Diatom Diversity and Distribution in Madeira Island Streams (Portugal)

Total Page:16

File Type:pdf, Size:1020Kb

Diatom Diversity and Distribution in Madeira Island Streams (Portugal) Biodiversity Data Journal 8: e59813 doi: 10.3897/BDJ.8.e59813 Data Paper Diatom diversity and distribution in Madeira Island streams (Portugal) Catarina Ritter‡, Pedro M. Raposeiro‡, Vítor Gonçalves‡ ‡ CIBIO, Research Center in Biodiversity and Genetic Resources, InBIO Associate Laboratory / Faculty of Sciences Рbr/>and Technology, University of the Azores, Ponta Delgada, Portugal Corresponding author: Catarina Ritter ([email protected]) Academic editor: Saúl Blanco Received: 19 Oct 2020 | Accepted: 11 Nov 2020 | Published: 16 Dec 2020 Citation: Ritter C, Raposeiro PM, Gonçalves V (2020) Diatom diversity and distribution in Madeira Island streams (Portugal). Biodiversity Data Journal 8: e59813. https://doi.org/10.3897/BDJ.8.e59813 Abstract Background Here, we present the data obtained from the samples collected in a field campaign during the spring of 2015 which aims for a better understanding of the diversity and distribution patterns of freshwater diatoms in Madeira Island. Following European and Portuguese standards and recommendations for routine diatom sampling and analysis, we collected samples in 40 sites, distributed in 27 permanent streams and identified the diatom species present, using general diatom floras and studies in Portuguese freshwater diatoms. New information Little is known about the diversity and distribution of freshwater diatom assemblages from Madeira Archipelago. This study reports a survey in 40 sites in Madeira Island distributed in 27 permanent streams. A total of 965 diatom (Bacillariophyta) occurrences were recorded, belonging to 130 different taxa from 44 genera and 27 families. The families with the highest number of occurrences were Bacillariaceae (176), Achnanthidiaceae (135) and Naviculaceae (133). The two diatom endemisms, described previously in Madeira Island (Lange-Bertalot 1993), Nitzschia macaronesica Lange-Bertalot and Navicula madeirensis Lange-Bertalot, were only observed in a small number of sites, located mostly at © Ritter C et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Ritter C et al Laurissilva forest. Sixty species are new records, not only to Madeira Island, but also to the Madeira Archipelago. Keywords Bacillariophyta, oceanic islands, freshwater systems, new records, diatom occurrences Introduction Diatoms (Bacillariophyta) are microscopic algae and one of the most abundant and diverse group of aquatic, pigmented single-celled photosynthetic eukaryotes, which can be found in almost every type of aquatic environment around the globe (Kociolek 2007, Pla et al. 2016). These microalgae are characterised by an outer silica wall (frustule) that makes them easy to collect and preserve for later identification. Benthic diatoms, in particular, are important contributors to primary production in streams and are widely used as indicators for monitoring the ecological status of aquatic systems and also for past environmental and climatic reconstructions (Battarbee et al. 2006), since many species have distinct ecological optima and narrow tolerance (Cohen 2003). Diatom communities inhabiting streams have been studied in several regions of the globe (e.g. Tison et al. 2005, Grenier et al. 2006, Mora et al. 2017, Falasco et al. 2016, Liu et al. 2019), including insular streams (Delgado et al. 2012, Delgado et al. 2013, Kopalová et al. 2011, Kopalová and van de Vijver 2013, Gonçalves et al. 2015, Vasselon et al. 2017). Despite their great importance, current knowledge about the freshwater diatoms on insular streams of Madeira Archipelago is limited in comparison with freshwater macroinvertebrates (Hughes et al. 1998, Hughes and Furse 2001, Hughes 2006), bryophytes (Sérgio and Fontinha 1994, Sérgio et al. 2006, Sim-Sim et al. 2008, Sim-Sim et al. 2014, Sim-Sim et al. 2011, Boch et al. 2019) and hyphomycetes communities (Raposeiro et al. 2020). Although diatoms from the Madeira Archipelago have been a matter of study for more than 150 years (Grunow 1867, De-Toni 1891, De-Toni 1892, Zimmermann 1909, Zimmermann 1911, Schodduyn 1927, Mölder 1947, Lange-Bertalot 1993, Kaufmann et al. 2015, Gonçalves et al. 2016), including the description of two regional endemisms, little is known