicladonia, C. galaninae and C. cladoniicola -
Winter 2009 the California Lichen Society Seeks to Promote the Appreciation, Conservation and Study of Lichens
Bulletin of the California Lichen Society Volume 16 No. 2 Winter 2009 The California Lichen Society seeks to promote the appreciation, conservation and study of lichens. The interests of the Society include the entire western part of the continent, although the focus is on California. Dues categories (in $US per year): Student and fixed income - $10, Regular - $20 ($25 for foreign members), Family - $25, Sponsor and Libraries - $35, Donor - $50, Benefactor - $100 and Life Membership - $500 (one time) payable to the California Lichen Society, PO Box 7775 #21135 , San Francisco, California 94120-7775. Members receive the Bulletin and notices of meetings, field trips, lectures and workshops. Board Members of the California Lichen Society: President: Erin Martin, shastalichens gmail.com Vice President: Michelle Caisse Secretary: Patti Patterson Treasurer: Cheryl Beyer Editor: Tom Carlberg Committees of the California Lichen Society: Data Base: Bill Hill, chairperson Conservation: Eric Peterson, chairperson Education/Outreach: Erin Martin, chairperson Poster/Mini Guides: Janet Doell, chairperson Events/field trips/workshops: Judy Robertson, chairperson The Bulletin of the California Lichen Society (ISSN 1093-9148) is edited by Tom Carlberg, tcarlberg7 yahoo.com. The Bulletin has a review committee including Larry St. Clair, Shirley Tucker, William Sanders, and Richard Moe, and is produced by Eric Peterson. The Bulletin welcomes manuscripts on technical topics in lichenology relating to western North America and on conservation of the lichens, as well as news of lichenologists and their activities. The best way to submit manuscripts is by e-mail attachments or on a CD in the format of a major word processor (DOC or RTF preferred). -
Lišejníky Chráněných Území Na Babě a Vraní Skála Na Křivoklátsku
Bryonora 53 (2014) 1 LIŠEJNÍKY CHRÁNĚNÝCH ÚZEMÍ NA BABĚ A VRANÍ SKÁLA NA KŘIVOKLÁTSKU Lichens of protected areas Na Babě and Vraní skála in the Křivoklát region (Central Bohemia) Jiří M a l í č e k 1 & Jana K o c o u r k o v á 2 1Přírodovědecká fakulta Univerzity Karlovy, Katedra botaniky, Benátská 2, CZ-128 01 Praha 2, e-mail: [email protected]; 2Fakulta životního prostředí České zemědělské univerzity v Praze, Kamýcká 129, CZ-165 21 Praha 6 – Suchdol, e-mail: [email protected] Abstract. Two small-sized protected areas involving open rocky sites and surrounding woodlands were surveyed in the Křivoklát region. One-hundred seventy-five lichens, lichenicolous fungi and lichen allied fungi are reported from the protected area Na Babě. The reserve is characterized by xerothermic vegetation (oak forests, grasslands, rocks) and a rather diverse bedrock. The area is rich in saxicolous and poor in epiphytic lichen species. The most valuable communities are on ±shady slate and greywacke rocks (with e.g. Bacidia arceutina, Diplotomma canescens, Endocarpon psorodeum, Hyperphyscia adglutinata, Phaeophyscia chloantha). From this locality, we publish two new species for the Czech Republic, a lichenicolous lichen Miriquidica instrata and a lichenicolous fungus Abrothallus tulasnei. Eighty-one taxa are reported from the protected area Vraní skála (chert rock). Aspicilia gibbosa, Cladonia glauca, Dimelaena oreina, and Pleopsidium chlorophanum represent the most interesting records. According to comparison with historical literature, the saxicolous flora on Vraní skála persists nearly without any change. Key words: Abrothallus tulasnei, Miriquiridica instrata, chert rock, lichen diversity Úvod Křivoklátsko patří v rámci středních Čech k přírodovědně nejcennějším oblastem. -
Some Notes on Acarosporaceae in South America
