Levorphanol Tartrate Injection Levorphanol Tartrate

Total Page:16

File Type:pdf, Size:1020Kb

Levorphanol Tartrate Injection Levorphanol Tartrate 4104 Levonorgestrel / Official Monographs USP 36 Column: 4-mm × 15-cm; packing L7 IdentificationÐ Flow rate: 1 mL/min A: Infrared Absorption 〈197K〉ÐObtain the test specimen Injection size: 100 µL as follows. Dissolve 50 mg in 25 mL of water in a 125-mL System suitability separator. Add 2 mL of 6 N ammonium hydroxide, extract Sample: Standard solution with 25 mL of chloroform, and filter the chloroform extract [NOTEÐThe relative retention times for ethinyl estradiol through a layer of 4 g of granular anhydrous sodium sulfate and levonorgestrel are about 0.7 and 1.0, supported on glass wool into a 125-mL conical flask. Evapo- respectively.] rate the chloroform extract on a steam bath with the aid of Suitability requirements a stream of nitrogen to dryness. Dissolve the residue in 1 mL Relative standard deviation: NMT 3.0% of acetone, and evaporate to dryness. Dry in vacuum at 90° Analysis for 1 hour. Proceed as directed with the dried levorphanol Samples: Standard solution and Sample solution so obtained and a similar preparation of USP Levorphanol Calculate the percentage of C21H28O2 and C20H24O2 Tartrate RS. dissolved: B: Ultraviolet Absorption 〈197U〉Ð Result = (rU/rS) × (CS/CU) × 100 Solution: 130 µg per mL. Medium: 0.1 N hydrochloric acid. rU = peak response of the corresponding analyte Absorptivities at 279 nm, calculated on the anhydrous ba- from the Sample solution sis, do not differ by more than 3.0%. rS = peak response of the corresponding analyte Specific rotation 〈781S〉: between −14.7° and −16.3°. from the Standard solution Test solution: 30 mg per mL, in water. Heat on a water CS = concentration of the appropriate USP Reference Standard in the Standard solution bath or sonicate to dissolve 750 mg in 20 mL of water in a (µg/mL) 25-mL volumetric flask, dilute with water to volume, and mix. CU = nominal concentration of the corresponding analyte in the Sample solution (µg/mL) Water, Method I 〈921〉: between 7.0% and 9.0%. Tolerances Residue on ignition 〈281〉: not more than 0.1%. Uncoated Tablets: NLT 80% (Q) of the labeled Ordinary impurities 〈466〉Ð amount of C21H28O2, and 75% (Q) of the labeled Test solution: water. amount of C20H24O2 is dissolved. Coated Tablets: NLT 60% (Q) of the labeled amount Standard solution: water. of C21H28O2 and C20H24O2 is dissolved. Eluant: a mixture of hexanes, dehydrated alcohol, and • UNIFORMITY OF DOSAGE UNITS 〈905〉: Meet the ammonium hydroxide (80:25:1). requirements Visualization: 17; then view immediately under short- Sample solution: Place 1 Tablet in a 40-mL centrifuge wavelength UV light. tube, add 10.0 mL of Mobile phase, and proceed as di- AssayÐDissolve about 900 mg of sample, accurately rected in the Assay. weighed, in 85 mL of glacial acetic acid, warming slightly if ADDITIONAL REQUIREMENTS necessary. Titrate with 0.1 N perchloric acid VS and deter- mine the endpoint potentiometrically. Perform a blank de- • PACKAGING AND STORAGE: Preserve in well-closed containers. termination and make any nececssary corrections. Each mL of 0.1 N perchloric acid consumed by the sample is equiva- • USP REFERENCE STANDARDS 〈11〉 USP Ethinyl Estradiol RS lent to 40.75 mg of C17H23NO ´ C4H6O6. USP Levonorgestrel RS . Levorphanol Tartrate Injection . Levorphanol Tartrate » Levorphanol Tartrate Injection is a sterile solu- tion of Levorphanol Tartrate in Water for Injec- tion. It contains not less than 93.0 percent and not more than 107.0 percent of the labeled amount of C17H23NO.C4H6O6 ´ 2H2O. Packaging and storageÐPreserve in single-dose or in C17H23NO ´ C4H6O6 ´ 2H2O 443.49 multiple-dose containers, preferably of Type I glass. Morphinan-3-ol, 17-methyl-, [R-(R*,R*)]-2,3-dihydroxy- USP Reference standards 〈11〉Ð butanedioate (1:1) (salt), dihydrate. USP Endotoxin RS 17-Methylmorphinan-3-ol, tartrate (1:1) (salt) dihydrate IdentificationÐ [5985-38-6]. Anhydrous 407.47 [125-72-4]. A: To 1 mL of Injection add 1 drop of 3 N hydrochloric acid and 2 drops of ferric chloride TS. Heat to boiling, and » Levorphanol Tartrate contains not less than add 1 mL of potassium ferricyanide solution (1 in 200): a 99.0 percent and not more than 101.0 percent of blue-green color develops. B: The angular rotation of the Injection is levorotatory C17H23NO ´ C4H6O6, calculated on the anhydrous basis. (see Optical Rotation 〈781〉). Bacterial endotoxins 〈85〉ÐIt contains not more than Packaging and storageÐPreserve in well-closed contain- 125.0 USP Endotoxin Units per mg of levorphanol tartrate. ers. Store at 25°, excursions permitted between 15° and pH 〈791〉: between 4.1 and 4.5. 30°. Other requirementsÐIt meets the requirements under In- USP Reference standards 〈11〉Ð jections 〈1〉. USP Levorphanol Tartrate RS USP 36 Official Monographs / Levothyroxine 4105 AssayÐTransfer an accurately measured volume of Injec- of USP Levorphanol Tartrate RS in the same medium having tion, equivalent to about 40 mg of levorphanol tartrate, to a a known concentration of about 80 µg of anhydrous 125-mL separator. Add 5 g of sodium chloride and sufficient levorphanol tartrate per mL, in 1-cm cells at the wavelength sodium bicarbonate to render the solution alkaline to litmus, of maximum absorbance at about 279 nm, with a suitable add an additional 100 mg of sodium bicarbonate, and ex- spectrophotometer, using 0.1 N hydrochloric acid as the tract the levorphanol with five 20-mL portions of a mixture blank. Calculate the quantity, in mg, of C17H23NO ´ C4H6O6 ´ of 3 volumes of ether and 1 volume of chloroform. Pass the 2H2O in the Tablet taken by the formula: combined extracts through a layer of about 10 g of granular anhydrous sodium sulfate into a 500-mL conical flask, and (443.49 / 407.47)(TC / D)(AU / AS) evaporate to a volume of about 30 mL. Add about 50 mL of chloroform and 1 drop of methanolic methyl red TS, and in which 443.49 and 407.47 are the molecular weights of titrate with 0.01 N perchloric acid in dioxane VS to a red the hydrated and anhydrous forms of levorphanol tartrate, endpoint. Perform a blank determination, and make any respectively; T is the labeled quantity, in mg, of levorphanol necessary correction. Each mL of 0.01 N perchloric acid is tartrate in the Tablet; C is the concentration, in µg per mL, equivalent to 4.435 mg of C17H23NO ´ C4H6O6 ´ 2H2O. of USP Levorphanol Tartrate RS, on the anhydrous basis, in the Standard solution; D is the concentration, in µg per mL, of levorphanol tartrate in the solution from the Tablet, based on the labeled quantity per Tablet and the