about the regional overall diversity of these microalgae in Madeira Island. The importance of insular freshwater studies of microalgal diversity is centred around the concept that these ecosystems tend to be less complex, providing much potential for testing ideas about biogeographic theory and species distribution limits (Flower 2005). Here, we provide a detailed dataset that contains freshwater diatom occurrences collected during a field campaign on Madeira Island, increasing the knowledge on the epilithic diatom inhabiting permanent streams in Madeira Island. Our purpose is to release this valuable dataset, since no similar datasets have been previously published for Madeira Archipelago and it constitutes a relevant tool of comparison for aquatic ecologists, for example, biogeographic patterns, climate change or other studies on oceanic islands. Diatom diversity and distribution in Madeira Island streams (Portugal) 3 Project description Title: Diatom diversity and distribution in Madeira Island streams (Portugal) Personnel: Collections were undertaken and occurrence data recorded during the spring of 2015 in Madeira Island. The collectors were Pedro Raposeiro and Vitor Gonçalves. Identifications were made by Catarina Ritter and supervised by Vitor Gonçalves. Study area description: The Madeira Archipelago is an oceanic archipelago located in the North Atlantic between latitudes 32°24' and 33°07'N and longitudes 16°16' and 17°16'W (Fig. 1). Madeira Island is the highest (Pico Ruivo - 1861 m) and largest island (~ 740 km2 ) of the archipelago and about 90% of its area is higher than 500 m above sea level (Ribeiro 1985). Madeira Island presents a high diversity of habitat types, including the largest surviving area of Laurissilva forest in Macaronesia, classified as a UNESCO World Natural Heritage site (IUCN 1999). Due to its oceanic condition, Madeira Island presents a mild temperate oceanic climate strongly influenced by winds from the NE and the Canary Islands current, presenting a relative humidity between 55-75% and annual rainfall between 500 and 1,000 mm (AEMET & IM 2012). An important aspect of the climate in Madeira Island is the persistent nebulous covering of fog, which normally exists in high altitude resulting in an important source of groundwater recharge (Prada et al. 2005). Under this mild temperate oceanic climate, groundwater hydrology is essential for surface water and for the persistence and functioning of the insular aquatic ecosystems as a high number of the permanent streams are fed by springs. Figure 1. Geographical location of the study stream sites. a. Madeira Archipelago in the Atlantic Ocean highlighted by a red square; b. Madeira Island in the Madeira Archipelago; c. Studied stream sites. 4 Ritter C et al Madeira Island comprises approximately 126 catchments and 200 streams presenting a typical radial drainage pattern common in oceanic islands (Marques 1994). According to Prada et al. 2005, the hydrographic network present in the Island is characterised by deep narrow valleys with a typical U-transverse profile as these are still in a young phase. Most of the streams have a torrential character with high flow rates (Hughes 2006). Sampling methods Study extent: Epilithic freshwater diatoms (Bacillariophyta Karsten 1928) from 40 sites (MAD01 – MAD40) from 27 permanent streams in Madeira Island. Sampling description: In the spring of 2015, epilithic biofilm samples were collected in 40 sites (MAD01 – MAD40) from 27 permanent streams in Madeira Island (Table 1). The sampling sites ranged in altitudes (low, medium and high) and land-uses (natural, agricultural and urban) (Figs 2, 3, 4). For diatom analysis, samples were prepared following the European (Kelly et al. 1998, European Committee for Standardization 2003, European Committee for Standardization 2004) and national recommendations (INAG 2008). Epilithic diatoms were taken from stones with a toothbrush in each sampling site (Fig. 5). Immediately after collection, diatom samples were fixed with formalin at 4% final concentration. Permanent slides were prepared with Naphrax® and at least 400 valves per sample were counted and identified at the lowest taxonomic level possible under oil- immersion phase contrast light microscopy using a Leica DM2500 (Leica Microsystems GmbH, Welzlar, Germany). Table 1. Sampling codes and location of