Opuscula Philolichenum, 11: 31-35. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) Some Notes on Acarosporaceae in South America 1 KERRY KNUDSEN ABSTRACT. – Three species and one genus are reported new for South America (all are from Ecuador): Acarospora americana, Caeruleum heppii, and Polysporina simplex. Acarospora catamarcae and A. thelomma are verified as distinct species occurring in Argentina. Acarospora punae is placed in synonymy with A. thelomma and lectotypes are designated for both names. Acarospora sparsiuscula is also verified as a distinct species, originally described from Argentina and here reported from the Galapagos Islands in Ecuador. A total of twenty-seven species of Acarosporaceae are recognized as occurring in South America in this ongoing taxonomic series. KEYWORDS. – Biodiversity, taxonomy. INTRODUCTION This paper is a new installment of a continuing series of studies Acarosporaceae in South America (Knudsen 2007a; Knudsen & Flakus 2009; Knudsen et al. 2008, 2010, 2011, in press.). In this paper I examine two species described by Magnusson (1947) from South America, Acarospora catamarcae H. Magn. and A. sparsiuscula H. Magn., and two species described by Lamb (1947) from South America, A. thelomma I.M. Lamb and A. punae I.M. Lamb. During the period of this study I also examined specimens collected by Zdenek Palice in Ecuador (PRA) and by Andre Aptroot on the Galápagos Islands in Ecuador (CDS) as well as specimens from Graz (GZU). A current checklist with literature references is also included. Species are only included in the checklist if they have been verified by myself as part of this continuing study. -
Contrasting Patterns in Lichen Diversity in the Continental and Maritime Antarctic
Accepted Manuscript Contrasting patterns in lichen diversity in the continental and maritime Antarctic Shiv Mohan Singh, Maria Olech, Nicoletta Cannone, Peter Convey PII: S1873-9652(15)30004-9 DOI: 10.1016/j.polar.2015.07.001 Reference: POLAR 246 To appear in: Polar Science Received Date: 3 January 2015 Revised Date: 13 April 2015 Accepted Date: 22 July 2015 Please cite this article as: Singh, S.M., Olech, M., Cannone, N., Convey, P., Contrasting patterns in lichen diversity in the continental and maritime Antarctic, Polar Science (2015), doi: 10.1016/ j.polar.2015.07.001. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Contrasting patterns in lichen diversity in the continental and maritime Antarctic 2 3 Shiv Mohan Singh a* , Maria Olech b, Nicoletta Cannone c, Peter Convey d 4 5 aNational Centre for Antarctic and Ocean Research, Ministry of Earth Sciences, 6 Vasco-Da-Gama, Goa 403804, India 7 8 bInstitute of Botany, Jagiellonian University, Kopernica 27, 31-501Cracow, Poland 9 10 cDepartment of Theoretical and Applied Sciences, Insubria University, via Valleggio, 11 11 – 22100 – Como (CO) -Italy 12 13 dBritish Antarctic Survey, Madingley Road, High Cross Cambridge CB3 0ET United 14 Kingdom 15 16 17 *For correspondence: [email protected] 18 19 20 Abstract 21 Systematic surveys of the lichen floras of MANUSCRIPTSchirmacher Oasis (Queen Maud Land, 22 continental Antarctic), Victoria Land (Ross Sector, continental Antarctic) and 23 Admiralty Bay (South Shetland Islands, maritime Antarctic) were compared to help 24 infer the major factors influencing patterns of diversity and biogeography in the three 25 areas. -
Management Plan for Antarctic Specially Protected Area No. 126 BYERS PENINSULA, LIVINGSTON ISLAND, SOUTH SHETLAND ISLANDS
Measure 4 (2016) Management Plan for Antarctic Specially Protected Area No. 126 BYERS PENINSULA, LIVINGSTON ISLAND, SOUTH SHETLAND ISLANDS Introduction The primary reason for the designation of Byers Peninsula (latitude 62°34'35" S, longitude 61°13'07" W), Livingston Island, South Shetland Islands, as an Antarctic Specially Protected Area (ASPA) is to protect the terrestrial and lacustrine habitats within the Area. Byers Peninsula was originally designated as Specially Protected Area (SPA) No. 10 through Recommendation IV-10 in 1966. This area included the ice-free ground west of the western margin of the permanent ice sheet on Livingston Island, below Rotch Dome, as well as Window