extent of dilution; and AU and AS are the absorbances of the solution . Levorphanol Tartrate Tablets from the Tablet and the Standard solution, respectively. AssayÐWeigh and finely powder not less than 20 Tablets. Weigh accurately a portion of the powder, equivalent to » Levorphanol Tartrate Tablets contain not less about 40 mg of levorphanol tartrate, transfer to a 125-mL than 93.0 percent and not more than 107.0 per- separator, add 20 mL of water and sufficient sodium bicar- cent of the labeled amount of levorphanol tar- bonate to render the suspension alkaline to litmus, and pro- trate (C17H23NO ´ C4H6O6 ´ 2H2O). ceed as directed in the Assay under Levorphanol Tartrate In- jection, beginning with ªadd an additional 100 mg of Packaging and storageÐPreserve in well-closed contain- sodium bicarbonate.º ers. USP Reference standards 〈11〉Ð USP Levorphanol Tartrate RS . IdentificationÐ Levothyroxine Sodium A: Powder finely a number of Tablets. To a portion of the powder, equivalent to about 1 mg of levorphanol tartrate, add 1 mL of water, 1 drop of 3 N hydrochloric acid, and 2 drops of ferric chloride TS, and heat to boiling. To the hot solution add 1 mL of potassium ferricyanide solution (1 in 200): a bluish color develops. B: Powder a number of Tablets, equivalent to about 60 mg of levorphanol tartrate, and transfer the mixture to a C15H10I4NNaO4 ´ xH2O (anhydrous) 798.85 small separator. Add 10 mL of water, dissolve as much of L-Tyrosine, O-(4-hydroxy-3,5-diiodophenyl)-3,5-diiodo-, the powder as possible, add about 400 mg of sodium bicar- monosodium salt, hydrate; bonate, and extract with a 50-mL portion of chloroform. Monosodium L-thyroxine hydrate [25416-65-3]. Evaporate the filtered chloroform extract on a steam bath to Anhydrous [55-03-8]. a small volume, dilute with chloroform to 10 mL, and deter- mine the angular rotation: the solution is levorotatory (see DEFINITION Optical Rotation 〈781〉). Levothyroxine Sodium is the sodium salt of L-3,3′,5,5′-te- Dissolution 〈711〉Ð traiodothyronine. It contains NLT 97.0% and NMT Medium: water; 500 mL. 103.0% of levothyroxine sodium (C15H10I4NNaO4), calcu- lated on the anhydrous basis. Apparatus 2: 50 rpm. Time: 30 minutes. IDENTIFICATION ProcedureÐDetermine the amount of C17H23NO ´ C4H6O6 ´ 2H2O dissolved from UV absorbances at the wavelength of Change to read: maximum absorbance at about 279 nm on filtered portions of the solution under test, suitably diluted with water, in • A. LINFRARED ABSORPTION 〈197〉: [NOTEÐMethods de- comparison with a Standard solution having a known con- scribed in Infrared Absorption 〈197K〉 or 〈197A〉 may be centration of USP Levorphanol Tartrate RS in the same me- used.]LUSP36 dium. TolerancesÐNot less than 75% (Q) of the labeled amount Delete the following: of C17H23NO ´ C4H6O6 ´ 2H2O is dissolved in 30 minutes. Uniformity of dosage units 〈905〉: meet the require- L ments. • B. Acid sodium chloride solution: Alcohol, 1 N sodium hy- Procedure for content uniformityÐTransfer 1 Tablet to a droxide, hydrochloric acid, and water (25:10:10:30) glass-stoppered flask, add 25.0 mL of 0.1 N hydrochloric Sample: 0.5 mg acid, and allow the Tablet to disintegrate.
Recommended publications
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
    INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org).