the forty studied stream sites on Madeira Island. Sampling Stream Municipality Sampling Latitude(ºN) / Altitude(m) code date Longitude(ºW) MAD01 Ribeira dos Socorridos Câmara de 28/04/2015 32.66319, -16.9606 85 Lobos MAD02 Ribeira Brava Ribeira brava 28/04/2015 32.73395, -17.021 409 MAD03 Ribeira da Vargem São Vicente 28/04/2015 32.76807, -17.0305 450 MAD04 Ribeira de São Vicente São Vicente 28/04/2015 32.77415, -17.0245 325 MAD05 Ribeira Grande São Vicente 28/04/2015 32.77599, -17.0244 311 MAD06 Ribeira Grande São Vicente 28/04/2015 32.28433, -16.7232 60 MAD07 Ribeira Brava São Vicente 28/04/2015 32.75216, -17.0244 903 MAD08 Ribeira Brava São Vicente 28/04/2015 32.74842, -17.0257 833 MAD09 Ribeira dos Socorridos Câmara de 29/04/2015 32.74522, -16.9591 826 Lobos Diatom diversity and distribution
Recommended publications
  • Motorcycle Tour, Madeira Pearl of Atlantic Motorcycle Tour, Madeira Pearl of Atlantic
    Motorcycle tour, Madeira Pearl of Atlantic Motorcycle tour, Madeira Pearl of Atlantic Duration Difficulty Support vehicle 3 días Easy Ja Language Guide en,es Ja Our Guided Motorcycle Tours allow you and your party to truly enjoy touring Madeira Island in style. On Arrival Day we'll greet you at the airport, providing transport for you and your party towards your accommodation. On the scheduled Tour day after a small safety briefing we will present you to your ride, supplying all selected gear. In our Tours we will be visiting amazing places as well, experiencing delicious regional specialties served in local restaurants carefully chosen for you, adding flavor to your experience with us. Our knowledgeable and friendly guides are highly committed to ensuring your needs are cared for, all team is excited to have you on board in this fantastic experience, we will take you and your party in a truly lifetime experience. Itinerary 1 - Funchal - Funchal - 160 Here we presents our Southeast and North wonders Tour, our first day starts off from the reception area of your hotel at about 9h00 duration 8h. We make our way to southeast of the island from Funchal. The first stop is at the cliffs of Garajau where we stop to see the statue of Christ, some fantastic views from up there towards Funchal Bay. We then make our way to the village of Santa Cruz, followed by a visit to Machico the very first village in Madeira. We then make our way to the most eastern peninsular, Baia de Abra where we will stop at two different viewpoints and we can see Ponta de São Lourenço in Caniçal, where the views are absolutely magical.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • The 20 February 2010 Madeira Flash-Floods
    Nat. Hazards Earth Syst. Sci., 12, 715–730, 2012 www.nat-hazards-earth-syst-sci.net/12/715/2012/ Natural Hazards doi:10.5194/nhess-12-715-2012 and Earth © Author(s) 2012. CC Attribution 3.0 License. System Sciences The 20 February 2010 Madeira flash-floods: synoptic analysis and extreme rainfall assessment M. Fragoso1, R. M. Trigo2, J. G. Pinto3, S. Lopes1,4, A. Lopes1, S. Ulbrich3, and C. Magro4 1IGOT, University of Lisbon, Portugal 2IDL, Faculty of Sciences, University of Lisbon, Portugal 3Institute for Geophysics and Meteorology, University of Cologne, Germany 4Laboratorio´ Regional de Engenharia Civil, R.A. Madeira, Portugal Correspondence to: M. Fragoso ([email protected]) Received: 9 May 2011 – Revised: 26 September 2011 – Accepted: 31 January 2012 – Published: 23 March 2012 Abstract. This study aims to characterise the rainfall ex- island of Madeira is quite densely populated, particularly in ceptionality and the meteorological context of the 20 Febru- its southern coast, with circa 267 000 inhabitants in 2011 ary 2010 flash-floods in Madeira (Portugal). Daily and census, with 150 000 (approximately 40 %) living in the Fun- hourly precipitation records from the available rain-gauge chal district, one of the earliest tourism hot spots in Europe, station networks are evaluated in order to reconstitute the currently with approximately 30 000 hotel beds. In 2009, the temporal evolution of the rainstorm, as its geographic inci- archipelago received 1 million guests; this corresponds to an dence, contributing to understand the flash-flood dynamics income of more than 255 Million Euro (INE-Instituto Na- and the type and spatial distribution of the associated im- cional de Estat´ıstica, http://www.ine.pt).