Island about 500 m off the northwest coast and five small ice-free areas on the south coast immediately to the east of Byers Peninsula. Values protected under the original designation included the diversity of plant and animal life, many invertebrates, a substantial population of southern elephant seals (Mirounga leonina), small colonies of Antarctic fur seals (Arctocephalus gazella), and the outstanding scientific values associated with such a large variety of plants and animals within a relatively small area. Designation as an SPA was terminated through Recommendation VIII-2 and redesignation as a Site of Special Scientific Interest (SSSI) was made through Recommendation VIII-4 (1975, SSSI No. 6). The new designation as an SSSI more specifically sought to protect four smaller ice-free sites on the peninsula of Jurassic and Cretaceous sedimentary and fossiliferous strata, considered of outstanding scientific value for study of the former link between Antarctica and other southern continents. Following a proposal by Chile and the United Kingdom, the SSSI was subsequently extended through Recommendation XVI-5 (1991) to include boundaries similar to those of the original SPA: i.e. -
FL9511:Layout 1.Qxd
Domenico Puntillo Some lichens and lichenicolous fungi new to Italy and to Calabria Abstract Puntillo, D.: Some lichens and lichenicolous fungi new to Italy and to Calabria. — Fl. Medit. 21: 309-316. 2011. — ISSN: 1120-4052 printed, 2240-4538 online. Fifty-nine species of lichens and lichenicolous fungi are reported from Calabria. Sixteen species are new to Italy and forty-four are new to Calabria. So, calabrian Lichen flora encrease to ca. 1.000 species. Key words: Lichens, lichenicolous fungi, Mediterranean. Introduction Calabria is the southernmost tip of the Italian peninsula. The rugged morphology, the variety of substrata, the often markedly suboceanic climates, the abundance of old forests and cultivation of olive trees, together with the limited industrial development, are responsible for a rich lichen flora. The earlier lichenological exploration of Calabria was summarized by Nimis (1993). After the publication of the extensive monograph on the lichens of Calabria by Puntillo (1996), this number rose to 856. Further species were added by Puntillo (1998) and Puntillo & Puntillo (2002), and sev- eral records are contained in taxonomic treatments and other floristic works (e.g. Hertel & Rambold 1995; Ropin & Mayrhofer 1995; Sérusiaux 1998; Boom & Giralt 2002; Tretiach 1997; Giordani & al. 2002). This present paper includes 60 species of lichens and lichenicolous fungi from the herbaria CLU and TSB, which proved to be new to Italy and the region. Material and methods Routine methods (light microscopy) were applied in the analysis of samples. The chemistry of selected specimens was studied by standard TLC methods as described by Culberson & Ammann (1979). Nomenclature follows Nimis & Martellos (2003) and authors are abbreviated according to Brummitt & Powell (1992). -
Opuscula Philolichenum, 6: 1-XXXX
Opuscula Philolichenum, 9: 77-83. 2011. A Preliminary Study of Pleopsidium stenosporum (Stizenb. ex Hasse) K. Knudsen 1 KERRY KNUDSEN ABSTRACT. – Lecanora stenospora is revised and transferred to Pleopsidium. It is known from California and Washington in western North America. The thallus morphology of the species is intermediate between P. discurrens from Tibet and P. flavum which also occurs in North America. It occurs on limestone, mafic greenstone, and probably other slightly calcareous metamorphic rocks. No collections were seen on granite, a common substrate of P. flavum. KEYWORDS. – Cascade Mountains, H.E. Hasse, Kettle Mountains, Okanogan Highlands, morphology, San Gabriel Mountains. INTRODUCTION During the writing of the Acarospora A. Massal. treatment for the Lichen Flora of the Greater Sonoran Desert Region (Knudsen 2007a), I saw a specimen of Lecanora stenospora Stizenb. ex Hasse from the San Gabriel Mountains in southern