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • The Effects of the Morphine Analogue Levorphanol on Leukocytes: Metabolic Effects at Rest and During Phagocytosis
    The effects of the morphine analogue levorphanol on leukocytes: Metabolic effects at rest and during phagocytosis Nancy Wurster, … , Penelope Pettis, Sharon Lebow J Clin Invest. 1971;50(5):1091-1099. https://doi.org/10.1172/JCI106580. Studies on bacteria have suggested that morphine-like drugs have effects on the cell membrane. To determine the effect of this class of drugs on a mammalian cell, we selected the rabbit peritoneal exudate granulocyte, which undergoes striking membrane changes during phagocytosis. We examined the effect in vitro of the morphine analogue, levorphanol on phagocytosis and metabolism by granulocytes incubated with and without polystyrene particles or live Escherichia coli. Levorphanol (1 or 2 mmoles/liter) decreased: (a) acylation of lysolecithin or lysophosphatidylethanolamine in the medium (which is stimulated about two-fold during phagocytosis) both at rest (40%) and during phagocytosis (60%); (b) uptake of latex particles and Escherichia coli, as judged by electron microscopy; (c) killing of live Escherichia coli (10-fold); (d) 14 14 + CO2 production from glucose-1- C during phagocytosis by at least 80%; (e) K content of granulocytes (35%); (f) oxidation of linoleate-1-14C by 50%, and its incorporation into triglyceride by more than 80%. However, levorphanol stimulated 2 to 3-fold the incorporation of linoleate-1-14C or palmitate-1-14C into several phospholipids. Glucose uptake, lactate production, and adenosine triphosphate (ATP) content are not affected by the drug. Thus, levorphanol does not appear to exert its effects through generalized metabolic suppression. Removal of levorphanol by twice resuspending the granulocytes completely reverses all inhibition. In line with observations on bacteria, it appears that the complex effects of levorphanol on […] Find the latest version: https://jci.me/106580/pdf The Effects of the Morphine Analogue Levorphanol on Leukocytes METABOLIC EFFECTS AT REST AND DURING PHAGOCYTOSIS NANcY WuRsTE, PETER ELSBACH, ERIc J.
    [Show full text]
  • The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies
    International Journal of Molecular Sciences Article The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies Aleksandra Szopa 1,* , Karolina Bogatko 1, Mariola Herbet 2 , Anna Serefko 1 , Marta Ostrowska 2 , Sylwia Wo´sko 1, Katarzyna Swi´ ˛ader 3, Bernadeta Szewczyk 4, Aleksandra Wla´z 5, Piotr Skałecki 6, Andrzej Wróbel 7 , Sławomir Mandziuk 8, Aleksandra Pochodyła 3, Anna Kudela 2, Jarosław Dudka 2, Maria Radziwo ´n-Zaleska 9, Piotr Wla´z 10 and Ewa Poleszak 1,* 1 Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (K.B.); [email protected] (A.S.); [email protected] (S.W.) 2 Chair and Department of Toxicology, Medical University of Lublin, 8 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (M.H.); [email protected] (M.O.); [email protected] (A.K.) [email protected] (J.D.) 3 Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (K.S.);´ [email protected] (A.P.) 4 Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Sm˛etnaStreet, PL 31–343 Kraków, Poland; [email protected] 5 Department of Pathophysiology, Medical University of Lublin, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland; [email protected] Citation: Szopa, A.; Bogatko, K.; 6 Department of Commodity Science and Processing of Raw Animal Materials, University of Life Sciences, Herbet, M.; Serefko, A.; Ostrowska, 13 Akademicka Street, PL 20–950 Lublin, Poland; [email protected] M.; Wo´sko,S.; Swi´ ˛ader, K.; Szewczyk, 7 Second Department of Gynecology, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland; B.; Wla´z,A.; Skałecki, P.; et al.
    [Show full text]
  • Development of a Thin Layer Chromatography Method for the Separation of Enantiomers Using Chiral Mobile Phase Additives
    The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Development of a Thin Layer Chromatography Method for the Separation of Enantiomers Using Chiral Mobile Phase Additives Author(s): Robyn L. Larson, Kelly A. Howerter, Jacob L. Easter Document No.: 240685 Date Received: December 2012 Award Number: 2008-DN-BX-K140 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 8/30/12 Development of a Thin Layer Chromatography Method for the Separation of Enantiomers Using Chiral Mobile Phase Additives Grant # 2008-DN-BX-K140 Robyn L. Larson1, Kelly A. Howerter1 and Jacob L. Easter2 Virginia Department of Forensic Science1 700 North Fifth St. Richmond, VA 23219 Virginia Commonwealth University2 Richmond, VA This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S.