    [Show full text]
  • Water Quality of Camp Creek, Costello Creek, and Other Selected Streams on the South Side of Denali National Park and Preserve, Alaska
    Water Quality of Camp Creek, Costello Creek, and Other Selected Streams on the South Side of Denali National Park and Preserve, Alaska Water-Resources Investigations Report 02-4260 Prepared in cooperation with the NATIONAL PARK SERVICE U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Cover photograph: View of Costello Creek with Camp Creek in foreground, June 1, 2000. Photograph by Tim Brabets, U.S. Geological Survey Water Quality of Camp Creek, Costello Creek, and Other Selected Streams on the South Side of Denali National Park and Preserve, Alaska By Timothy P. Brabets and Matthew S. Whitman Water-Resources Investigations Report 02-4260 Prepared in cooperation with the National Park Service U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director Use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. Anchorage, Alaska, 2002 For additional information write to: Alaska Science Center Chief, Office of Water Resources U.S. Geological Survey 4230 University Drive, Suite 201 Anchorage, AK 99508-4664 For more information on the USGS in Alaska, you may connect to the Alaska Science Center Home Page at: http://alaska.usgs.gov For more information on all USGS reports and products (including maps, images, and computerized data), call 1-888-ASK-USGS Water-Resources Investigations Report 02-4260 CONTENTS Abstract.....................................................................................................................................................................................................1
    [Show full text]
  • Motorcycle Tour, Madeira Pearl of Atlantic Motorcycle Tour, Madeira Pearl of Atlantic
    Motorcycle tour, Madeira Pearl of Atlantic Motorcycle tour, Madeira Pearl of Atlantic durada dificultat Vehicle de suport 3 días fàcil Si Language guia en,es Si Our Guided Motorcycle Tours allow you and your party to truly enjoy touring Madeira Island in style. On Arrival Day we'll greet you at the airport, providing transport for you and your party towards your accommodation. On the scheduled Tour day after a small safety briefing we will present you to your ride, supplying all selected gear. In our Tours we will be visiting amazing places as well, experiencing delicious regional specialties served in local restaurants carefully chosen for you, adding flavor to your experience with us. Our knowledgeable and friendly guides are highly committed to ensuring your needs are cared for, all team is excited to have you on board in this fantastic experience, we will take you and your party in a truly lifetime experience. itinerari 1 - Funchal - Funchal - 160 Here we presents our Southeast and North wonders Tour, our first day starts off from the reception area of your hotel at about 9h00 duration 8h. We make our way to southeast of the island from Funchal. The first stop is at the cliffs of Garajau where we stop to see the statue of Christ, some fantastic views from up there towards Funchal Bay. We then make our way to the village of Santa Cruz, followed by a visit to Machico the very first village in Madeira. We then make our way to the most eastern peninsular, Baia de Abra where we will stop at two different viewpoints and we can see Ponta de São Lourenço in Caniçal, where the views are absolutely magical.