California (FH!). The small dispersed yellow areoles were round and convex to elongated and angular and it looked like a yellow Acarospora with unusual thallus morphology. The specimen was sterile. Shortly before his death, Bruce Ryan told me he had found one fertile apothecium on the specimen and it was an Acarospora. I assumed it might be some strange depauperate form of A. socialis H. Magn. or A. novomexicana H. Magn. It did not look like Pleopsidium flavum (Bellardi) Körb., the common species in North America. During my recent visits to the Farlow Herbarium I looked for the type specimen I had seen earlier but did not find it. Fortunately Frank Bungartz photographed it (fig. 1A). Ernie Brodo sent me an image of a strange Acarospora or Pleopsidium taken by Rob Schlingman, an engineer, while hiking on Mount Herman at 6000 feet in the Mount Baker Backcountry in the northern Cascades in Washington (fig. -
High-Level Classification of the Fungi and a Tool for Evolutionary Ecological Analyses
Fungal Diversity (2018) 90:135–159 https://doi.org/10.1007/s13225-018-0401-0 (0123456789().,-volV)(0123456789().,-volV) High-level classification of the Fungi and a tool for evolutionary ecological analyses 1,2,3 4 1,2 3,5 Leho Tedersoo • Santiago Sa´nchez-Ramı´rez • Urmas Ko˜ ljalg • Mohammad Bahram • 6 6,7 8 5 1 Markus Do¨ ring • Dmitry Schigel • Tom May • Martin Ryberg • Kessy Abarenkov Received: 22 February 2018 / Accepted: 1 May 2018 / Published online: 16 May 2018 Ó The Author(s) 2018 Abstract High-throughput sequencing studies generate vast amounts of taxonomic data. Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone. We propose an updated phylum- and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative. Based on phylogenies and divergence time estimates, we adopt phylum rank to Aphelidiomycota, Basidiobolomycota, Calcarisporiellomycota, Glomeromycota, Entomoph- thoromycota, Entorrhizomycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota and Olpidiomycota. We accept nine subkingdoms to accommodate these 18 phyla. We consider the kingdom Nucleariae (phyla Nuclearida and Fonticulida) as a sister group to the Fungi. We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework, using this or any other classification system. We provide an example -
Appendix 15 Mapping Vegetation Communities in ONSR
Appendix 15. ONSR USNVC Natural Community Descriptions TABLE OF CONTENTS N.B. Global components printed from Biotics on 12, Oct. 2005. Subset: Ozark National Scenic Riverways. (Copyright © 2005 NatureServe). OVERVIEW OF VEGETATIVE DESCRIPTIONS..........................................................................................3 I. FOREST..............................................................................................................................................................6 I.A.8.N.b. Rounded-crowned temperate or subpolar needle-leaved evergreen forest.................................................... 6 Pinus echinata Forest Alliance................................................................................................................................................................ 6 Pinus echinata / Vaccinium (arboreum, pallidum, stamineum) Forest...................................................................................................... 6 I.B.2.N.a. Lowland or submontane cold-deciduous forest............................................................................................... 10 Quercus alba - (Quercus rubra, Carya spp.) Forest Alliance .............................................................................................................. 10 Quercus alba - Quercus rubra - Quercus muehlenbergii / Cercis canadensis Forest............................................................................. 10 Quercus alba / Cornus florida Unglaciated Forest.................................................................................................................................