    [Show full text]
  • Chloroform 1
    CHLOROFORM 1 1. PUBLIC HEALTH STATEMENT This public health statement tells you about chloroform and the effects of exposure. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites make up the National Priorities List (NPL) and the sites are targeted for long-term federal cleanup. Chloroform has been found in at least 717 of the 1,430 current or former NPL sites, including 6 in Puerto Rico and 1 in the Virgin Islands. However, it’s unknown how many NPL sites have been evaluated for this substance. As more sites are evaluated, the sites with chloroform may increase. This is important because exposure to this substance may harm you and because these sites may be sources of exposure. When a substance is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. This release does not always lead to exposure. You are exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance, or by skin contact. If you are exposed to chloroform, many factors determine whether you’ll be harmed. These factors include the dose (how much), the duration (how long), and how you come in contact with it. You must also consider the other chemicals you’re exposed to and your age, sex, diet, family traits, lifestyle, and state of health. 1.1 WHAT IS CHLOROFORM? Chloroform is also known as trichloromethane or methyltrichloride.
    [Show full text]
  • 01987 Data Sheet
    DATA SHEET Reagent: Efavirenz Catalog Number: 4624 Lot Number: 01987 Release A Category: Provided: 20 mg Chemical Name: (S)-6-chloro-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)- 2H-3,1-benzoxazin-2-one Empirical C14H9ClF3NO2 Formula: Molecular 315.68 Weight: CAS Num: 154598-52-4 Solubility: DMSO; Chloroform; slightly soluble in toluene; insoluble in water. Mechanical Efavirenz is a non-nucleoside reverse transcriptase inhibitor of HIV-1. Efavirenz activity is Action: mediated predominantly by noncompetitive inhibition of HIV-1 reverse transcriptase. HIV-2 reverse transcriptase and human cellular DNA polymerases are not inhibited by efavirenz. Special COA Characteristics: Recommended Room temperature. Once resuspended, working aliquots can be stored at −20°C. Storage: ALL RECIPIENTS OF THIS MATERIAL MUST COMPLY WITH ALL APPLICABLE BIOLOGICAL, CHEMICAL, AND/OR RADIOCHEMICAL SAFETY STANDARDS INCLUDING SPECIAL PRACTICES, EQUIPMENT, FACILITIES, AND REGULATIONS. NOT FOR USE IN HUMANS. REV: 07/25/2014 Page 1 of 2 Contributor: Division of AIDS, NIAID. NOTE: Acknowledgment for publications should read "The following reagent was obtained through the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH: Efavirenz." This compound is restricted for “research purposes only” and is limited to 40 mg per requester per year. Not available for release to commercial organizations outside of the USA. Recipient agrees that the reagent (Efavirenz) use is permitted only as a standard for in vitro and/or studies in animals for inhibition of HIV replication. Last Updated July 25, 2014 ALL RECIPIENTS OF THIS MATERIAL MUST COMPLY WITH ALL APPLICABLE BIOLOGICAL, CHEMICAL, AND/OR RADIOCHEMICAL SAFETY STANDARDS INCLUDING SPECIAL PRACTICES, EQUIPMENT, FACILITIES, AND REGULATIONS.