    [Show full text]
  • Eyewitness Top 10 Travel Guides
    TOP 10 MADEIRA CHRISTOPHER CATLING EYEWITNESS TRAVEL Left Funchal Casino Middle Flower sellers at Funchal market Right Casks of Verdelho Madeira Contents Contents Madeira’s Top 10 Produced by DP Services, London Funchal Cathedral (Sé) 8 Reproduced by Colourscan, Singapore Printed and bound in Italy by Graphicom Museu de Arte Sacra, First American Edition, 2005 07 08 09 10 9 8 7 6 5 4 3 2 1 Funchal 10 Published in the United States by DK Publishing, Inc., Adegas de São Francisco, 375 Hudson Street, New York, New York 10014 Funchal 12 Reprinted with revisions 2007 Museu da Quinta das Copyright 2005, 2007 © Dorling Kindersley Limited, London A Penguin Company Cruzes, Funchal 14 All rights reserved under International and Pan- American Copyright Conventions. No part of this Mercado dos Lavradores, publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any Funchal 18 means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the copyright owner. Published in Jardim Botânico, Funchal 20 Great Britain by Dorling Kindersley Limited ISSN 1479-344X Quinta ISBN 0-75660-905-4 ISBN 978-0-75660-905-4 do Palheiro Ferreiro 24 Within each Top 10 list in this book, no hierarchy of quality or popularity is implied. Monte 26 All 10 are, in the editor’s opinion, of roughly equal merit. Curral das Freiras 30 Floors are referred to throughout in accordance with Portuguese usage; ie the “first floor” is the floor above ground level. Pico do Arieiro 32 The information in this DK Eyewitness Top 10 Travel Guide is checked regularly.
    [Show full text]
  • Groundwater Behaviour in Madeira, Volcanic Island (Portugal)
    Groundwater behaviour in Madeira, volcanic island (Portugal) Susana Nascimento Prada · Manuel Oliveira da Silva · JoseVirg´ ´ılio Cruz Abstract Madeira Island is a hot-spot originating from a pendant le Post Miocene,` il y a 6000–7000 ans. Les eaux mantle plume. K-Ar age determinations indicate that the souterraines sont cantonnees´ dans des aquiferes` perchees´ emerged part of the island was generated during Post- qui se dechargent´ par des sources a` grands debits,´ avec Miocene times 6000–7000 years B.P. Groundwater oc- des valeurs d’approximativement de 3500 l/s, ainsi que curs in perched-water bodies, spring discharge from them dans les dikes. Une importante quantite´ des eaux souter- is high, about 3,650 l/s; in dike-impounded water and raine se trouve sur la forme d’eau de fonds, formant une basal groundwater. Basal groundwater is exploited by tun- nappe basale, qui est exploitee´ par des tunnels (1100 l/s) nels (1,100 l/s) and wells (1,100 l/s). Hydraulic gradi- et par des puits (1100 l/s). Les gradients hydrauliques ents range from 10−4 to 10−2 and transmissivity ranges ont des valeurs dans l’intervalle de 10−2 a10` −4, tandis from 1.16×10−2 to 2.89×10−1 m2/s, indicating the het- que les transmissivites´ se rangent entre 1.16×10−2 m2/s erogeneity of the volcanic aquifers. Water mineralisation et 2.81×10−1 m2/s, ce qu’indique la het´ erog´ en´ eit´ ede´ is variable, and electrical conductivity ranges from 50 to l’aquifere` volcanique.