    [Show full text]
  • ADOLESCENT SUBSTANCE USE 101 Current Trends and the Impact of COVID-19
    ADOLESCENT SUBSTANCE USE 101 Current Trends and the Impact of COVID-19 UCLA INTEGRATED SUBSTANCE ABUSE PROGRAMS HOW TO ASK A QUESTION To ask a question, please If you have a comment, please enter it into enter it in the Q&A box the chat box. When you enter a comment, you have two options, one to pose the you see on your zoom comment to everyone or just privately to toolbar. panelists, which is the default setting. POLL: YOUR ROLE AND/OR ORGANIZATION • Physician • Group practice comprised of at least one physician • Hospital outpatient department • Federally qualified health center • Rural health clinic • Community mental health clinic • Certified Community Behavioral Health Clinic • Opioid treatment program • Critical access hospital • Other (enter in chat) TODAY’S PRESENTER Thomas E. Freese, Ph.D. Co-Director of the UCLA Integrated Substance Abuse Programs Director of the Pacific Southwest Addictions Technology Transfer Center WEBINAR OBJECTIVES By the end of this webinar, participants will be able to: 1. Describe the psychoactive substances most commonly used by adolescents. 2. Discuss the main mechanisms of action for psychoactive substances. 3. Describe the main reasons adolescents use psychoactive substances. 5 WHAT SUBSTANCES ARE BEING USED BY THE TEENAGERS THAT YOU ARE SEEING? Please type your answer in the chat feature 6 NUMBERS OF PEOPLE REPORTING PAST MONTH SUBSTANCE USE AMONG THOSE AGED 12 OR OLDER: 2018 SOURCES: McCance-Katz, 2019; SAMHSA, 2019 7 SUBSTANCE USE TRENDS IN SCHOOL POPULATIONS Source: National Institute on Drug
    [Show full text]
  • Toxicology Reference Material
    toxicology Toxicology covers a wide range of disciplines, including therapeutic drug monitoring, clinical toxicology, forensic toxicology (drug driving, criminal and coroners), drugs in sport and work place drug testing, as well as academia and research. Those working in the field have a professional interest in the detection and measurement of alcohol, drugs, poisons and their breakdown products in biological samples, together with the interpretation of these measurements. Abuse and misuse of drugs is one of the biggest problems facing our society today. Acute poisoning remains one of the commonest medical emergencies, accounting for 10-20% of hospital admissions for general medicine [Dargan & Jones, 2001]. Many offenders charged with violent crimes, or victims of violent crime may have been under the influence of drugs at the time the act was committed. The use of mind-altering drugs in the work place, or whilst in control of a motor vehicle places others in danger [Drummer, 2001]. Performance enhancing drugs in sport make for an uneven playing field and distract from the core ethic of sportsmanship. Patterns of drug abuse around the world are constantly evolving. They vary between geographies; from one country to another and even from region to region or population to population within countries. With a European presence, a wide reaching network of global customers and distributors, and activate participation in relevant professional societies, Chiron is well positioned to develop and deliver relevant, and current standards to meet customer demand in this challenging field. Chiron AS Stiklestadvn. 1 N-7041 Trondheim Norway Phone No.: +47 73 87 44 90 Fax No.: +47 73 87 44 99 E-mail: [email protected] Website: www.chiron.no Org.
    [Show full text]
  • Locating and Estimating Sources of Methyl Chloroform
    EPA-454/R-93-045 LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF METHYL CHLOROFORM Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 February 1994 DISCLAIMER This report has been reviewed by the Office of Air Quality Planning and Standards, and has been approved for publication. Any mention of tradenames or commercial products is not intented to constitute endorsement or recommendation for use. ii CONTENTS Section Page DISCLAIMER ..................................................... ii LIST OF FIGURES .................................................. v LIST OF TABLES ................................................... vi 1.0 PURPOSE OF DOCUMENT ..................................... 1-1 1.1 Reference for Section 1.0 ................................... 