    [Show full text]
  • Analysis of Y-Chromosome and Mtdna Variability in the Madeira Archipelago Population
    International Congress Series 1288 (2006) 94–96 www.ics-elsevier.com Analysis of Y-chromosome and mtDNA variability in the Madeira Archipelago population Ana T. Fernandes *, Rita Gonc¸alves, Alexandra Rosa, Anto´nio Brehm Human Genetics Laboratory, University of Madeira, Campus of Penteada, Funchal, Portugal Abstract. The Atlantic archipelago of Madeira is made up of two islands (Madeira and Porto Santo) with 250,000 inhabitants. These islands were discovered and settled by the Portuguese in the 15th century and played an important role in the complex Atlantic trade network in the following centuries. The genetic composition of the Madeira Islands’ population was investigated by analyzing Y-chromosomal bi-allelic and STR markers in three different regions of the main island plus Porto Santo. We compared the results with mtDNA data and used the Y-chromosome STRs to determine the variability within each haplogroup. A sample of 142 unrelated males divided into four groups (Funchal City, West Madeira, North and East Madeira and Porto Santo) were analyzed. Significant genetic differences between these regions and the population of Funchal were found. The population of Funchal had lower gene diversity than expected. D 2006 Elsevier B.V. All rights reserved. Keywords: Madeira Island; Y-chromosome; mtDNA 1. Introduction The Madeira archipelago is made up of two inhabited islands, Madeira and Porto Santo, and has a population of about 250,000 inhabitants, with more than half living in Funchal. The Portuguese colonized the Madeira Archipelago in the 15th century and, in the beginning of the colonization, the archipelago was divided into three parts (Southwest and Northeast in the Madeira Island, and Porto Santo) and given to three administrators [1].
    [Show full text]
  • Analysis and Definition of Potential New Areas for Viticulture in the Azores (Portugal)
    1 Analysis and definition of potential new areas for viticulture in the Azores 2 (Portugal) 3 J. Madruga1, E. B. Azevedo1,2, J. F. Sampaio1, F. Fernandes2, F. Reis2, and J. Pinheiro1 4 1CITA_A, Research Center of Agrarian Sciences of the University of the Azores. 9700-042 Angra do Heroísmo, 5 Portugal 6 2CCMMG, Research Center for Climate, Meteorology and Global Change, University of the Azores. 9700-042 7 Angra do Heroísmo, Portugal 8 Abstract 9 Vineyards in the Azores have been traditionally settled on lava field “terroirs” but the practical 10 limitations of mechanization and high demand on man labor imposed by the typical micro parcel 11 structure of these vineyards contradict the sustainability of these areas for wine production, except 12 under government policies of heavy financial support. Besides the traditional vineyards there are 13 significant areas in some of the islands whose soils, climate and physiographic characteristics 14 suggest a potential for wine production that deserves to be object of an assessment, with a view to 15 the development of new vineyard areas offering conditions for a better management and 16 sustainability. 17 The landscape zoning approach for the present study was based in a Geographic Information 18 System (GIS) analysis incorporating factors related to climate, topography and soils. Three thermal 19 intervals referred to climate maturity groups were defined and combined with a single slope interval 20 of 0–15% to exclude the landscape units above this limit. Over this resulting composite grid, the soils 21 were than selectively cartographed through the exclusion of the soil units not fulfilling the suitability 22 criteria.
    [Show full text]
  • Bacillariophyceae from Karstic Wetlands in México
    Bibliotheca Diatomologica Band 54 Bacillariophyceae from Karstic Wetlands in México Eberto Novelo, Rosaluz Tavera & Claudia Ibarra with 3 figures and 21 plates Dedicated to Dr. Arturo Gómez-Pompa J. CRAMER in der Gebrüder Borntraeger Verlagsbuchhandlung BERLIN · STUTTGART 2007 Editors Prof. Dr.Dr. h.c. H. Lange-Bertalot, Frankfurt Dr. P. Kociolek, San Francisco Authors addresses: E. Novelo Department of Comparative Biology, School of Sciences, Universidad Nacional Autónoma de México, A.P. 70-474. CU Coyoacán 04510, México, DF. MÉXICO. E-mail: [email protected] R. Tavera Department of Ecology and Natural Resources, School of Sciences, Universidad Nacional Autónoma de México, A.P. 70-474. CU Coyoacán 04510, México, DF. MÉXICO. E-mail: [email protected] C. Ibarra Postgraduate Program in Biological Sciences. School of Sciences, Universidad Nacional Autónoma de México, A.P. 70-474. CU Coyoacán 04510, México, DF. MÉXICO. E-mail: [email protected] All rights reserved, including translation into foreign languages. This journal, or parts thereof, may not be reproduced in any form without permission from the publishers. © 2007 by Gebrüder Borntraeger, 14129 Berlin, 70176 Stuttgart, Germany www.borntraeger-cramer.de E-mail: [email protected] Printed on permanent paper conforming to ISO 9706-1994 Printed in Germany by strauss offsetdruck gmbh, 69509 Mörlenbach ISBN 978-3-443-57045-3 ISSN 1436-7270 Contents Abstract / Resumen ................................................................................................ 4 Introduction
    [Show full text]
  • Protistology Diatom Assemblages of the Brackish Bolshaya Samoroda
    Protistology 13 (4), 215–235 (2019) Protistology Diatom assemblages of the brackish Bolshaya Samoroda River (Russia) studied via light micro- scopy and DNA metabarcoding Elena A. Selivanova, Marina E. Ignatenko, Tatyana N. Yatsenko-Stepanova and Andrey O. Plotnikov Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Orenburg 460000, Russia | Submitted October 15, 2019 | Accepted December 10, 2019 | Summary Diatoms are highly diverse and widely spread aquatic photosynthetic protists. Studies of regional patterns of diatom diversity are substantial for understanding taxonomy and biogeography of diatoms, as well as for ecological perspectives and applied purposes. DNA barcoding is a modern approach, which can resolve many problems of diatoms identification and can provide valuable information about their diversity in different ecosystems. However, only few studies focused on diatom assemblages of brackish rivers and none of them applied the genetic tools. Herein, we analyzed taxonomic composition and abundance of diatom assemblages in the brackish mixohaline Bolshaya Samoroda River flowing into the Elton Lake (Volgograd region, Russia) using light microscopy and high-throughput sequencing of the V4 region of the 18S rDNA gene amplicons. In total, light microscopy of the samples taken in 2011–2014 and 2018 allowed to distinguish 39 diatom genera, represented by 76 species and infraspecies taxa. Twenty three species of diatoms were recorded in the river for the first time. Next-generation sequencing revealed a larger number of diatom taxa (26 genera and 47 OTUs in two samples vs. 20 genera and 37 species estimated by light microscopy). As a result, sequences of Haslea, Fistulifera, Gedaniella were recorded in the river for the first time.
    [Show full text]
  • A Preliminary Check-List of the Algae of Ireland Michael D. Guiry
    A Preliminary Check-list of the Algae of Ireland Michael D. Guiry Ryan Institute NUI Galway September 2019 i Introduction The present check-list is an initial attempt to provide an up-to-date list of the current names for freshwater, marine and terrestrial (including aerophytic) algae of Ireland. The list is extracted from the distributional data in AlgaeBase (https://www.algaebase.org) as of September 2019, and each name and its source is traceable on line there. Some 2879 current species names are presently included. Taxa at the subspecies, varieties and formae level are not provided. The list is current as of September 2019. Nine phyla/divisions are included, eight of them from the Eukaryota and one (Cyanobacteria) from the Prokaryota. Table 1. Included taxa. Phylum Species General name(s) Habitat Estimated included (Marine, completeness Freshwater, (%) Terrestrial) Bacillariophyta 1065 Diatoms M/F/T 50 Charophyta 639 Charophytes F 80 Desmids Chlorophyta 300 Green algae M/F/T 60 Cryptophyta 1 Cryptophytes F ? Cyanobacteria 221 Blue-green algae F/M/T 70 Glaucophyta 1 Glaucophytes F ? Miozoa 55 Dinoflagellates M/F 25 Ochrophyta 238 Ochrophytes; M/F/T 80 Tribophytes; brown algae; seaweeds Rhodophyta 359 Red algae, seaweed M/F 90 Total 2879 Recent lists exist for: desmids (John, Williamson & Guiry 2011) and seaweeds (Guiry 2012), and for diatoms by Carter in Wolnik & Carter (2014). The final list is likely to exceed 5000 species, or about 10% of the world’s species of algae. Poor coverage is apparent for diatoms, some green algae, Cryptophytes and Glaucophytes, and dinoflagellates. The list is arranged in alphabetical order within phyla, classes, orders, families and genera.
    [Show full text]