1-5 2.0 OVERVIEW OF DOCUMENT CONTENTS .......................... 2-1 2.1 References for Section 2.0 .................................. 2-5 3.0 BACKGROUND .............................................. 3-1 3.1 Nature of Pollutant ....................................... 3-1 3.2 Regulatory Actions Affecting Methyl Chloroform Production and Use .... 3-4 3.3 Overview of Production and Use .............................. 3-7 3.4 References for Section 3.0 ................................. 3-10 4.0 EMISSIONS FROM METHYL CHLOROFORM PRODUCTION ............ 4-1 4.1 Production Process Descriptions .............................. 4-2 4.1.1 Hydrochlorination of Vinyl Chloride ...................... 4-4 4.1.2 Hydrochlorination
    [Show full text]
  • Lysergic Acid Diethylamide (LSD) Tartrate at Approximately 100 Mg/Ml Using Methanol
    LYSERGIC ACID DIETHYLAMIDE Latest Revision: February 15, 1999 1. SYNONYMS CFR: Lysergic acid diethylamide CAS #: Base: 50-37-3 Other Names: D-lysergic acid diethylamide N, N-diethyl-D-lysergamid Lysergsäure diethylamid LAD LSD LSD-25 9,10-Didehydro-N,N diethyl-6-methylergoline-8-β-carboxamide Warning - LSD POWDER LSD powder should be handled with the utmost care. The analyst should work with an assistant using an empty hood where lights can be used to aid in UV light examination for LSD contamination. Once the container is opened, the chemist's hands and immediate area of the hood become contaminated. Anything needed outside the hood should be handled by the assistant. Dust mask, apron, and latex gloves should be worn. Dampening the gloves with a damp rag helps avoid problems associated with static electricity. Cloth gloves may be used over the latex gloves to minimize static as well. After analysis, the LSD container should be wiped off with a damp rag before replacing in the evidence bag. The chemist's gloves and the hood, including its contents should be decontaminated using diluted bleach. Decontamination is complete when all blue LSD fluorescence has been converted to yellow. 2. CHEMICAL AND PHYSICAL DATA 2.1. CHEMICAL DATA Form Chemical Formula Molecular Weight Melting Point (°C) Base C20H25N3O 323.4 80-85 Tartrate C46H64N6O10* 861.0 198-200 2.2. SOLUBILITY Form A C E H M W Base VS VS VS SS VS *** Tartrate *** I I I S S A = acetone, C = chloroform, E = ether, H = hexane, M = methanol and W = water, VS = very soluble, FS = freely soluble, S = soluble, PS = sparingly soluble, SS = slightly soluble, VSS = very slightly soluble and I = insoluble 3.
    [Show full text]
  • Substitutive Solvents for Chloroform in the Identification Test For
    190 J. Food Hyg. Soc. Japan Vol. 38, No. 3 Report Substitutive Solvents for Chloroform in the Identification Test for Ergocalciferol and Cholecalciferol in the Japanese Standards for Food Additives (ReceivedDecember 13, 1996) Hajimu ISHIWATA*1, Chlakl KAT0*1,*2, Takiko SUGITA*1, Yoko KAWASAKI*1 and Takashi YAMADA*1 (*1National Institute of Health Sciences: 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158, Japan; *2Faculty of Environmental Health Sciences, Azabu University: 1-17-71, Fuchinobe, Sagamihara-shi, Kanagawa 229, Japan) Key words: Japanese Standards for Food Additives, identification test for vitamin D, ergocal- ciferol, cholecalciferol, chloroform, toluene 2. Analytical methods Introduction Ergocalciferol and cholecalciferol were iden- Clean analysis is now being proposed as a tified by the Japanese official method described means of protecting the earth's environment in "Identification (1)" under "Ergocalciferol" in and the health of analysts1),2). Nevertheless, the JSFA4),5) and a modified method, namely: 0.3 toxic reagents such as chloroform, benzene, mer- mL of acetic anhydride and 0.1 mL of sulfuric cury compounds, etc., are still used in many acid were added to 0. 5 mg of ergocalcif erol or tests in the Japanese Standards for Food Addi- cholecalciferol dissolved in 5 mL of chloroform, tives (JSFA), sixth edition3). While the methods diethyl ether, ethyl acetate, n-hexane, toluene, or or reagents for these tests must be changed, xylene. The mixture was shaken, then the color modification of the official methods may affect of the reaction mixture was observed by the the standards and evaluation of whether a prod- naked eye, and the absorption spectrum and uct would pass or fail the test.
    [Show full text]